Identification of Karst Cavities from 2D Seismic Wave Impedance Images Based on Gradient-Boosting Decision Trees Algorithms (GBDT): Case of Ordovician Fracture-Vuggy Carbonate Reservoir, Tahe Oilfield, Tarim Basin, China
The precise characterization of geological bodies in fracture-vuggy carbonates is challenging due to their high complexity and heterogeneous distribution. This study aims to present the hybrid of Visual Geometry Group 16 (VGG-16) pre-trained by Gradient-Boosting Decision Tree (GBDT) models as a nove...
Saved in:
Published in | Energies (Basel) Vol. 16; no. 2; p. 643 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The precise characterization of geological bodies in fracture-vuggy carbonates is challenging due to their high complexity and heterogeneous distribution. This study aims to present the hybrid of Visual Geometry Group 16 (VGG-16) pre-trained by Gradient-Boosting Decision Tree (GBDT) models as a novel approach for predicting and generating karst cavities with high accuracy on various scales based on uncertainty assessment from a small dataset. Seismic wave impedance images were used as input data. Their manual interpretation was used to build GBDT classifiers for Light Gradient-Boosting Machine (LightGBM) and Unbiased Boosting with Categorical Features (CatBoost) for predicting the karst cavities and unconformities. The results show that the LightGBM was the best GBDT classifier, which performed excellently in karst cavity interpretation, giving an F1-score between 0.87 and 0.94 and a micro-G-Mean ranging from 0.92 to 0.96. Furthermore, the LightGBM performed better in cave prediction than Linear Regression (LR) and Multilayer Perceptron (MLP). The prediction of karst cavities according to the LightGBM model was performed well according to the uncertainty quantification. Therefore, the hybrid VGG16 and GBDT algorithms can be implemented as an improved approach for efficiently identifying geological features within similar reservoirs worldwide. |
---|---|
AbstractList | The precise characterization of geological bodies in fracture-vuggy carbonates is challenging due to their high complexity and heterogeneous distribution. This study aims to present the hybrid of Visual Geometry Group 16 (VGG-16) pre-trained by Gradient-Boosting Decision Tree (GBDT) models as a novel approach for predicting and generating karst cavities with high accuracy on various scales based on uncertainty assessment from a small dataset. Seismic wave impedance images were used as input data. Their manual interpretation was used to build GBDT classifiers for Light Gradient-Boosting Machine (LightGBM) and Unbiased Boosting with Categorical Features (CatBoost) for predicting the karst cavities and unconformities. The results show that the LightGBM was the best GBDT classifier, which performed excellently in karst cavity interpretation, giving an F1-score between 0.87 and 0.94 and a micro-G-Mean ranging from 0.92 to 0.96. Furthermore, the LightGBM performed better in cave prediction than Linear Regression (LR) and Multilayer Perceptron (MLP). The prediction of karst cavities according to the LightGBM model was performed well according to the uncertainty quantification. Therefore, the hybrid VGG16 and GBDT algorithms can be implemented as an improved approach for efficiently identifying geological features within similar reservoirs worldwide. |
Author | Shaame, Mbarouk James, Faulo Hussain, Altaf Nyakilla, Edwin E. Pan, Lin Kouassi, Allou Koffi Franck Mulashani, Alvin K. Wang, Xiao Hussain, Hadi Wang, Zhangheng |
Author_xml | – sequence: 1 givenname: Allou Koffi Franck surname: Kouassi fullname: Kouassi, Allou Koffi Franck – sequence: 2 givenname: Lin surname: Pan fullname: Pan, Lin – sequence: 3 givenname: Xiao orcidid: 0000-0002-7354-5111 surname: Wang fullname: Wang, Xiao – sequence: 4 givenname: Zhangheng surname: Wang fullname: Wang, Zhangheng – sequence: 5 givenname: Alvin K. surname: Mulashani fullname: Mulashani, Alvin K. – sequence: 6 givenname: Faulo surname: James fullname: James, Faulo – sequence: 7 givenname: Mbarouk surname: Shaame fullname: Shaame, Mbarouk – sequence: 8 givenname: Altaf surname: Hussain fullname: Hussain, Altaf – sequence: 9 givenname: Hadi surname: Hussain fullname: Hussain, Hadi – sequence: 10 givenname: Edwin E. surname: Nyakilla fullname: Nyakilla, Edwin E. |
BookMark | eNptktFu0zAUhiM0JMbYDU9giRtAC9ixmzTcrS0rFZMqQQWX0Yl9kp4qtTfbrbR35WFwVgQI4RufY33-_1_2eZ6dWWcxy14K_k7Kmr9HK0pe8FLJJ9m5qOsyF7ySZ3_Vz7LLEHY8LSmFlPI8-7EyaCN1pCGSs8x17DP4ENkcjhQJA-u827Niwb4ihT1p9h2OyFb7OzRg9VhBn6gZBDQsCSw9GEqS-cy5EMn2bIGawqi98ZjI66F3nuJ2H9jr5WyxefMheQUcndfeuCNpAstuPOh48Jh_O_T9QyJ86yxEZF8woD868ldsA1tkaxo6wsGMraf9GITsFZtvycKL7GkHQ8DLX_tFtrn5uJl_ym_Xy9X8-jbXshQxN0Z3lSyMKEtsRXqcSVnXRk2UQq1NpYsKJRdKlQKUbruqBYRuaoyYdq0sWnmRrU6yxsGuuUspwD80Dqh5PHC-b8BH0gM20nCBXaGhRq6Aq3aqWwBRI8i6qvmo9eqkdefd_QFDbHbu4G1K3xRVWRVClROVqLcnSnsXgsfut6vgzTgLzZ9ZSDD_B9YUH387eqDhf1d-Al6UukM |
CitedBy_id | crossref_primary_10_3390_pr11082316 crossref_primary_10_2118_221464_PA crossref_primary_10_3389_fmed_2024_1498403 crossref_primary_10_1063_5_0152685 |
Cites_doi | 10.1029/2020JB019685 10.1016/j.scico.2021.102713 10.1016/j.petrol.2021.109520 10.1016/S1876-3804(21)60069-1 10.1007/s13146-013-0167-0 10.1016/j.gsf.2021.101311 10.1144/SP370.15 10.1016/j.marpetgeo.2021.104987 10.1155/2021/9996737 10.3390/en14144134 10.1080/17480930.2022.2086769 10.1016/j.jhydrol.2019.124257 10.2523/19941-Abstract 10.1016/j.petrol.2020.107955 10.1109/TGRS.2007.892009 10.3390/en13030603 10.1016/S1876-3804(18)30074-0 10.1016/S1876-3804(20)60048-9 10.3997/1365-2397.n0078 10.1016/j.petrol.2021.108879 10.1016/j.bspc.2021.102610 10.1016/S1876-3804(16)30076-3 10.3390/ijerph17031082 10.1007/s12182-011-0161-x 10.1109/TR.2021.3087864 10.1007/s12583-012-0271-4 10.1016/j.marpetgeo.2021.104939 10.2118/204224-PA 10.1016/S0031-3203(96)00142-2 10.1016/j.compeleceng.2021.107252 10.1016/j.petrol.2020.108214 10.3390/w11051045 10.1016/j.bspc.2021.102630 10.1016/j.cageo.2022.105038 10.1016/j.jappgeo.2021.104480 10.1214/aos/1013203451 10.1190/INT-2020-0189.1 10.1016/j.enggeo.2018.07.016 10.1016/j.jappgeo.2021.104287 10.1016/j.jngse.2021.104340 10.1016/j.coal.2020.103416 10.1016/j.marpetgeo.2019.01.014 10.1016/S1876-3804(19)60236-3 10.1016/S1876-3804(15)30017-3 10.1016/j.chaos.2021.111399 10.1016/j.chemer.2013.03.004 10.3390/w11020256 10.1016/j.comcom.2020.12.007 10.1016/j.petrol.2020.107504 10.1016/j.marpetgeo.2016.04.016 10.1016/j.jrmge.2021.06.012 10.1016/j.gltp.2021.08.027 10.1016/B978-0-12-809633-8.20351-8 10.1016/j.jrmge.2021.05.004 10.1016/j.marpetgeo.2015.10.015 10.3390/w12061765 10.1016/j.knosys.2019.105434 10.1016/j.ssci.2019.05.046 10.1016/j.elerap.2018.08.002 10.1016/j.gete.2020.100209 10.1190/geo2017-0776.1 10.1007/s13202-021-01268-1 10.1007/978-3-030-67670-4_36 10.1007/s11053-019-09576-4 10.1016/j.petrol.2020.106937 10.1016/j.cose.2021.102289 10.1016/j.egyr.2021.07.053 10.1016/S1876-3804(21)60028-9 10.1016/j.inffus.2020.07.007 10.3390/en12010078 10.1016/j.asoc.2018.10.036 10.1016/j.jngse.2021.103962 10.1016/j.jhydrol.2019.04.085 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en16020643 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Geology |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_3d01ef2ca9e04a04b8cbaa19ea39790b 10_3390_en16020643 |
GeographicLocations | China Tarim Basin |
GeographicLocations_xml | – name: China – name: Tarim Basin |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-ddcf732d166eb10005699d4544eccd7c27e3014461a4cbf7baeaf8dd18fb32b3 |
IEDL.DBID | BENPR |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:26:49 EDT 2025 Mon Jun 30 07:31:20 EDT 2025 Thu Apr 24 23:07:59 EDT 2025 Tue Jul 01 01:58:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-ddcf732d166eb10005699d4544eccd7c27e3014461a4cbf7baeaf8dd18fb32b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7354-5111 |
OpenAccessLink | https://www.proquest.com/docview/2767214654?pq-origsite=%requestingapplication% |
PQID | 2767214654 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d01ef2ca9e04a04b8cbaa19ea39790b proquest_journals_2767214654 crossref_primary_10_3390_en16020643 crossref_citationtrail_10_3390_en16020643 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Firme (ref_1) 2021; 25 Li (ref_25) 2019; 84 Berrar (ref_78) 2019; Volume 1–3 ref_14 Pirizadeh (ref_47) 2021; 198 Liu (ref_41) 2020; 188 Morozov (ref_44) 2020; 194 Wu (ref_33) 2022; 160 Liu (ref_38) 2022; 13 ref_51 Zhang (ref_54) 2021; 48 Chen (ref_77) 2021; 71 Loule (ref_24) 2018; 36 Zhang (ref_32) 2022; 97 Kuncheva (ref_76) 2020; 193 Meng (ref_23) 2021; 9 Rokach (ref_63) 2020; 64 Qaid (ref_48) 2021; 2021 Jin (ref_30) 2021; 127 Haghighat (ref_85) 2021; 152 Li (ref_5) 2018; 45 Xu (ref_8) 2021; 43 Rahman (ref_73) 2021; 93 Ma (ref_60) 2018; 31 Sun (ref_18) 2011; 8 Wu (ref_31) 2020; 125 ref_69 Huang (ref_70) 2019; 574 ref_67 Xu (ref_7) 2021; 11 ref_66 Liu (ref_65) 2021; 106 Chen (ref_50) 2012; 23 ref_62 Liu (ref_39) 2021; 126 Ruan (ref_49) 2013; 73 Otchere (ref_42) 2021; 91 Friedman (ref_56) 2001; 29 He (ref_6) 2010; 31 Tian (ref_17) 2012; 33 ref_29 Tian (ref_26) 2016; 69 ref_28 Yang (ref_11) 2016; 43 He (ref_15) 2010; 31 Hou (ref_80) 2021; 14 Yang (ref_10) 2014; 29 Pazzi (ref_19) 2018; 243 Jain (ref_82) 2021; 212 Zeid (ref_21) 2019; 27 ref_71 Cui (ref_59) 2020; 168 Li (ref_27) 2016; 75 Garland (ref_2) 2012; 370 Bradley (ref_79) 1997; 30 Hu (ref_9) 2013; 34 ref_34 Abraim (ref_83) 2021; 7 Han (ref_37) 2021; 195 Shen (ref_35) 2020; 29 Murali (ref_72) 2021; 2 ref_75 ref_74 Ding (ref_52) 2020; 47 Gu (ref_40) 2021; 205 Rao (ref_55) 2019; 74 Sun (ref_36) 2021; 196 Loucks (ref_12) 1999; 83 Baena (ref_22) 2021; 187 ref_81 Wu (ref_53) 2019; 102 Ke (ref_61) 2017; 30 Tang (ref_45) 2021; 26 Dhananjay (ref_68) 2021; 68 Zhu (ref_58) 2021; 13 Zhao (ref_16) 2015; 42 Zheng (ref_86) 2019; 46 Pacifici (ref_84) 2007; 45 ref_3 Li (ref_57) 2022; 36 Zhong (ref_46) 2020; 220 Pan (ref_43) 2022; 208 ref_4 Wang (ref_64) 2021; 68 He (ref_13) 2021; 48 Torrese (ref_20) 2020; 580 |
References_xml | – volume: 125 start-page: e2020JB019685 year: 2020 ident: ref_31 article-title: Deep learning for characterizing paleokarst collapse features in 3-D seismic images publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2020JB019685 – volume: 212 start-page: 102713 year: 2021 ident: ref_82 article-title: Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection publication-title: Sci. Comput. Program doi: 10.1016/j.scico.2021.102713 – volume: 208 start-page: 109520 year: 2022 ident: ref_43 article-title: An optimized XGBoost method for predicting reservoir porosity using petrophysical logs publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109520 – volume: 48 start-page: 824 year: 2021 ident: ref_13 article-title: Construction of carbonate reservoir knowledge base and its application in fracture-cavity reservoir geological modeling publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(21)60069-1 – ident: ref_74 – volume: 83 start-page: 1795 year: 1999 ident: ref_12 article-title: Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 30 start-page: 3146 year: 2017 ident: ref_61 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Adv. Neural. Inf. Process. Syst. – volume: 29 start-page: 251 year: 2014 ident: ref_10 article-title: The early Hercynian paleo-karstification in the Block 12 of Tahe oilfield, northern Tarim Basin, China publication-title: Carbonates Evaporites doi: 10.1007/s13146-013-0167-0 – volume: 13 start-page: 101311 year: 2022 ident: ref_38 article-title: Integrating deep learning and logging data analytics for lithofacies classification and 3D modeling of tight sandstone reservoirs publication-title: Geosci. Front. doi: 10.1016/j.gsf.2021.101311 – volume: 370 start-page: 1 year: 2012 ident: ref_2 article-title: Advances in carbonate exploration and reservoir analysis publication-title: Geol. Soc. Lond. Spec. Publ. doi: 10.1144/SP370.15 – volume: 127 start-page: 104987 year: 2021 ident: ref_30 article-title: Rock type prediction and 3D modeling of clastic paleokarst fillings in deeply-buried carbonates using the Democratic Neural Networks Association technique publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2021.104987 – volume: 2021 start-page: 9996737 year: 2021 ident: ref_48 article-title: Hybrid Deep-Learning and Machine-Learning Models for Predicting COVID-19 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/9996737 – ident: ref_4 doi: 10.3390/en14144134 – volume: 36 start-page: 671 year: 2022 ident: ref_57 article-title: A data-driven field-scale approach to estimate the permeability of fractured rocks publication-title: Int. J. Min. Reclam. Environ. doi: 10.1080/17480930.2022.2086769 – volume: 580 start-page: 124257 year: 2020 ident: ref_20 article-title: Investigating karst aquifers: Using pseudo 3-D electrical resistivity tomography to identify major karst features publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124257 – ident: ref_71 – ident: ref_34 doi: 10.2523/19941-Abstract – volume: 196 start-page: 107955 year: 2021 ident: ref_36 article-title: A new method for predicting formation lithology while drilling at horizontal well bit publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107955 – volume: 45 start-page: 800 year: 2007 ident: ref_84 article-title: Use of neural networks for automatic classification from high-resolution images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.892009 – ident: ref_14 doi: 10.3390/en13030603 – volume: 45 start-page: 712 year: 2018 ident: ref_5 article-title: Theories and practices of carbonate reservoirs development in China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(18)30074-0 – volume: 47 start-page: 306 year: 2020 ident: ref_52 article-title: Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang oilfield, Tarim Basin publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(20)60048-9 – volume: 36 start-page: 61 year: 2018 ident: ref_24 article-title: An opportunity to re-evaluate the petroleum potential of the Douala/Kribi-Campo Basin, Cameroon publication-title: First Break doi: 10.3997/1365-2397.n0078 – volume: 205 start-page: 108879 year: 2021 ident: ref_40 article-title: Reservoir production optimization based on surrograte model and differential evolution algorithm publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.108879 – volume: 68 start-page: 102610 year: 2021 ident: ref_68 article-title: Analysis and classification of heart rate using CatBoost feature ranking model publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102610 – volume: 43 start-page: 655 year: 2016 ident: ref_11 article-title: Features and classified hierarchical modeling of carbonate fracture-cavity reservoirs publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(16)30076-3 – ident: ref_69 doi: 10.3390/ijerph17031082 – volume: 8 start-page: 433 year: 2011 ident: ref_18 article-title: Fractured reservoir modeling by discrete fracture network and seismic modeling in the Tarim Basin, China publication-title: Pet. Sci. doi: 10.1007/s12182-011-0161-x – volume: 71 start-page: 1309 year: 2021 ident: ref_77 article-title: Multiclass Classification for Self-Admitted Technical Debt Based on XGBoost publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2021.3087864 – volume: 23 start-page: 506 year: 2012 ident: ref_50 article-title: Features and controlling factors of epigenic karstification of the Ordovician carbonates in Akekule Arch, Tarim Basin publication-title: J. Earth Sci. doi: 10.1007/s12583-012-0271-4 – volume: 126 start-page: 104939 year: 2021 ident: ref_39 article-title: An intelligent approach for reservoir quality evaluation in tight sandstone reservoir using gradient boosting decision tree algorithm-A case study of the Yanchang Formation, mid-eastern Ordos Basin, China publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2021.104939 – ident: ref_66 – volume: 26 start-page: 482 year: 2021 ident: ref_45 article-title: A New Ensemble Machine-Learning Framework for Searching Sweet Spots in Shale Reservoirs publication-title: SPE J. doi: 10.2118/204224-PA – ident: ref_62 – volume: 31 start-page: 743 year: 2010 ident: ref_6 article-title: Controlling factors and genetic pattern of the Ordovician reservoirs in the Tahe area, Tarim Basin publication-title: Oil Gas Geol. – volume: 30 start-page: 1145 year: 1997 ident: ref_79 article-title: The Use of the Area under the Roc Curve in the Evaluation of Machine Learning Algorithms publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(96)00142-2 – volume: 93 start-page: 107252 year: 2021 ident: ref_73 article-title: Deep pre-trained networks as a feature extractor with XGBoost to detect tuberculosis from chest X-ray publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107252 – volume: 198 start-page: 108214 year: 2021 ident: ref_47 article-title: A new machine learning ensemble model for class imbalance problem of screening enhanced oil recovery methods publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.108214 – ident: ref_51 doi: 10.3390/w11051045 – volume: 68 start-page: 102630 year: 2021 ident: ref_64 article-title: Fertility-LightGBM: A fertility-related protein prediction model by multi-information fusion and light gradient boosting machine publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102630 – volume: 33 start-page: 900 year: 2012 ident: ref_17 article-title: A new logging recognition method of small fracture-cave and fills in fracture-cavity reservoirs in Tahe oilfield publication-title: Oil Gas Geol. – volume: 160 start-page: 105038 year: 2022 ident: ref_33 article-title: Automatic extraction of outcrop cavity based on a multiscale regional convolution neural network publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2022.105038 – volume: 195 start-page: 104480 year: 2021 ident: ref_37 article-title: Lithology identification of igneous rocks based on XGboost and conventional logging curves, a case study of the eastern depression of Liaohe Basin publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2021.104480 – volume: 29 start-page: 1189 year: 2001 ident: ref_56 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 27 start-page: 101976 year: 2019 ident: ref_21 article-title: Deep in a Paleolithic archive: Integrated geophysical investigations and laser-scanner reconstruction at Fumane Cave, Italy publication-title: J. Archaeol. Sci. Rep. – volume: 9 start-page: B77 year: 2021 ident: ref_23 article-title: A case study of complex carbonate reservoir connectivity analysis, Tarim Basin, China publication-title: Interpretation doi: 10.1190/INT-2020-0189.1 – volume: 243 start-page: 282 year: 2018 ident: ref_19 article-title: Integrated geophysical survey in a sinkhole-prone area: Microgravity, electrical resistivity tomographies, and seismic noise measurements to delimit its extension publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2018.07.016 – volume: 34 start-page: 383 year: 2013 ident: ref_9 article-title: Three-dimensional geological modeling of factured-vuggy carbonate reservoirs: A case from the Ordovician reservoirs in Tahe-IV block, Tahe oilfield publication-title: Oil Gas Geol. – volume: 187 start-page: 104287 year: 2021 ident: ref_22 article-title: Development and collapse of karstic cavities in folded marbles: Geomorphological and geophysical evidences in Nerja Cave (southern Spain) publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2021.104287 – volume: 97 start-page: 104340 year: 2022 ident: ref_32 article-title: Seismic characterization of deeply buried paleocaves based on Bayesian deep learning publication-title: J. Nat. Gas. Sci. Eng. doi: 10.1016/j.jngse.2021.104340 – volume: 220 start-page: 103416 year: 2020 ident: ref_46 article-title: Generating pseudo density log from drilling and logging-while-drilling data using extreme gradient boosting (XGBoost) publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2020.103416 – volume: 102 start-page: 557 year: 2019 ident: ref_53 article-title: Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin, China publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2019.01.014 – volume: 46 start-page: 786 year: 2019 ident: ref_86 article-title: Controlling factors of remaining oil distribution after water flooding and enhanced oil recovery methods for fracture-cavity carbonate reservoirs in Tahe Oilfield publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(19)60236-3 – volume: 42 start-page: 277 year: 2015 ident: ref_16 article-title: A reserve calculation method for fracture-cavity carbonate reservoirs in Tarim Basin, NW China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(15)30017-3 – volume: 152 start-page: 111399 year: 2021 ident: ref_85 article-title: Predicting the trend of indicators related to COVID-19 using the combined MLP-MC model publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111399 – volume: 73 start-page: 469 year: 2013 ident: ref_49 article-title: Prediction of buried calcite dissolution in the Ordovician carbonate reservoir of the Tahe Oilfield, NW china: Evidence from formation water publication-title: Geochemistry doi: 10.1016/j.chemer.2013.03.004 – ident: ref_28 doi: 10.3390/w11020256 – volume: 168 start-page: 136 year: 2020 ident: ref_59 article-title: Optimization scheme for intrusion detection scheme GBDT in edge computing center publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.12.007 – volume: 194 start-page: 107504 year: 2020 ident: ref_44 article-title: Data-driven model for hydraulic fracturing design optimization: Focus on building digital database and production forecast publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107504 – volume: 75 start-page: 192 year: 2016 ident: ref_27 article-title: Application of multi-seismic attributes analysis in the study of distributary channels publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2016.04.016 – ident: ref_67 – volume: 13 start-page: 1231 year: 2021 ident: ref_58 article-title: Prediction of rockhead using a hybrid N-XGBoost machine learning framework publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2021.06.012 – volume: 2 start-page: 375 year: 2021 ident: ref_72 article-title: ResNet-50 vs VGG-19 vs Training from Scratch: A comparative analysis of the segmentation and classification of Pneumonia from chest x-ray images publication-title: Glob. Transit. Proc. doi: 10.1016/j.gltp.2021.08.027 – volume: Volume 1–3 start-page: 546 year: 2019 ident: ref_78 article-title: Performance Measures for Binary Classification publication-title: Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics doi: 10.1016/B978-0-12-809633-8.20351-8 – volume: 14 start-page: 123 year: 2021 ident: ref_80 article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2021.05.004 – volume: 43 start-page: 1031 year: 2021 ident: ref_8 article-title: Genetic mechanism of inner reservoirs of Yingshan Formation of Middle-Lower Ordovician in Tahe Oil Field, Tarim Basin publication-title: Pet. Geol. Exp. – volume: 69 start-page: 53 year: 2016 ident: ref_26 article-title: Multi-layered Ordovician paleokarst reservoir detection and spatial delineation: A case study in the Tahe Oilfield, Tarim Basin, Western China publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2015.10.015 – ident: ref_29 doi: 10.3390/w12061765 – volume: 193 start-page: 105434 year: 2020 ident: ref_76 article-title: Random Balance ensembles for multiclass imbalance learning publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.105434 – ident: ref_81 doi: 10.1016/j.ssci.2019.05.046 – volume: 31 start-page: 24 year: 2018 ident: ref_60 article-title: Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning publication-title: Electron. Commer. Res. Appl. doi: 10.1016/j.elerap.2018.08.002 – volume: 25 start-page: 100209 year: 2021 ident: ref_1 article-title: Mechanical behavior of carbonate reservoirs with single karst cavities publication-title: Geomech. Energy Environ. doi: 10.1016/j.gete.2020.100209 – volume: 84 start-page: B59 year: 2019 ident: ref_25 article-title: Identification of fractured carbonate vuggy reservoirs in the S48 well area using 3D 3C seismic technique: A case history from the Tarim Basin publication-title: Geophysics doi: 10.1190/geo2017-0776.1 – volume: 11 start-page: 3889 year: 2021 ident: ref_7 article-title: Research progress and prospect of Ordovician carbonate rocks in Tahe oilfield: Karst feature publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-021-01268-1 – ident: ref_75 doi: 10.1007/978-3-030-67670-4_36 – volume: 29 start-page: 2257 year: 2020 ident: ref_35 article-title: A novel hybrid technique of integrating gradient-boosted machine and clustering algorithms for lithology classification publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09576-4 – volume: 188 start-page: 106937 year: 2020 ident: ref_41 article-title: Predictive model for water absorption in sublayers using a Joint Distribution Adaption based XGBoost transfer learning method publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.106937 – volume: 106 start-page: 102289 year: 2021 ident: ref_65 article-title: A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102289 – volume: 7 start-page: 888 year: 2021 ident: ref_83 article-title: Short term solar irradiance forecasting using sky images based on a hybrid CNN–MLP model publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.07.053 – volume: 48 start-page: 354 year: 2021 ident: ref_54 article-title: Formation of hoodoo-upland on Ordovician karst slope and its significance in petroleum geology in Tahe area, Tarim Basin, NW China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(21)60028-9 – volume: 64 start-page: 205 year: 2020 ident: ref_63 article-title: A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.07.007 – ident: ref_3 doi: 10.3390/en12010078 – volume: 74 start-page: 634 year: 2019 ident: ref_55 article-title: Feature selection based on artificial bee colony and gradient boosting decision tree publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2018.10.036 – volume: 31 start-page: 743 year: 2010 ident: ref_15 article-title: Controls on reservoir formation in Ordovician of Tahe oilfield, Tarim basin, and combinational genetic mechanism publication-title: Oil Gas Geol. – volume: 91 start-page: 103962 year: 2021 ident: ref_42 article-title: A novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction publication-title: J. Nat. Gas. Sci. Eng. doi: 10.1016/j.jngse.2021.103962 – volume: 574 start-page: 1029 year: 2019 ident: ref_70 article-title: Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.04.085 |
SSID | ssj0000331333 |
Score | 2.348056 |
Snippet | The precise characterization of geological bodies in fracture-vuggy carbonates is challenging due to their high complexity and heterogeneous distribution. This... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 643 |
SubjectTerms | Accuracy Algorithms Caves Classification Datasets Decision trees Enhanced oil recovery fracture-vuggy carbonate reservoir Geology gradient-boosting decision trees (GBDT) Hydrocarbons karst cavities Machine learning Neural networks Reservoirs Software Tahe oilfield uncertainty Visual Geometry Group 16 pre-trained (VGG-16) |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPMXSgizBgUqNmtjOi1u3y7aAoAcW6C3ycxtpN0FOdiX-Kz-GGScti0Diwi2JRrGVmczLM98Q8jKLc2aKREdOcMxW5SwqnTKRix1TsjQ6YdiN_OFjdv5ZvLtML3dGfWFN2AAPPHy4Y27ixDqmZWljIWOhCq2kTEor8UQqVqh9webtBFNBB3MOwRcf8Eg5xPXHtkkycI0ywX-zQAGo_w89HIzL_B65O3qF9GTYzX1yyzYPyJ0drMCH5MfQUuvGHBttHX0PQWlPT-U2oKJS7BShbEY_2bpb15p-lVtL34JbbJCzcAWqo6NTMFuGwgvOfKj26qNp23ZY_Exn47wduvAWKE9Wy9bX_dW6o6_OprPF4WtYq7O48oU37TYkROgc26w23kZfNsvld6DwChPylmJNn9-2tT-iC3ll6UW9CuVyeOvrNW6kbo5oGOD9iCzmbxan59E4miHSPEv6yBjtcs5MkmWg7NHxy8rSiFQIEAmTa5bbEKtliRRauVxJK11hTFI4xZnij8le0zb2CaEutUwZ0DoiKYVIy0IaBz5bwSGQEikTE3J4za1Kj7DlOD1jVUH4gpytfnF2Ql7c0H4bwDr-SjVFpt9QIMB2eABiV41iV_1L7Cbk4FpkqvGv7yqWZzkOSk_F0_-xxj65jcPth4TPAdnr_cY-AxeoV8-DtP8EBFYHJg priority: 102 providerName: Directory of Open Access Journals |
Title | Identification of Karst Cavities from 2D Seismic Wave Impedance Images Based on Gradient-Boosting Decision Trees Algorithms (GBDT): Case of Ordovician Fracture-Vuggy Carbonate Reservoir, Tahe Oilfield, Tarim Basin, China |
URI | https://www.proquest.com/docview/2767214654 https://doaj.org/article/3d01ef2ca9e04a04b8cbaa19ea39790b |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7RVEhwQFBADZRoJThQqVa9D7-4oKZpUkC0CALkZu0ztZTExXYi9b_yY5jdOCkIxMXyY-S1POvZmc8z8yH0Kg4TqlOiAsuZQ6sSGmRW6sCGlkqRaUWoq0b-eBGff-XvJ9GkBdzqNq1yYxO9odalchj5MU3ixJFQR_zt9Y_AsUa5v6sthcYO2gUTnKYdtNs_u_j0eYuyhIxBEMbWfUkZxPfHZkFicJFizv5YiXzD_r_ssV9khg_Rg9Y7xCdrdT5Cd8xiD93_rWfgHro78ly8N4_Rz3WRrW1RN1xa_AHC1AafipXvk4pd7QimA_zFFPW8UPi7WBn8Dhxl7XQNe2BMatyHhUxjuMGo8vlfTdAvy9qlQ-NBy8CDx5UByZPZFF5JczWv8etRfzA-fANj1caNfFnpcuUhEjx0hVfLygTfltPpDUhU0kH0Brssv2pVFtURHosrgy-LmU-gc4dVMXcPUiyOsKf0foLGw7Px6XnQkjUEisWkCbRWNmFUkzgG8-9cwTjLNI84h0miE0UT46O3mAiupE2kMMKmWpPUSkYle4o6i3Jh9hG2kaFSgx3iJOM8ylKhLXhxKYPQikeUd9HhRm-5ahuZOz6NWQ4BjdNxfqvjLnq5lb1et-_4p1TfqX8r4Vpu-xNlNc3bLzhnOiTGUiUyE3IRcpkqKQTJjHC_RkPZRQebyZO3dqDOb2fts_9ffo7uOSL7NbhzgDpNtTQvwN1pZA_tpMNRr53ZPQ8awHY0Ib8ARGYEug |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEQIOCAqIhQKWAIlKjZrYzgsJoW6XfdDXgRR6i-zY3kba3ZQku2h_FP-IH8PYyW5BIG695TGyk8xkPDOemQ-h14EbEhl5maMZNdGqkDixFtLRriaCxzLziKlGPj4Jhmfs07l_voF-rGphTFrlSidaRS2LzMTI90gYhAaE2mcfLr85BjXK7K6uIDQasThUy-_gslXvRz3g7xtC-h-Tg6HTogo4GQ282pEy0yEl0gsC0FPGZgniWDKfMXgbGWYkVNbNCDzOMqFDwRXXkZRepAUlgsKwN9BNRmEhN4Xp_cE6pONSCh4fbZqgwn13T828AOyxgNE_lj2LDvCX8rcrWv8-uteaoni_kZ0HaEPNttDd3xoUbqFbAwv8u3yIfjYVvboN8eFC40PwiWt8wBe2KSs2hSqY9PBnlVfTPMNf-ULhEVjl0ggWHIHmqnAXVk2JYYBBaZPNaqdbFJXJvca9Fu4HJ6UCyv3JGL5_fTGt8NtBt5fsvIO5KmVmPi1lsbDxGNw3VV7zUjlf5uPxEihKYfYDFDYpheWiyMtdnPALhU_zic3WM6dlPjUPks92scUPf4SS6-DhY7Q5K2bqCcLaV0RIUHrMixnz44hLDSZjRMGPYz5hHbSz4luatV3TDXjHJAXvyfA4veJxB71a0142vUL-SdU17F9TmP7e9kJRjtNWXaRUup7SJOOxchl3mYgywbkXK272YV3RQdsr4UlbpVOlV7_I0__ffoluD5Pjo_RodHL4DN0hYLc1UaVttFmXc_Uc7KxavLDSjVF6zX_TLw4hPiQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJxA8IBggCgMsARKTFjWxnX9ICK3r2pVCN0GAvUV2bHeR2mYkaVE_Gt-FD8M5STsQiLe95c_JTnTn89357n4IvfBsn8jASSzNqIlW-cQKtZCWtjURPJSJQ0w18oexd_yZvTtzz7bQj3UtjEmrXOvESlHLLDEx8g7xPd-AULuso5u0iNNe_-3FN8sgSJmT1jWcRi0iI7X6Du5b8WbYA16_JKR_FB0eWw3CgJVQzyktKRPtUyIdzwOdZewXLwwlcxmDP5N-QnxVuRyew1kitC-44jqQ0gm0oERQGPYa2vaNU9RC292j8enHTYDHphT8P1q3RKU0tDtq7nhgnXmM_rEJVlgBf20F1f7Wv4NuN4YpPqgl6S7aUvMddOu3doU76PqgggFe3UM_6_pe3QT8cKbxCDzkEh_yZdWiFZuyFUx6-JNKi1ma4K98qfAQbHRpxAyuQI8VuAt7qMQwwCCvUs9Kq5tlhcnExr0G_AdHuQLKg-kEOFCezwr8atDtRXuvYa5CmZlPcpktq-gM7puar0WurC-LyWQFFLkwpwMKmwTDfJml-T6O-LnCJ-m0yt0zt3k6Mx-SzvdxhSZ-H0VXwcUHqDXP5uohwtpVREhQgcwJGXPDgEsNBmRAwatjLmFttLfmW5w0PdQNlMc0Bl_K8Di-5HEbPd_QXtSdQ_5J1TXs31CYbt_VgyyfxI3yiKm0HaVJwkNlM24zESSCcydU3JzK2qKNdtfCEzcqqIgvF8yj_79-hm7ASorfD8ejx-gmASOuDjHtolaZL9QTMLpK8bQRb4ziK15QvwDmREO2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Karst+Cavities+from+2D+Seismic+Wave+Impedance+Images+Based+on+Gradient-Boosting+Decision+Trees+Algorithms+%28GBDT%29%3A+Case+of+Ordovician+Fracture-Vuggy+Carbonate+Reservoir%2C+Tahe+Oilfield%2C+Tarim+Basin%2C+China&rft.jtitle=Energies+%28Basel%29&rft.au=Allou+Koffi+Franck+Kouassi&rft.au=Pan%2C+Lin&rft.au=Wang%2C+Xiao&rft.au=Wang%2C+Zhangheng&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=16&rft.issue=2&rft.spage=643&rft_id=info:doi/10.3390%2Fen16020643&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |