Estimation for stochastic differential equation mixed models using approximation methods
We used a class of stochastic differential equations (SDE) to model the evolution of cattle weight that, by an appropriate transformation of the weight, resulted in a variant of the Ornstein-Uhlenbeck model. In previous works, we have dealt with estimation, prediction, and optimization issues for th...
Saved in:
Published in | AIMS mathematics Vol. 9; no. 4; pp. 7866 - 7894 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We used a class of stochastic differential equations (SDE) to model the evolution of cattle weight that, by an appropriate transformation of the weight, resulted in a variant of the Ornstein-Uhlenbeck model. In previous works, we have dealt with estimation, prediction, and optimization issues for this class of models. However, to incorporate individual characteristics of the animals, the average transformed size at maturity parameter $ \alpha $ and/or the growth parameter $ \beta $ may vary randomly from animal to animal, which results in SDE mixed models. Obtaining a closed-form expression for the likelihood function to apply the maximum likelihood estimation method is a difficult, sometimes impossible, task. We compared the known Laplace approximation method with the delta method to approximate the integrals involved in the likelihood function. These approaches were adapted to allow the estimation of the parameters even when the requirement of most existing methods, namely having the same age vector of observations for all trajectories, fails, as it did in our real data example. Simulation studies were also performed to assess the performance of these approximation methods. The results show that the approximation methods under study are a very good alternative for the estimation of SDE mixed models. |
---|---|
AbstractList | We used a class of stochastic differential equations (SDE) to model the evolution of cattle weight that, by an appropriate transformation of the weight, resulted in a variant of the Ornstein-Uhlenbeck model. In previous works, we have dealt with estimation, prediction, and optimization issues for this class of models. However, to incorporate individual characteristics of the animals, the average transformed size at maturity parameter $ \alpha $ and/or the growth parameter $ \beta $ may vary randomly from animal to animal, which results in SDE mixed models. Obtaining a closed-form expression for the likelihood function to apply the maximum likelihood estimation method is a difficult, sometimes impossible, task. We compared the known Laplace approximation method with the delta method to approximate the integrals involved in the likelihood function. These approaches were adapted to allow the estimation of the parameters even when the requirement of most existing methods, namely having the same age vector of observations for all trajectories, fails, as it did in our real data example. Simulation studies were also performed to assess the performance of these approximation methods. The results show that the approximation methods under study are a very good alternative for the estimation of SDE mixed models. |
Author | Jacinto, Gonçalo Filipe, Patrícia A. Braumann, Carlos A. Jamba, Nelson T. |
Author_xml | – sequence: 1 givenname: Nelson T. surname: Jamba fullname: Jamba, Nelson T. organization: Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal, Liceu nº 918 do município dos Gambos, Chiange, Gambos, Angola and Instituto Superior de Ciências de Educação da Huíla, Lubango, Huíla, Angola – sequence: 2 givenname: Gonçalo surname: Jacinto fullname: Jacinto, Gonçalo organization: Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal, Departamento de Matemática, Escola de Ciência e Tecnologia, Universidade de Évora, Évora, Portugal – sequence: 3 givenname: Patrícia A. surname: Filipe fullname: Filipe, Patrícia A. organization: Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal, Departamento de Métodos Quantitativos para Gestão e Economia, ISCTE Business School, Iscte-Instituto Universitário de Lisboa, Lisboa, Portugal – sequence: 4 givenname: Carlos A. surname: Braumann fullname: Braumann, Carlos A. organization: Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal, Departamento de Matemática, Escola de Ciência e Tecnologia, Universidade de Évora, Évora, Portugal |
BookMark | eNpNkNtKw0AQhhepYK298wHyAKbuKdndSynVFgreKHi3TPbQpiTZuptCfXtTW8WrGX5mPma-WzTqQucQuid4xhTjjy302xnFlDPJrtCYcsHyUkk5-tffoGlKO4wxJZRTwcfoY5H6elitQ5f5ELPUB7OFITOZrb130XV9DU3mPg_nobY-Opu1wbomZYdUd5sM9vsYjr-U1vXbYNMduvbQJDe91Al6f168zZf5-vVlNX9a54aVpM-tY4IWRWEkLz1wUdGqKLmSCqSgilCPFTaSEge2kCAEqyitHAdjlSgrRdkErc5cG2Cn93E4I37pALX-CULcaIjDO43TvlSkkgURVjBODFdegYdSVaAcSCMH1sOZZWJIKTr_xyNYnyTrk2R9kcy-AUl0c0A |
Cites_doi | 10.1016/0304-405X(77)90016-2 10.1208/s12248-023-00840-3 10.1080/02331934.2022.2075745 10.1007/s10928-005-2104-x 10.1002/9781119166092 10.1214/20-BA1216 10.1016/j.cmpb.2009.02.001 10.3390/math10030385 10.2307/2531339 10.1002/PSP4.12748 10.1007/s11009-010-9172-0 10.1002/bimj.200900273 10.1016/j.csda.2020.107151 10.1007/s11009-021-09889-z 10.1111/j.1467-9469.2012.00813.x 10.1093/imammb/dqn011 10.1111/rssc.12386 10.1016/j.csda.2010.10.003 10.1007/s42081-021-00105-3 10.2307/2336870 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2024383 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 7894 |
ExternalDocumentID | oai_doaj_org_article_f691b8517d7341c49f9afa69ba9ea8c8 10_3934_math_2024383 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c361t-de372555c846fa47b2b564989a872912f090c821ead58a773b22be4acd976b923 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:26:31 EDT 2025 Tue Jul 01 03:57:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-de372555c846fa47b2b564989a872912f090c821ead58a773b22be4acd976b923 |
OpenAccessLink | https://doaj.org/article/f691b8517d7341c49f9afa69ba9ea8c8 |
PageCount | 29 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f691b8517d7341c49f9afa69ba9ea8c8 crossref_primary_10_3934_math_2024383 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2024 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2024383-18 key-10.3934/math.2024383-17 key-10.3934/math.2024383-19 key-10.3934/math.2024383-14 key-10.3934/math.2024383-13 key-10.3934/math.2024383-16 key-10.3934/math.2024383-15 key-10.3934/math.2024383-1 key-10.3934/math.2024383-4 key-10.3934/math.2024383-5 key-10.3934/math.2024383-2 key-10.3934/math.2024383-3 key-10.3934/math.2024383-8 key-10.3934/math.2024383-21 key-10.3934/math.2024383-9 key-10.3934/math.2024383-20 key-10.3934/math.2024383-6 key-10.3934/math.2024383-23 key-10.3934/math.2024383-7 key-10.3934/math.2024383-22 key-10.3934/math.2024383-25 key-10.3934/math.2024383-24 key-10.3934/math.2024383-10 key-10.3934/math.2024383-12 key-10.3934/math.2024383-11 |
References_xml | – ident: key-10.3934/math.2024383-4 doi: 10.1016/0304-405X(77)90016-2 – ident: key-10.3934/math.2024383-23 doi: 10.1208/s12248-023-00840-3 – ident: key-10.3934/math.2024383-8 doi: 10.1080/02331934.2022.2075745 – ident: key-10.3934/math.2024383-15 doi: 10.1007/s10928-005-2104-x – ident: key-10.3934/math.2024383-21 doi: 10.1002/9781119166092 – ident: key-10.3934/math.2024383-16 – ident: key-10.3934/math.2024383-18 – ident: key-10.3934/math.2024383-1 – ident: key-10.3934/math.2024383-12 doi: 10.1214/20-BA1216 – ident: key-10.3934/math.2024383-19 doi: 10.1016/j.cmpb.2009.02.001 – ident: key-10.3934/math.2024383-3 doi: 10.3390/math10030385 – ident: key-10.3934/math.2024383-25 – ident: key-10.3934/math.2024383-2 doi: 10.2307/2531339 – ident: key-10.3934/math.2024383-22 doi: 10.1002/PSP4.12748 – ident: key-10.3934/math.2024383-6 doi: 10.1007/s11009-010-9172-0 – ident: key-10.3934/math.2024383-5 doi: 10.1002/bimj.200900273 – ident: key-10.3934/math.2024383-13 doi: 10.1016/j.csda.2020.107151 – ident: key-10.3934/math.2024383-7 doi: 10.1007/s11009-021-09889-z – ident: key-10.3934/math.2024383-20 doi: 10.1111/j.1467-9469.2012.00813.x – ident: key-10.3934/math.2024383-24 doi: 10.1093/imammb/dqn011 – ident: key-10.3934/math.2024383-14 doi: 10.1111/rssc.12386 – ident: key-10.3934/math.2024383-17 – ident: key-10.3934/math.2024383-9 doi: 10.1016/j.csda.2010.10.003 – ident: key-10.3934/math.2024383-11 doi: 10.1007/s42081-021-00105-3 – ident: key-10.3934/math.2024383-10 doi: 10.2307/2336870 |
SSID | ssj0002124274 |
Score | 2.2505035 |
Snippet | We used a class of stochastic differential equations (SDE) to model the evolution of cattle weight that, by an appropriate transformation of the weight,... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 7866 |
SubjectTerms | delta method laplace method maximum likelihood estimation mixed models stochastic differential equations |
Title | Estimation for stochastic differential equation mixed models using approximation methods |
URI | https://doaj.org/article/f691b8517d7341c49f9afa69ba9ea8c8 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOegxdDfJ5nFUaSlCPVnobclTBa2PrtCf72SzLfXkxesSQvgmmflmM_kGoasyKOFK54lTkhJuNCUmyoJY7zUNKpaGpQfOkwcxnvL7WTXbaPWVasKyPHAGbhCFLm1qIO8lOFzHddQmGqGt0cEo1z7zhZi3kUwlHwwOmUO-lSvdmWZ8APwv3T3QJM35KwZtSPW3MWW0h3Y7Mohv8iL20VaYH6CdyVpJdXGIZkM4g_l5IQZ-iYGruWeTxJXxqrcJnNFXHD6zZjd-e1kGj9sGNwucqtqfcKsbvlzNkntGL47QdDR8vBuTrhsCcUyUDfGBSeD_lQPGEA2XltpKcK20AZR1SWOhC6doCVujUkZKZim1gRvngXFY4HHHqDd_n4cThAWTJl3IAbsy3AWvuWfg-aiTttBWxT66XuFTf2TRixqShYRjnXCsOxz76DaBtx6TpKrbD2DAujNg_ZcBT_9jkjO0ndaU_42co17z9R0ugC009rLdGD9sR8Br |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+for+stochastic+differential+equation+mixed+models+using+approximation+methods&rft.jtitle=AIMS+mathematics&rft.au=Jamba%2C+Nelson+T.&rft.au=Jacinto%2C+Gon%C3%A7alo&rft.au=Filipe%2C+Patr%C3%ADcia+A.&rft.au=Braumann%2C+Carlos+A.&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=4&rft.spage=7866&rft.epage=7894&rft_id=info:doi/10.3934%2Fmath.2024383&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2024383 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |