Spatial–Spectral Squeeze-and-Excitation Residual Network for Hyperspectral Image Classification
Jointly using spectral and spatial information has become a mainstream strategy in the field of hyperspectral image (HSI) processing, especially for classification. However, due to the existence of noisy or correlated spectral bands in the spectral domain and inhomogeneous pixels in the spatial neig...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 7; p. 884 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Jointly using spectral and spatial information has become a mainstream strategy in the field of hyperspectral image (HSI) processing, especially for classification. However, due to the existence of noisy or correlated spectral bands in the spectral domain and inhomogeneous pixels in the spatial neighborhood, HSI classification results are often degraded and unsatisfactory. Motivated by the attention mechanism, this paper proposes a spatial–spectral squeeze-and-excitation (SSSE) module to adaptively learn the weights for different spectral bands and for different neighboring pixels. The SSSE structure can suppress or motivate features at a certain position, which can effectively resist noise interference and improve the classification results. Furthermore, we embed several SSSE modules into a residual network architecture and generate an SSSE-based residual network (SSSERN) model for HSI classification. The proposed SSSERN method is compared with several existing deep learning networks on two benchmark hyperspectral data sets. Experimental results demonstrate the effectiveness of our proposed network. |
---|---|
AbstractList | Jointly using spectral and spatial information has become a mainstream strategy in the field of hyperspectral image (HSI) processing, especially for classification. However, due to the existence of noisy or correlated spectral bands in the spectral domain and inhomogeneous pixels in the spatial neighborhood, HSI classification results are often degraded and unsatisfactory. Motivated by the attention mechanism, this paper proposes a spatial–spectral squeeze-and-excitation (SSSE) module to adaptively learn the weights for different spectral bands and for different neighboring pixels. The SSSE structure can suppress or motivate features at a certain position, which can effectively resist noise interference and improve the classification results. Furthermore, we embed several SSSE modules into a residual network architecture and generate an SSSE-based residual network (SSSERN) model for HSI classification. The proposed SSSERN method is compared with several existing deep learning networks on two benchmark hyperspectral data sets. Experimental results demonstrate the effectiveness of our proposed network. |
Author | Peng, Jiangtao Wang, Li Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Li surname: Wang fullname: Wang, Li – sequence: 2 givenname: Jiangtao surname: Peng fullname: Peng, Jiangtao – sequence: 3 givenname: Weiwei surname: Sun fullname: Sun, Weiwei |
BookMark | eNptkctKAzEUhoMoeN34BAPuhNHcppMspXgpiILtPqTJiaSOkzGZonXlO_iGPomp9YaYRRJOvv_P4T_baL0NLSC0T_ARYxIfx0QIrrEQfA1tUVzTklNJ13_dN9FeSjOcF2NEYr6F9LjTvdfN28vruAPTR90U44c5wDOUurXl6ZPxfSZCW9xA8nae36-gfwzxrnAhFheLDmL6Uo7u9S0Uw0an5J03H7pdtOF0k2Dv89xBk7PTyfCivLw-Hw1PLkvDBqQvrZNsitmgBkKFrdwAS2trgo0lFcfSWagGwnLjuIZaV5YZw5lkxDnrjKRsB41Wtjbomeqiv9dxoYL26qMQ4q3SsfemAQUga275lFrhlvtUiAqY44ZTkKIi2etg5dXFkLNIvZqFeWxz94oyzDGlVSUydbiiTAwpRXDfvxKslgNRPwPJMP4Df-Wag_PNf5J3Nn2RfQ |
CitedBy_id | crossref_primary_10_3390_rs13112216 crossref_primary_10_3390_rs14030608 crossref_primary_10_1080_01431161_2024_2391583 crossref_primary_10_1109_JSTARS_2022_3199118 crossref_primary_10_1109_TGRS_2022_3185640 crossref_primary_10_1111_phor_12491 crossref_primary_10_1016_j_precisioneng_2022_01_005 crossref_primary_10_1109_JSTARS_2021_3071353 crossref_primary_10_3390_rs11192220 crossref_primary_10_3390_rs14122907 crossref_primary_10_1109_JSTARS_2024_3375321 crossref_primary_10_1016_j_eswa_2021_115663 crossref_primary_10_1016_j_isprsjprs_2024_01_016 crossref_primary_10_1109_JSTARS_2021_3053567 crossref_primary_10_1109_JSTARS_2022_3225928 crossref_primary_10_1007_s40745_024_00567_8 crossref_primary_10_3390_rs13163055 crossref_primary_10_1109_TGRS_2021_3130940 crossref_primary_10_1109_TGRS_2023_3286950 crossref_primary_10_3390_electronics11172709 crossref_primary_10_1109_TGRS_2021_3058549 crossref_primary_10_1109_ACCESS_2024_3365829 crossref_primary_10_3390_rs14051230 crossref_primary_10_1109_JSTARS_2021_3123371 crossref_primary_10_3390_rs12010125 crossref_primary_10_3390_rs11161896 crossref_primary_10_3390_s24144714 crossref_primary_10_1109_TGRS_2022_3215677 crossref_primary_10_3390_rs13152965 crossref_primary_10_3390_rs14133091 crossref_primary_10_1007_s10489_022_04232_6 crossref_primary_10_1109_TGRS_2023_3257369 crossref_primary_10_1109_TGRS_2024_3449878 crossref_primary_10_1109_JSTARS_2019_2952408 crossref_primary_10_1186_s13638_022_02161_z crossref_primary_10_3390_rs16132499 crossref_primary_10_3390_sym14061080 crossref_primary_10_1109_TGRS_2023_3295097 crossref_primary_10_3390_math11071686 crossref_primary_10_3390_rs13030335 crossref_primary_10_1049_cit2_12201 crossref_primary_10_1080_01431161_2021_1934599 crossref_primary_10_1109_JSTARS_2024_3486283 crossref_primary_10_3390_su141912465 crossref_primary_10_1007_s11042_025_20739_9 crossref_primary_10_1109_LGRS_2021_3067348 crossref_primary_10_1109_ACCESS_2020_3008029 crossref_primary_10_3390_rs13204060 crossref_primary_10_1007_s12524_024_02059_x crossref_primary_10_1049_iet_ipr_2019_1462 crossref_primary_10_1109_JSTARS_2023_3271901 crossref_primary_10_1007_s12145_023_01109_1 crossref_primary_10_1016_j_sigpro_2024_109850 crossref_primary_10_1109_LGRS_2022_3149185 crossref_primary_10_3390_rs12122035 crossref_primary_10_1109_ACCESS_2019_2951030 crossref_primary_10_3390_rs11212501 crossref_primary_10_1007_s10772_021_09842_y crossref_primary_10_1080_01431161_2021_2019849 crossref_primary_10_1109_TGRS_2019_2963243 crossref_primary_10_1109_TGRS_2021_3054008 crossref_primary_10_1109_TCYB_2020_2989241 crossref_primary_10_1109_TGRS_2020_3015157 crossref_primary_10_3390_s20185191 crossref_primary_10_3390_s22093229 crossref_primary_10_1109_JSTARS_2023_3237566 crossref_primary_10_1109_JSTARS_2022_3190071 crossref_primary_10_1007_s00521_024_10666_5 crossref_primary_10_1080_01431161_2024_2403622 crossref_primary_10_1109_TGRS_2023_3242776 crossref_primary_10_17714_gumusfenbil_1493821 crossref_primary_10_3390_app13010492 crossref_primary_10_1109_TGRS_2021_3080394 crossref_primary_10_1016_j_jag_2021_102445 crossref_primary_10_3389_fphy_2023_1163555 crossref_primary_10_1080_01431161_2023_2224102 crossref_primary_10_1109_JSTARS_2020_2995445 crossref_primary_10_3390_rs11222718 crossref_primary_10_3390_app13148451 crossref_primary_10_3390_sym16050514 crossref_primary_10_1371_journal_pone_0258880 crossref_primary_10_1117_1_JRS_18_014504 crossref_primary_10_1109_JSTARS_2021_3119413 crossref_primary_10_3390_s23146295 crossref_primary_10_3390_molecules28176427 |
Cites_doi | 10.1109/JSTARS.2014.2329330 10.1109/MGRS.2017.2762307 10.1109/ICIP.2014.7026039 10.1016/j.isprsjprs.2017.11.021 10.1109/TGRS.2015.2410991 10.1109/JSTARS.2014.2359965 10.1080/2150704X.2017.1280200 10.1109/IGARSS.2016.7730321 10.1109/TGRS.2017.2743110 10.1109/TGRS.2017.2755542 10.1109/TIE.2018.2870413 10.1007/978-3-319-46493-0_38 10.1109/JPROC.2012.2197589 10.1109/TGRS.2017.2765364 10.1109/TGRS.2017.2675902 10.1109/TGRS.2016.2584107 10.1109/CVPR.2018.00745 10.3390/rs9010067 10.1109/CVPR.2016.90 10.1109/TGRS.2014.2333539 10.1109/IGARSS.2016.7730324 10.1109/ICCV.2015.123 10.1109/TIP.2018.2848470 10.1109/MGRS.2016.2540798 10.1038/nature14539 10.1080/22797254.2017.1274566 10.1109/79.974718 10.1109/LGRS.2017.2751559 10.1109/MGRS.2013.2244672 10.3390/rs71114680 10.1109/TITS.2017.2749964 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs11070884 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_ee974d4b2d8f4b2db885e3f4c42e9851 10_3390_rs11070884 |
GeographicLocations | Beijing China United States--US China |
GeographicLocations_xml | – name: China – name: Beijing China – name: United States--US |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-df93b0367e128d5f609dd710cd15409fde568d4cf4ae7a5d3cc43931ffdfc923 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:24:35 EDT 2025 Fri Jul 25 12:12:06 EDT 2025 Tue Jul 01 04:14:43 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-df93b0367e128d5f609dd710cd15409fde568d4cf4ae7a5d3cc43931ffdfc923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/ee974d4b2d8f4b2db885e3f4c42e9851 |
PQID | 2304022558 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ee974d4b2d8f4b2db885e3f4c42e9851 proquest_journals_2304022558 crossref_primary_10_3390_rs11070884 crossref_citationtrail_10_3390_rs11070884 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Fauvel (ref_2) 2013; 101 Peng (ref_11) 2017; 55 Chen (ref_12) 2014; 7 Landgrebe (ref_1) 2002; 19 Zhou (ref_7) 2015; 53 Zhou (ref_9) 2015; 8 ref_35 ref_34 He (ref_8) 2018; 56 ref_33 ref_32 ref_31 Plaza (ref_3) 2013; 1 ref_30 Donoho (ref_5) 2000; 1 ref_17 Paoletti (ref_27) 2018; 145 Wang (ref_4) 2017; 14 Zhong (ref_18) 2017; 55 Zhang (ref_14) 2016; 4 Zhao (ref_16) 2017; 50 ref_24 ref_23 Zhong (ref_29) 2018; 56 Peng (ref_22) 2018; 27 Lecun (ref_20) 2015; 521 Zhang (ref_25) 2017; 8 Hu (ref_13) 2015; 7 ref_28 ref_26 Wang (ref_21) 2018; 19 Chen (ref_19) 2016; 54 Peng (ref_10) 2015; 53 ref_6 Zhu (ref_15) 2017; 5 |
References_xml | – volume: 7 start-page: 2094 year: 2014 ident: ref_12 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2014.2329330 – volume: 5 start-page: 8 year: 2017 ident: ref_15 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote. Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – ident: ref_17 doi: 10.1109/ICIP.2014.7026039 – volume: 145 start-page: 120 year: 2018 ident: ref_27 article-title: A new deep convolutional neural network for fast hyperspectral image classification publication-title: ISPRS J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2017.11.021 – volume: 53 start-page: 4810 year: 2015 ident: ref_10 article-title: Region-kernel-based support vector machines for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2015.2410991 – ident: ref_34 – volume: 8 start-page: 2351 year: 2015 ident: ref_9 article-title: Extreme learning machine with composite kernels for hyperspectral image classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2014.2359965 – volume: 8 start-page: 438 year: 2017 ident: ref_25 article-title: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1280200 – ident: ref_23 doi: 10.1109/IGARSS.2016.7730321 – volume: 55 start-page: 7152 year: 2017 ident: ref_11 article-title: Robust joint sparse representation based on maximum correntropy criterion for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2017.2743110 – volume: 56 start-page: 847 year: 2018 ident: ref_29 article-title: Spectral-spatial residual network for hyperspectral image classification: A 3-D deep learning framework publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2017.2755542 – ident: ref_6 doi: 10.1109/TIE.2018.2870413 – ident: ref_32 doi: 10.1007/978-3-319-46493-0_38 – volume: 101 start-page: 652 year: 2013 ident: ref_2 article-title: Advances in spectral-spatial classification of hyperspectral images publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2197589 – volume: 56 start-page: 1579 year: 2018 ident: ref_8 article-title: Recent advances on spectral-spatial hyperspectral image classification: An overview and new guidelines publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2017.2765364 – volume: 55 start-page: 3516 year: 2017 ident: ref_18 article-title: Learning to diversify deep belief networks for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2017.2675902 – volume: 54 start-page: 6232 year: 2016 ident: ref_19 article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2016.2584107 – ident: ref_35 – volume: 1 start-page: 32 year: 2000 ident: ref_5 article-title: High-dimensional data analysis: The curses and blessings of dimensionality publication-title: AMS Math Chall. Lect. – ident: ref_28 doi: 10.1109/CVPR.2018.00745 – ident: ref_26 doi: 10.3390/rs9010067 – ident: ref_30 doi: 10.1109/CVPR.2016.90 – volume: 53 start-page: 1082 year: 2015 ident: ref_7 article-title: Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2014.2333539 – ident: ref_24 doi: 10.1109/IGARSS.2016.7730324 – ident: ref_31 doi: 10.1109/ICCV.2015.123 – ident: ref_33 – volume: 27 start-page: 5076 year: 2018 ident: ref_22 article-title: Structured autoEncoders for aubspace clustering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2848470 – volume: 4 start-page: 22 year: 2016 ident: ref_14 article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art publication-title: IEEE Geosci. Remote. Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – volume: 521 start-page: 1476 year: 2015 ident: ref_20 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 50 start-page: 47 year: 2017 ident: ref_16 article-title: Spectral-spatial classification of hyperspectral imagery based on stacked sparse autoencoder and random forest publication-title: Eur. J. Remote. Sens. doi: 10.1080/22797254.2017.1274566 – volume: 19 start-page: 17 year: 2002 ident: ref_1 article-title: Hyperspectral image data analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.974718 – volume: 14 start-page: 2077 year: 2017 ident: ref_4 article-title: Locality adaptive discriminant analysis for spectral-spatial classification of hyperspectral images publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2017.2751559 – volume: 1 start-page: 6 year: 2013 ident: ref_3 article-title: Hyperspectral remote sensing data analysis and future challenges publication-title: IEEE Geosci. Remote. Sens. Mag. doi: 10.1109/MGRS.2013.2244672 – volume: 7 start-page: 14680 year: 2015 ident: ref_13 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 19 start-page: 230 year: 2018 ident: ref_21 article-title: Embedding structured contour and location prior in siamesed fully convolutional networks for road detection publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2749964 |
SSID | ssj0000331904 |
Score | 2.5231493 |
Snippet | Jointly using spectral and spatial information has become a mainstream strategy in the field of hyperspectral image (HSI) processing, especially for... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 884 |
SubjectTerms | Band spectra Banded structure Classification convolutional neural networks Deep learning Earth science Excitation spectra hyperspectral images Hyperspectral imaging Image classification International conferences Machine learning Modules Neighborhoods Neural networks Pattern recognition Pixels Remote sensing Spatial data Spectral bands spectral–spatial feature extraction squeeze and excitation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtswDBa25LBeiu4PTZcOBrZLD0ZdW7KlU9EUCdICC4a0A3ozZJHaDl2SxRmw9dR36Bv2SUraSopixS4-2BJgUyL5kab4CfEZbGFQUnRimChMItlBS4oRozOQYpqi1nzA-cskH3-T51fqKiTc6lBWubaJjaGGueMc-SEnL8nfKKWPF79iZo3iv6uBQuOl6JIJ1rojuoPh5Ot0k2WhFyCPJ9u-pBnF94fLmiMe0i35xBM1Dfv_sceNkxntiO2ADqOTdjlfixc4eyNeBaLyH3_fCssUwrRl7m_vmDme0xTRBQejNxjbGcTDPy403Y6mWDcHraJJW-kdETyNxhR2tqcreebZT7ImUcOLyRVDzbx34nI0vDwdx4ElIXZZfrSKwZusIj9UIEkAlM8TA0C4wQGho8R4QJVrkM5Li4VVkDlHICQ78h68I3j3XnRm8xnuiig3yiZJpSR34YLEWG2VLjwhRgd5kbmeOFgLrFx_DBNZXJcUSbBwy0fh9sSnzdhF2zfj2VEDlvtmBPe6bm7Ml9_LoDolIsU8IKsUtOdrpbXCzEsnUzQEGHuiv161MihgXT5ul73_P_4gtggDmbYYpy86q-Vv3Cecsao-hs30AHwY1Vw priority: 102 providerName: ProQuest |
Title | Spatial–Spectral Squeeze-and-Excitation Residual Network for Hyperspectral Image Classification |
URI | https://www.proquest.com/docview/2304022558 https://doaj.org/article/ee974d4b2d8f4b2db885e3f4c42e9851 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4-DnoRn7i6LgW9eCjWNmmTo49dV9FFfIC3kiYTPGiV3RXUk__Bf-gvcSbt-kDBi5cWSkLbmWTmmzAzH2MbVmcKOEYniojCOKAd1LgxQjDKxhDHICUVOJ_00u4lP7oSV1-ovignrGoPXAluCwARr-VFbKWjayGlgMRxw2NQ0hdPx-jzvgRT3gYnuLQiXvUjTTCu3-oPKNLBPcW_eSDfqP-HHfbOpTPLZmpUGOxUXzPHxqCcZ1M1Qfn10wLTRB2MS-Xt5ZUY4-l4IjinIPQZQl3asP1o6mbbwRkMfIFV0KsyvAOEpUEXw82qqpJmHt6iFQk8HyZlCvl5i-yi077Y64Y1O0JoknR7GFqnkgL9TwboYqxwaaSsRbxgLKKiSDkLIpWWG8c1ZFrYxBgEH8m2c9YZhHVLbKK8K2GZBakSOooKwan7lo2UllrIzCFSNDbNEtNgmyOB5aOfIQKLmxwjCBJu_incBlv_GHtf9cv4ddQuyf1jBPW49g9Q83mt-fwvzTdYc6S1vN54g5zOuBGWCCFX_uMdq2waEZKqUnWabGLYf4A1RCHDosXGZeegxSZ39k-Oz_G-2-6dnrX8MnwHLBHhQA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29bhQxEB5FoQgN4ieIIwEsQQqKVTa79q5dIAQhxx1JroBDSmd57TEU5C7cHYKkyjvwHLwUT5KZ_bkIBaVLs8WuXXg8_zszH8CL4EqDkqITw0BhEkkPOhKMBL0JGWYZas0NzoejYvBZfjhSRyvwp-uF4bLKTifWijpMPefItzl5SfZGKf365HvCqFH8d7WD0GjYYh9Pf1LINn81fEf3u5Vl_b3x7iBpUQUSnxc7iyREk1ekt0sk1RxULFITAtlZH8ibSE0MqAodpI_SYelUyL0no53vxBiiNzzngDT-LZmTIefG9P77ZUqHTkvmVTZDUOl7uj2bc3hFgiz_MXs1OsAV5V9btP5duNO6ouJNwzv3YAUn92GtRUX_evoAHOMVE3_-Pf_NMPWcExGfOPI9w8RNQrL3y7cTvsVHnNddXWLUlJUL8oXFgGLcppWTdw6PSXWJGoSTy5PqfeswvgniPYTVyXSCj0AURrk0rZTkkV8hNU47pctI7qkPRZn7HrzsCGa7wzBqxjdLYQsT114StwfPl2tPmiEd_131lum-XMGDtesX09kX28qpRaQAK8gqCzrys9JaYR6llxka8k57sNndmm2lfW4vefPx9Z-fwdpgfHhgD4aj_Q24Tc6XaaqANmF1MfuBT8jBWVRPa7YSYG-YjS8AoAcRfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5VqQRcKn5FoIAl4MBhle2uvWsfEKI0UUIhqkqRerO89rgcIGmTICgn3oGn4XV4Emb2JxUCcetlD7v2weP535n5AJ4EVxqUFJ0YBgqTSHrQkWAk6E3IMMtQa25wfjstxu_l62N1vAE_u14YLqvsdGKtqMPcc458wMlLsjdK6UFsyyIO9kYvTs8SRpDiP60dnEbDIvt4_oXCt-XzyR7d9dMsGw2PXo2TFmEg8Xmxs0pCNHlFOrxEUtNBxSI1IZDN9YE8i9TEgKrQQfooHZZOhdx7MuD5TowhesMzD0j7b5YcFPVgc3c4PThcJ3jo7GRsZTMSNc9NOlgsOdgisZZ_GMEaK-AvU1Dbt9F12GodU_Gy4aQbsIGzm3C1xUj_cH4LHKMXE7f--v6DQes5QyLecRz8DRM3C8nwq2_nfYtDXNY9XmLaFJkL8ozFmCLeprGTd04-kSITNSQnFyvV-27D0WWQ7w70ZvMZ3gVRGOXStFKSB4CF1DjtlC4jOas-FGXu-_CsI5jtDsMYGh8tBTFMXHtB3D48Xq89bUZ2_HPVLtN9vYLHbNcv5osT20qtRaRwK8gqCzrys9JaYR6llxka8lX7sN3dmm1lf2kvOPXe_z8_givEwvbNZLp_H66RJ2aakqBt6K0Wn_EBeTur6mHLVwLsJXPyb4TAFxE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial%E2%80%93Spectral+Squeeze-and-Excitation+Residual+Network+for+Hyperspectral+Image+Classification&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li+Wang&rft.au=Jiangtao+Peng&rft.au=Weiwei+Sun&rft.date=2019-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=7&rft.spage=884&rft_id=info:doi/10.3390%2Frs11070884&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee974d4b2d8f4b2db885e3f4c42e9851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |