Estimation for stochastic differential equation mixed models using approximation methods

We used a class of stochastic differential equations (SDE) to model the evolution of cattle weight that, by an appropriate transformation of the weight, resulted in a variant of the Ornstein-Uhlenbeck model. In previous works, we have dealt with estimation, prediction, and optimization issues for th...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 4; pp. 7866 - 7894
Main Authors Jamba, Nelson T., Jacinto, Gonçalo, Filipe, Patrícia A., Braumann, Carlos A.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We used a class of stochastic differential equations (SDE) to model the evolution of cattle weight that, by an appropriate transformation of the weight, resulted in a variant of the Ornstein-Uhlenbeck model. In previous works, we have dealt with estimation, prediction, and optimization issues for this class of models. However, to incorporate individual characteristics of the animals, the average transformed size at maturity parameter $ \alpha $ and/or the growth parameter $ \beta $ may vary randomly from animal to animal, which results in SDE mixed models. Obtaining a closed-form expression for the likelihood function to apply the maximum likelihood estimation method is a difficult, sometimes impossible, task. We compared the known Laplace approximation method with the delta method to approximate the integrals involved in the likelihood function. These approaches were adapted to allow the estimation of the parameters even when the requirement of most existing methods, namely having the same age vector of observations for all trajectories, fails, as it did in our real data example. Simulation studies were also performed to assess the performance of these approximation methods. The results show that the approximation methods under study are a very good alternative for the estimation of SDE mixed models.
AbstractList We used a class of stochastic differential equations (SDE) to model the evolution of cattle weight that, by an appropriate transformation of the weight, resulted in a variant of the Ornstein-Uhlenbeck model. In previous works, we have dealt with estimation, prediction, and optimization issues for this class of models. However, to incorporate individual characteristics of the animals, the average transformed size at maturity parameter $ \alpha $ and/or the growth parameter $ \beta $ may vary randomly from animal to animal, which results in SDE mixed models. Obtaining a closed-form expression for the likelihood function to apply the maximum likelihood estimation method is a difficult, sometimes impossible, task. We compared the known Laplace approximation method with the delta method to approximate the integrals involved in the likelihood function. These approaches were adapted to allow the estimation of the parameters even when the requirement of most existing methods, namely having the same age vector of observations for all trajectories, fails, as it did in our real data example. Simulation studies were also performed to assess the performance of these approximation methods. The results show that the approximation methods under study are a very good alternative for the estimation of SDE mixed models.
Author Jacinto, Gonçalo
Filipe, Patrícia A.
Braumann, Carlos A.
Jamba, Nelson T.
Author_xml – sequence: 1
  givenname: Nelson T.
  surname: Jamba
  fullname: Jamba, Nelson T.
  organization: Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal, Liceu nº 918 do município dos Gambos, Chiange, Gambos, Angola and Instituto Superior de Ciências de Educação da Huíla, Lubango, Huíla, Angola
– sequence: 2
  givenname: Gonçalo
  surname: Jacinto
  fullname: Jacinto, Gonçalo
  organization: Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal, Departamento de Matemática, Escola de Ciência e Tecnologia, Universidade de Évora, Évora, Portugal
– sequence: 3
  givenname: Patrícia A.
  surname: Filipe
  fullname: Filipe, Patrícia A.
  organization: Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal, Departamento de Métodos Quantitativos para Gestão e Economia, ISCTE Business School, Iscte-Instituto Universitário de Lisboa, Lisboa, Portugal
– sequence: 4
  givenname: Carlos A.
  surname: Braumann
  fullname: Braumann, Carlos A.
  organization: Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal, Departamento de Matemática, Escola de Ciência e Tecnologia, Universidade de Évora, Évora, Portugal
BookMark eNpNkNtKw0AQhhepYK298wHyAKbuKdndSynVFgreKHi3TPbQpiTZuptCfXtTW8WrGX5mPma-WzTqQucQuid4xhTjjy302xnFlDPJrtCYcsHyUkk5-tffoGlKO4wxJZRTwcfoY5H6elitQ5f5ELPUB7OFITOZrb130XV9DU3mPg_nobY-Opu1wbomZYdUd5sM9vsYjr-U1vXbYNMduvbQJDe91Al6f168zZf5-vVlNX9a54aVpM-tY4IWRWEkLz1wUdGqKLmSCqSgilCPFTaSEge2kCAEqyitHAdjlSgrRdkErc5cG2Cn93E4I37pALX-CULcaIjDO43TvlSkkgURVjBODFdegYdSVaAcSCMH1sOZZWJIKTr_xyNYnyTrk2R9kcy-AUl0c0A
Cites_doi 10.1016/0304-405X(77)90016-2
10.1208/s12248-023-00840-3
10.1080/02331934.2022.2075745
10.1007/s10928-005-2104-x
10.1002/9781119166092
10.1214/20-BA1216
10.1016/j.cmpb.2009.02.001
10.3390/math10030385
10.2307/2531339
10.1002/PSP4.12748
10.1007/s11009-010-9172-0
10.1002/bimj.200900273
10.1016/j.csda.2020.107151
10.1007/s11009-021-09889-z
10.1111/j.1467-9469.2012.00813.x
10.1093/imammb/dqn011
10.1111/rssc.12386
10.1016/j.csda.2010.10.003
10.1007/s42081-021-00105-3
10.2307/2336870
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2024383
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 7894
ExternalDocumentID oai_doaj_org_article_f691b8517d7341c49f9afa69ba9ea8c8
10_3934_math_2024383
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c361t-de372555c846fa47b2b564989a872912f090c821ead58a773b22be4acd976b923
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:26:31 EDT 2025
Tue Jul 01 03:57:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-de372555c846fa47b2b564989a872912f090c821ead58a773b22be4acd976b923
OpenAccessLink https://doaj.org/article/f691b8517d7341c49f9afa69ba9ea8c8
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_f691b8517d7341c49f9afa69ba9ea8c8
crossref_primary_10_3934_math_2024383
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024383-18
key-10.3934/math.2024383-17
key-10.3934/math.2024383-19
key-10.3934/math.2024383-14
key-10.3934/math.2024383-13
key-10.3934/math.2024383-16
key-10.3934/math.2024383-15
key-10.3934/math.2024383-1
key-10.3934/math.2024383-4
key-10.3934/math.2024383-5
key-10.3934/math.2024383-2
key-10.3934/math.2024383-3
key-10.3934/math.2024383-8
key-10.3934/math.2024383-21
key-10.3934/math.2024383-9
key-10.3934/math.2024383-20
key-10.3934/math.2024383-6
key-10.3934/math.2024383-23
key-10.3934/math.2024383-7
key-10.3934/math.2024383-22
key-10.3934/math.2024383-25
key-10.3934/math.2024383-24
key-10.3934/math.2024383-10
key-10.3934/math.2024383-12
key-10.3934/math.2024383-11
References_xml – ident: key-10.3934/math.2024383-4
  doi: 10.1016/0304-405X(77)90016-2
– ident: key-10.3934/math.2024383-23
  doi: 10.1208/s12248-023-00840-3
– ident: key-10.3934/math.2024383-8
  doi: 10.1080/02331934.2022.2075745
– ident: key-10.3934/math.2024383-15
  doi: 10.1007/s10928-005-2104-x
– ident: key-10.3934/math.2024383-21
  doi: 10.1002/9781119166092
– ident: key-10.3934/math.2024383-16
– ident: key-10.3934/math.2024383-18
– ident: key-10.3934/math.2024383-1
– ident: key-10.3934/math.2024383-12
  doi: 10.1214/20-BA1216
– ident: key-10.3934/math.2024383-19
  doi: 10.1016/j.cmpb.2009.02.001
– ident: key-10.3934/math.2024383-3
  doi: 10.3390/math10030385
– ident: key-10.3934/math.2024383-25
– ident: key-10.3934/math.2024383-2
  doi: 10.2307/2531339
– ident: key-10.3934/math.2024383-22
  doi: 10.1002/PSP4.12748
– ident: key-10.3934/math.2024383-6
  doi: 10.1007/s11009-010-9172-0
– ident: key-10.3934/math.2024383-5
  doi: 10.1002/bimj.200900273
– ident: key-10.3934/math.2024383-13
  doi: 10.1016/j.csda.2020.107151
– ident: key-10.3934/math.2024383-7
  doi: 10.1007/s11009-021-09889-z
– ident: key-10.3934/math.2024383-20
  doi: 10.1111/j.1467-9469.2012.00813.x
– ident: key-10.3934/math.2024383-24
  doi: 10.1093/imammb/dqn011
– ident: key-10.3934/math.2024383-14
  doi: 10.1111/rssc.12386
– ident: key-10.3934/math.2024383-17
– ident: key-10.3934/math.2024383-9
  doi: 10.1016/j.csda.2010.10.003
– ident: key-10.3934/math.2024383-11
  doi: 10.1007/s42081-021-00105-3
– ident: key-10.3934/math.2024383-10
  doi: 10.2307/2336870
SSID ssj0002124274
Score 2.2505035
Snippet We used a class of stochastic differential equations (SDE) to model the evolution of cattle weight that, by an appropriate transformation of the weight,...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 7866
SubjectTerms delta method
laplace method
maximum likelihood estimation
mixed models
stochastic differential equations
Title Estimation for stochastic differential equation mixed models using approximation methods
URI https://doaj.org/article/f691b8517d7341c49f9afa69ba9ea8c8
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOegxdDfJ5nFUaSlCPVnobclTBa2PrtCf72SzLfXkxesSQvgmmflmM_kGoasyKOFK54lTkhJuNCUmyoJY7zUNKpaGpQfOkwcxnvL7WTXbaPWVasKyPHAGbhCFLm1qIO8lOFzHddQmGqGt0cEo1z7zhZi3kUwlHwwOmUO-lSvdmWZ8APwv3T3QJM35KwZtSPW3MWW0h3Y7Mohv8iL20VaYH6CdyVpJdXGIZkM4g_l5IQZ-iYGruWeTxJXxqrcJnNFXHD6zZjd-e1kGj9sGNwucqtqfcKsbvlzNkntGL47QdDR8vBuTrhsCcUyUDfGBSeD_lQPGEA2XltpKcK20AZR1SWOhC6doCVujUkZKZim1gRvngXFY4HHHqDd_n4cThAWTJl3IAbsy3AWvuWfg-aiTttBWxT66XuFTf2TRixqShYRjnXCsOxz76DaBtx6TpKrbD2DAujNg_ZcBT_9jkjO0ndaU_42co17z9R0ugC009rLdGD9sR8Br
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+for+stochastic+differential+equation+mixed+models+using+approximation+methods&rft.jtitle=AIMS+mathematics&rft.au=Jamba%2C+Nelson+T.&rft.au=Jacinto%2C+Gon%C3%A7alo&rft.au=Filipe%2C+Patr%C3%ADcia+A.&rft.au=Braumann%2C+Carlos+A.&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=4&rft.spage=7866&rft.epage=7894&rft_id=info:doi/10.3934%2Fmath.2024383&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2024383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon