Spatial–Spectral Squeeze-and-Excitation Residual Network for Hyperspectral Image Classification

Jointly using spectral and spatial information has become a mainstream strategy in the field of hyperspectral image (HSI) processing, especially for classification. However, due to the existence of noisy or correlated spectral bands in the spectral domain and inhomogeneous pixels in the spatial neig...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 7; p. 884
Main Authors Wang, Li, Peng, Jiangtao, Sun, Weiwei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Jointly using spectral and spatial information has become a mainstream strategy in the field of hyperspectral image (HSI) processing, especially for classification. However, due to the existence of noisy or correlated spectral bands in the spectral domain and inhomogeneous pixels in the spatial neighborhood, HSI classification results are often degraded and unsatisfactory. Motivated by the attention mechanism, this paper proposes a spatial–spectral squeeze-and-excitation (SSSE) module to adaptively learn the weights for different spectral bands and for different neighboring pixels. The SSSE structure can suppress or motivate features at a certain position, which can effectively resist noise interference and improve the classification results. Furthermore, we embed several SSSE modules into a residual network architecture and generate an SSSE-based residual network (SSSERN) model for HSI classification. The proposed SSSERN method is compared with several existing deep learning networks on two benchmark hyperspectral data sets. Experimental results demonstrate the effectiveness of our proposed network.
AbstractList Jointly using spectral and spatial information has become a mainstream strategy in the field of hyperspectral image (HSI) processing, especially for classification. However, due to the existence of noisy or correlated spectral bands in the spectral domain and inhomogeneous pixels in the spatial neighborhood, HSI classification results are often degraded and unsatisfactory. Motivated by the attention mechanism, this paper proposes a spatial–spectral squeeze-and-excitation (SSSE) module to adaptively learn the weights for different spectral bands and for different neighboring pixels. The SSSE structure can suppress or motivate features at a certain position, which can effectively resist noise interference and improve the classification results. Furthermore, we embed several SSSE modules into a residual network architecture and generate an SSSE-based residual network (SSSERN) model for HSI classification. The proposed SSSERN method is compared with several existing deep learning networks on two benchmark hyperspectral data sets. Experimental results demonstrate the effectiveness of our proposed network.
Author Peng, Jiangtao
Wang, Li
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Li
  surname: Wang
  fullname: Wang, Li
– sequence: 2
  givenname: Jiangtao
  surname: Peng
  fullname: Peng, Jiangtao
– sequence: 3
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
BookMark eNptkctKAzEUhoMoeN34BAPuhNHcppMspXgpiILtPqTJiaSOkzGZonXlO_iGPomp9YaYRRJOvv_P4T_baL0NLSC0T_ARYxIfx0QIrrEQfA1tUVzTklNJ13_dN9FeSjOcF2NEYr6F9LjTvdfN28vruAPTR90U44c5wDOUurXl6ZPxfSZCW9xA8nae36-gfwzxrnAhFheLDmL6Uo7u9S0Uw0an5J03H7pdtOF0k2Dv89xBk7PTyfCivLw-Hw1PLkvDBqQvrZNsitmgBkKFrdwAS2trgo0lFcfSWagGwnLjuIZaV5YZw5lkxDnrjKRsB41Wtjbomeqiv9dxoYL26qMQ4q3SsfemAQUga275lFrhlvtUiAqY44ZTkKIi2etg5dXFkLNIvZqFeWxz94oyzDGlVSUydbiiTAwpRXDfvxKslgNRPwPJMP4Df-Wag_PNf5J3Nn2RfQ
CitedBy_id crossref_primary_10_3390_rs13112216
crossref_primary_10_3390_rs14030608
crossref_primary_10_1080_01431161_2024_2391583
crossref_primary_10_1109_JSTARS_2022_3199118
crossref_primary_10_1109_TGRS_2022_3185640
crossref_primary_10_1111_phor_12491
crossref_primary_10_1016_j_precisioneng_2022_01_005
crossref_primary_10_1109_JSTARS_2021_3071353
crossref_primary_10_3390_rs11192220
crossref_primary_10_3390_rs14122907
crossref_primary_10_1109_JSTARS_2024_3375321
crossref_primary_10_1016_j_eswa_2021_115663
crossref_primary_10_1016_j_isprsjprs_2024_01_016
crossref_primary_10_1109_JSTARS_2021_3053567
crossref_primary_10_1109_JSTARS_2022_3225928
crossref_primary_10_1007_s40745_024_00567_8
crossref_primary_10_3390_rs13163055
crossref_primary_10_1109_TGRS_2021_3130940
crossref_primary_10_1109_TGRS_2023_3286950
crossref_primary_10_3390_electronics11172709
crossref_primary_10_1109_TGRS_2021_3058549
crossref_primary_10_1109_ACCESS_2024_3365829
crossref_primary_10_3390_rs14051230
crossref_primary_10_1109_JSTARS_2021_3123371
crossref_primary_10_3390_rs12010125
crossref_primary_10_3390_rs11161896
crossref_primary_10_3390_s24144714
crossref_primary_10_1109_TGRS_2022_3215677
crossref_primary_10_3390_rs13152965
crossref_primary_10_3390_rs14133091
crossref_primary_10_1007_s10489_022_04232_6
crossref_primary_10_1109_TGRS_2023_3257369
crossref_primary_10_1109_TGRS_2024_3449878
crossref_primary_10_1109_JSTARS_2019_2952408
crossref_primary_10_1186_s13638_022_02161_z
crossref_primary_10_3390_rs16132499
crossref_primary_10_3390_sym14061080
crossref_primary_10_1109_TGRS_2023_3295097
crossref_primary_10_3390_math11071686
crossref_primary_10_3390_rs13030335
crossref_primary_10_1049_cit2_12201
crossref_primary_10_1080_01431161_2021_1934599
crossref_primary_10_1109_JSTARS_2024_3486283
crossref_primary_10_3390_su141912465
crossref_primary_10_1007_s11042_025_20739_9
crossref_primary_10_1109_LGRS_2021_3067348
crossref_primary_10_1109_ACCESS_2020_3008029
crossref_primary_10_3390_rs13204060
crossref_primary_10_1007_s12524_024_02059_x
crossref_primary_10_1049_iet_ipr_2019_1462
crossref_primary_10_1109_JSTARS_2023_3271901
crossref_primary_10_1007_s12145_023_01109_1
crossref_primary_10_1016_j_sigpro_2024_109850
crossref_primary_10_1109_LGRS_2022_3149185
crossref_primary_10_3390_rs12122035
crossref_primary_10_1109_ACCESS_2019_2951030
crossref_primary_10_3390_rs11212501
crossref_primary_10_1007_s10772_021_09842_y
crossref_primary_10_1080_01431161_2021_2019849
crossref_primary_10_1109_TGRS_2019_2963243
crossref_primary_10_1109_TGRS_2021_3054008
crossref_primary_10_1109_TCYB_2020_2989241
crossref_primary_10_1109_TGRS_2020_3015157
crossref_primary_10_3390_s20185191
crossref_primary_10_3390_s22093229
crossref_primary_10_1109_JSTARS_2023_3237566
crossref_primary_10_1109_JSTARS_2022_3190071
crossref_primary_10_1007_s00521_024_10666_5
crossref_primary_10_1080_01431161_2024_2403622
crossref_primary_10_1109_TGRS_2023_3242776
crossref_primary_10_17714_gumusfenbil_1493821
crossref_primary_10_3390_app13010492
crossref_primary_10_1109_TGRS_2021_3080394
crossref_primary_10_1016_j_jag_2021_102445
crossref_primary_10_3389_fphy_2023_1163555
crossref_primary_10_1080_01431161_2023_2224102
crossref_primary_10_1109_JSTARS_2020_2995445
crossref_primary_10_3390_rs11222718
crossref_primary_10_3390_app13148451
crossref_primary_10_3390_sym16050514
crossref_primary_10_1371_journal_pone_0258880
crossref_primary_10_1117_1_JRS_18_014504
crossref_primary_10_1109_JSTARS_2021_3119413
crossref_primary_10_3390_s23146295
crossref_primary_10_3390_molecules28176427
Cites_doi 10.1109/JSTARS.2014.2329330
10.1109/MGRS.2017.2762307
10.1109/ICIP.2014.7026039
10.1016/j.isprsjprs.2017.11.021
10.1109/TGRS.2015.2410991
10.1109/JSTARS.2014.2359965
10.1080/2150704X.2017.1280200
10.1109/IGARSS.2016.7730321
10.1109/TGRS.2017.2743110
10.1109/TGRS.2017.2755542
10.1109/TIE.2018.2870413
10.1007/978-3-319-46493-0_38
10.1109/JPROC.2012.2197589
10.1109/TGRS.2017.2765364
10.1109/TGRS.2017.2675902
10.1109/TGRS.2016.2584107
10.1109/CVPR.2018.00745
10.3390/rs9010067
10.1109/CVPR.2016.90
10.1109/TGRS.2014.2333539
10.1109/IGARSS.2016.7730324
10.1109/ICCV.2015.123
10.1109/TIP.2018.2848470
10.1109/MGRS.2016.2540798
10.1038/nature14539
10.1080/22797254.2017.1274566
10.1109/79.974718
10.1109/LGRS.2017.2751559
10.1109/MGRS.2013.2244672
10.3390/rs71114680
10.1109/TITS.2017.2749964
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs11070884
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ee974d4b2d8f4b2db885e3f4c42e9851
10_3390_rs11070884
GeographicLocations Beijing China
United States--US
China
GeographicLocations_xml – name: China
– name: Beijing China
– name: United States--US
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-df93b0367e128d5f609dd710cd15409fde568d4cf4ae7a5d3cc43931ffdfc923
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:24:35 EDT 2025
Fri Jul 25 12:12:06 EDT 2025
Tue Jul 01 04:14:43 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-df93b0367e128d5f609dd710cd15409fde568d4cf4ae7a5d3cc43931ffdfc923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/ee974d4b2d8f4b2db885e3f4c42e9851
PQID 2304022558
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ee974d4b2d8f4b2db885e3f4c42e9851
proquest_journals_2304022558
crossref_primary_10_3390_rs11070884
crossref_citationtrail_10_3390_rs11070884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Fauvel (ref_2) 2013; 101
Peng (ref_11) 2017; 55
Chen (ref_12) 2014; 7
Landgrebe (ref_1) 2002; 19
Zhou (ref_7) 2015; 53
Zhou (ref_9) 2015; 8
ref_35
ref_34
He (ref_8) 2018; 56
ref_33
ref_32
ref_31
Plaza (ref_3) 2013; 1
ref_30
Donoho (ref_5) 2000; 1
ref_17
Paoletti (ref_27) 2018; 145
Wang (ref_4) 2017; 14
Zhong (ref_18) 2017; 55
Zhang (ref_14) 2016; 4
Zhao (ref_16) 2017; 50
ref_24
ref_23
Zhong (ref_29) 2018; 56
Peng (ref_22) 2018; 27
Lecun (ref_20) 2015; 521
Zhang (ref_25) 2017; 8
Hu (ref_13) 2015; 7
ref_28
ref_26
Wang (ref_21) 2018; 19
Chen (ref_19) 2016; 54
Peng (ref_10) 2015; 53
ref_6
Zhu (ref_15) 2017; 5
References_xml – volume: 7
  start-page: 2094
  year: 2014
  ident: ref_12
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2014.2329330
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_15
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote. Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– ident: ref_17
  doi: 10.1109/ICIP.2014.7026039
– volume: 145
  start-page: 120
  year: 2018
  ident: ref_27
  article-title: A new deep convolutional neural network for fast hyperspectral image classification
  publication-title: ISPRS J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2017.11.021
– volume: 53
  start-page: 4810
  year: 2015
  ident: ref_10
  article-title: Region-kernel-based support vector machines for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2015.2410991
– ident: ref_34
– volume: 8
  start-page: 2351
  year: 2015
  ident: ref_9
  article-title: Extreme learning machine with composite kernels for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2014.2359965
– volume: 8
  start-page: 438
  year: 2017
  ident: ref_25
  article-title: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2017.1280200
– ident: ref_23
  doi: 10.1109/IGARSS.2016.7730321
– volume: 55
  start-page: 7152
  year: 2017
  ident: ref_11
  article-title: Robust joint sparse representation based on maximum correntropy criterion for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2017.2743110
– volume: 56
  start-page: 847
  year: 2018
  ident: ref_29
  article-title: Spectral-spatial residual network for hyperspectral image classification: A 3-D deep learning framework
  publication-title: IEEE Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2017.2755542
– ident: ref_6
  doi: 10.1109/TIE.2018.2870413
– ident: ref_32
  doi: 10.1007/978-3-319-46493-0_38
– volume: 101
  start-page: 652
  year: 2013
  ident: ref_2
  article-title: Advances in spectral-spatial classification of hyperspectral images
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2197589
– volume: 56
  start-page: 1579
  year: 2018
  ident: ref_8
  article-title: Recent advances on spectral-spatial hyperspectral image classification: An overview and new guidelines
  publication-title: IEEE Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2017.2765364
– volume: 55
  start-page: 3516
  year: 2017
  ident: ref_18
  article-title: Learning to diversify deep belief networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2017.2675902
– volume: 54
  start-page: 6232
  year: 2016
  ident: ref_19
  article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2016.2584107
– ident: ref_35
– volume: 1
  start-page: 32
  year: 2000
  ident: ref_5
  article-title: High-dimensional data analysis: The curses and blessings of dimensionality
  publication-title: AMS Math Chall. Lect.
– ident: ref_28
  doi: 10.1109/CVPR.2018.00745
– ident: ref_26
  doi: 10.3390/rs9010067
– ident: ref_30
  doi: 10.1109/CVPR.2016.90
– volume: 53
  start-page: 1082
  year: 2015
  ident: ref_7
  article-title: Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2014.2333539
– ident: ref_24
  doi: 10.1109/IGARSS.2016.7730324
– ident: ref_31
  doi: 10.1109/ICCV.2015.123
– ident: ref_33
– volume: 27
  start-page: 5076
  year: 2018
  ident: ref_22
  article-title: Structured autoEncoders for aubspace clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2848470
– volume: 4
  start-page: 22
  year: 2016
  ident: ref_14
  article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote. Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– volume: 521
  start-page: 1476
  year: 2015
  ident: ref_20
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 50
  start-page: 47
  year: 2017
  ident: ref_16
  article-title: Spectral-spatial classification of hyperspectral imagery based on stacked sparse autoencoder and random forest
  publication-title: Eur. J. Remote. Sens.
  doi: 10.1080/22797254.2017.1274566
– volume: 19
  start-page: 17
  year: 2002
  ident: ref_1
  article-title: Hyperspectral image data analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.974718
– volume: 14
  start-page: 2077
  year: 2017
  ident: ref_4
  article-title: Locality adaptive discriminant analysis for spectral-spatial classification of hyperspectral images
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2017.2751559
– volume: 1
  start-page: 6
  year: 2013
  ident: ref_3
  article-title: Hyperspectral remote sensing data analysis and future challenges
  publication-title: IEEE Geosci. Remote. Sens. Mag.
  doi: 10.1109/MGRS.2013.2244672
– volume: 7
  start-page: 14680
  year: 2015
  ident: ref_13
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 19
  start-page: 230
  year: 2018
  ident: ref_21
  article-title: Embedding structured contour and location prior in siamesed fully convolutional networks for road detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2749964
SSID ssj0000331904
Score 2.5231493
Snippet Jointly using spectral and spatial information has become a mainstream strategy in the field of hyperspectral image (HSI) processing, especially for...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 884
SubjectTerms Band spectra
Banded structure
Classification
convolutional neural networks
Deep learning
Earth science
Excitation spectra
hyperspectral images
Hyperspectral imaging
Image classification
International conferences
Machine learning
Modules
Neighborhoods
Neural networks
Pattern recognition
Pixels
Remote sensing
Spatial data
Spectral bands
spectral–spatial feature extraction
squeeze and excitation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtswDBa25LBeiu4PTZcOBrZLD0ZdW7KlU9EUCdICC4a0A3ozZJHaDl2SxRmw9dR36Bv2SUraSopixS4-2BJgUyL5kab4CfEZbGFQUnRimChMItlBS4oRozOQYpqi1nzA-cskH3-T51fqKiTc6lBWubaJjaGGueMc-SEnL8nfKKWPF79iZo3iv6uBQuOl6JIJ1rojuoPh5Ot0k2WhFyCPJ9u-pBnF94fLmiMe0i35xBM1Dfv_sceNkxntiO2ADqOTdjlfixc4eyNeBaLyH3_fCssUwrRl7m_vmDme0xTRBQejNxjbGcTDPy403Y6mWDcHraJJW-kdETyNxhR2tqcreebZT7ImUcOLyRVDzbx34nI0vDwdx4ElIXZZfrSKwZusIj9UIEkAlM8TA0C4wQGho8R4QJVrkM5Li4VVkDlHICQ78h68I3j3XnRm8xnuiig3yiZJpSR34YLEWG2VLjwhRgd5kbmeOFgLrFx_DBNZXJcUSbBwy0fh9sSnzdhF2zfj2VEDlvtmBPe6bm7Ml9_LoDolIsU8IKsUtOdrpbXCzEsnUzQEGHuiv161MihgXT5ul73_P_4gtggDmbYYpy86q-Vv3Cecsao-hs30AHwY1Vw
  priority: 102
  providerName: ProQuest
Title Spatial–Spectral Squeeze-and-Excitation Residual Network for Hyperspectral Image Classification
URI https://www.proquest.com/docview/2304022558
https://doaj.org/article/ee974d4b2d8f4b2db885e3f4c42e9851
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4-DnoRn7i6LgW9eCjWNmmTo49dV9FFfIC3kiYTPGiV3RXUk__Bf-gvcSbt-kDBi5cWSkLbmWTmmzAzH2MbVmcKOEYniojCOKAd1LgxQjDKxhDHICUVOJ_00u4lP7oSV1-ovignrGoPXAluCwARr-VFbKWjayGlgMRxw2NQ0hdPx-jzvgRT3gYnuLQiXvUjTTCu3-oPKNLBPcW_eSDfqP-HHfbOpTPLZmpUGOxUXzPHxqCcZ1M1Qfn10wLTRB2MS-Xt5ZUY4-l4IjinIPQZQl3asP1o6mbbwRkMfIFV0KsyvAOEpUEXw82qqpJmHt6iFQk8HyZlCvl5i-yi077Y64Y1O0JoknR7GFqnkgL9TwboYqxwaaSsRbxgLKKiSDkLIpWWG8c1ZFrYxBgEH8m2c9YZhHVLbKK8K2GZBakSOooKwan7lo2UllrIzCFSNDbNEtNgmyOB5aOfIQKLmxwjCBJu_incBlv_GHtf9cv4ddQuyf1jBPW49g9Q83mt-fwvzTdYc6S1vN54g5zOuBGWCCFX_uMdq2waEZKqUnWabGLYf4A1RCHDosXGZeegxSZ39k-Oz_G-2-6dnrX8MnwHLBHhQA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29bhQxEB5FoQgN4ieIIwEsQQqKVTa79q5dIAQhxx1JroBDSmd57TEU5C7cHYKkyjvwHLwUT5KZ_bkIBaVLs8WuXXg8_zszH8CL4EqDkqITw0BhEkkPOhKMBL0JGWYZas0NzoejYvBZfjhSRyvwp-uF4bLKTifWijpMPefItzl5SfZGKf365HvCqFH8d7WD0GjYYh9Pf1LINn81fEf3u5Vl_b3x7iBpUQUSnxc7iyREk1ekt0sk1RxULFITAtlZH8ibSE0MqAodpI_SYelUyL0no53vxBiiNzzngDT-LZmTIefG9P77ZUqHTkvmVTZDUOl7uj2bc3hFgiz_MXs1OsAV5V9btP5duNO6ouJNwzv3YAUn92GtRUX_evoAHOMVE3_-Pf_NMPWcExGfOPI9w8RNQrL3y7cTvsVHnNddXWLUlJUL8oXFgGLcppWTdw6PSXWJGoSTy5PqfeswvgniPYTVyXSCj0AURrk0rZTkkV8hNU47pctI7qkPRZn7HrzsCGa7wzBqxjdLYQsT114StwfPl2tPmiEd_131lum-XMGDtesX09kX28qpRaQAK8gqCzrys9JaYR6llxka8k57sNndmm2lfW4vefPx9Z-fwdpgfHhgD4aj_Q24Tc6XaaqANmF1MfuBT8jBWVRPa7YSYG-YjS8AoAcRfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5VqQRcKn5FoIAl4MBhle2uvWsfEKI0UUIhqkqRerO89rgcIGmTICgn3oGn4XV4Emb2JxUCcetlD7v2weP535n5AJ4EVxqUFJ0YBgqTSHrQkWAk6E3IMMtQa25wfjstxu_l62N1vAE_u14YLqvsdGKtqMPcc458wMlLsjdK6UFsyyIO9kYvTs8SRpDiP60dnEbDIvt4_oXCt-XzyR7d9dMsGw2PXo2TFmEg8Xmxs0pCNHlFOrxEUtNBxSI1IZDN9YE8i9TEgKrQQfooHZZOhdx7MuD5TowhesMzD0j7b5YcFPVgc3c4PThcJ3jo7GRsZTMSNc9NOlgsOdgisZZ_GMEaK-AvU1Dbt9F12GodU_Gy4aQbsIGzm3C1xUj_cH4LHKMXE7f--v6DQes5QyLecRz8DRM3C8nwq2_nfYtDXNY9XmLaFJkL8ozFmCLeprGTd04-kSITNSQnFyvV-27D0WWQ7w70ZvMZ3gVRGOXStFKSB4CF1DjtlC4jOas-FGXu-_CsI5jtDsMYGh8tBTFMXHtB3D48Xq89bUZ2_HPVLtN9vYLHbNcv5osT20qtRaRwK8gqCzrys9JaYR6llxka8lX7sN3dmm1lf2kvOPXe_z8_givEwvbNZLp_H66RJ2aakqBt6K0Wn_EBeTur6mHLVwLsJXPyb4TAFxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial%E2%80%93Spectral+Squeeze-and-Excitation+Residual+Network+for+Hyperspectral+Image+Classification&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li+Wang&rft.au=Jiangtao+Peng&rft.au=Weiwei+Sun&rft.date=2019-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=7&rft.spage=884&rft_id=info:doi/10.3390%2Frs11070884&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee974d4b2d8f4b2db885e3f4c42e9851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon