Identification of Karst Cavities from 2D Seismic Wave Impedance Images Based on Gradient-Boosting Decision Trees Algorithms (GBDT): Case of Ordovician Fracture-Vuggy Carbonate Reservoir, Tahe Oilfield, Tarim Basin, China

The precise characterization of geological bodies in fracture-vuggy carbonates is challenging due to their high complexity and heterogeneous distribution. This study aims to present the hybrid of Visual Geometry Group 16 (VGG-16) pre-trained by Gradient-Boosting Decision Tree (GBDT) models as a nove...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 16; no. 2; p. 643
Main Authors Kouassi, Allou Koffi Franck, Pan, Lin, Wang, Xiao, Wang, Zhangheng, Mulashani, Alvin K., James, Faulo, Shaame, Mbarouk, Hussain, Altaf, Hussain, Hadi, Nyakilla, Edwin E.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The precise characterization of geological bodies in fracture-vuggy carbonates is challenging due to their high complexity and heterogeneous distribution. This study aims to present the hybrid of Visual Geometry Group 16 (VGG-16) pre-trained by Gradient-Boosting Decision Tree (GBDT) models as a novel approach for predicting and generating karst cavities with high accuracy on various scales based on uncertainty assessment from a small dataset. Seismic wave impedance images were used as input data. Their manual interpretation was used to build GBDT classifiers for Light Gradient-Boosting Machine (LightGBM) and Unbiased Boosting with Categorical Features (CatBoost) for predicting the karst cavities and unconformities. The results show that the LightGBM was the best GBDT classifier, which performed excellently in karst cavity interpretation, giving an F1-score between 0.87 and 0.94 and a micro-G-Mean ranging from 0.92 to 0.96. Furthermore, the LightGBM performed better in cave prediction than Linear Regression (LR) and Multilayer Perceptron (MLP). The prediction of karst cavities according to the LightGBM model was performed well according to the uncertainty quantification. Therefore, the hybrid VGG16 and GBDT algorithms can be implemented as an improved approach for efficiently identifying geological features within similar reservoirs worldwide.
AbstractList The precise characterization of geological bodies in fracture-vuggy carbonates is challenging due to their high complexity and heterogeneous distribution. This study aims to present the hybrid of Visual Geometry Group 16 (VGG-16) pre-trained by Gradient-Boosting Decision Tree (GBDT) models as a novel approach for predicting and generating karst cavities with high accuracy on various scales based on uncertainty assessment from a small dataset. Seismic wave impedance images were used as input data. Their manual interpretation was used to build GBDT classifiers for Light Gradient-Boosting Machine (LightGBM) and Unbiased Boosting with Categorical Features (CatBoost) for predicting the karst cavities and unconformities. The results show that the LightGBM was the best GBDT classifier, which performed excellently in karst cavity interpretation, giving an F1-score between 0.87 and 0.94 and a micro-G-Mean ranging from 0.92 to 0.96. Furthermore, the LightGBM performed better in cave prediction than Linear Regression (LR) and Multilayer Perceptron (MLP). The prediction of karst cavities according to the LightGBM model was performed well according to the uncertainty quantification. Therefore, the hybrid VGG16 and GBDT algorithms can be implemented as an improved approach for efficiently identifying geological features within similar reservoirs worldwide.
Author Shaame, Mbarouk
James, Faulo
Hussain, Altaf
Nyakilla, Edwin E.
Pan, Lin
Kouassi, Allou Koffi Franck
Mulashani, Alvin K.
Wang, Xiao
Hussain, Hadi
Wang, Zhangheng
Author_xml – sequence: 1
  givenname: Allou Koffi Franck
  surname: Kouassi
  fullname: Kouassi, Allou Koffi Franck
– sequence: 2
  givenname: Lin
  surname: Pan
  fullname: Pan, Lin
– sequence: 3
  givenname: Xiao
  orcidid: 0000-0002-7354-5111
  surname: Wang
  fullname: Wang, Xiao
– sequence: 4
  givenname: Zhangheng
  surname: Wang
  fullname: Wang, Zhangheng
– sequence: 5
  givenname: Alvin K.
  surname: Mulashani
  fullname: Mulashani, Alvin K.
– sequence: 6
  givenname: Faulo
  surname: James
  fullname: James, Faulo
– sequence: 7
  givenname: Mbarouk
  surname: Shaame
  fullname: Shaame, Mbarouk
– sequence: 8
  givenname: Altaf
  surname: Hussain
  fullname: Hussain, Altaf
– sequence: 9
  givenname: Hadi
  surname: Hussain
  fullname: Hussain, Hadi
– sequence: 10
  givenname: Edwin E.
  surname: Nyakilla
  fullname: Nyakilla, Edwin E.
BookMark eNptktFu0zAUhiM0JMbYDU9giRtAC9ixmzTcrS0rFZMqQQWX0Yl9kp4qtTfbrbR35WFwVgQI4RufY33-_1_2eZ6dWWcxy14K_k7Kmr9HK0pe8FLJJ9m5qOsyF7ySZ3_Vz7LLEHY8LSmFlPI8-7EyaCN1pCGSs8x17DP4ENkcjhQJA-u827Niwb4ihT1p9h2OyFb7OzRg9VhBn6gZBDQsCSw9GEqS-cy5EMn2bIGawqi98ZjI66F3nuJ2H9jr5WyxefMheQUcndfeuCNpAstuPOh48Jh_O_T9QyJ86yxEZF8woD868ldsA1tkaxo6wsGMraf9GITsFZtvycKL7GkHQ8DLX_tFtrn5uJl_ym_Xy9X8-jbXshQxN0Z3lSyMKEtsRXqcSVnXRk2UQq1NpYsKJRdKlQKUbruqBYRuaoyYdq0sWnmRrU6yxsGuuUspwD80Dqh5PHC-b8BH0gM20nCBXaGhRq6Aq3aqWwBRI8i6qvmo9eqkdefd_QFDbHbu4G1K3xRVWRVClROVqLcnSnsXgsfut6vgzTgLzZ9ZSDD_B9YUH387eqDhf1d-Al6UukM
CitedBy_id crossref_primary_10_3390_pr11082316
crossref_primary_10_2118_221464_PA
crossref_primary_10_3389_fmed_2024_1498403
crossref_primary_10_1063_5_0152685
Cites_doi 10.1029/2020JB019685
10.1016/j.scico.2021.102713
10.1016/j.petrol.2021.109520
10.1016/S1876-3804(21)60069-1
10.1007/s13146-013-0167-0
10.1016/j.gsf.2021.101311
10.1144/SP370.15
10.1016/j.marpetgeo.2021.104987
10.1155/2021/9996737
10.3390/en14144134
10.1080/17480930.2022.2086769
10.1016/j.jhydrol.2019.124257
10.2523/19941-Abstract
10.1016/j.petrol.2020.107955
10.1109/TGRS.2007.892009
10.3390/en13030603
10.1016/S1876-3804(18)30074-0
10.1016/S1876-3804(20)60048-9
10.3997/1365-2397.n0078
10.1016/j.petrol.2021.108879
10.1016/j.bspc.2021.102610
10.1016/S1876-3804(16)30076-3
10.3390/ijerph17031082
10.1007/s12182-011-0161-x
10.1109/TR.2021.3087864
10.1007/s12583-012-0271-4
10.1016/j.marpetgeo.2021.104939
10.2118/204224-PA
10.1016/S0031-3203(96)00142-2
10.1016/j.compeleceng.2021.107252
10.1016/j.petrol.2020.108214
10.3390/w11051045
10.1016/j.bspc.2021.102630
10.1016/j.cageo.2022.105038
10.1016/j.jappgeo.2021.104480
10.1214/aos/1013203451
10.1190/INT-2020-0189.1
10.1016/j.enggeo.2018.07.016
10.1016/j.jappgeo.2021.104287
10.1016/j.jngse.2021.104340
10.1016/j.coal.2020.103416
10.1016/j.marpetgeo.2019.01.014
10.1016/S1876-3804(19)60236-3
10.1016/S1876-3804(15)30017-3
10.1016/j.chaos.2021.111399
10.1016/j.chemer.2013.03.004
10.3390/w11020256
10.1016/j.comcom.2020.12.007
10.1016/j.petrol.2020.107504
10.1016/j.marpetgeo.2016.04.016
10.1016/j.jrmge.2021.06.012
10.1016/j.gltp.2021.08.027
10.1016/B978-0-12-809633-8.20351-8
10.1016/j.jrmge.2021.05.004
10.1016/j.marpetgeo.2015.10.015
10.3390/w12061765
10.1016/j.knosys.2019.105434
10.1016/j.ssci.2019.05.046
10.1016/j.elerap.2018.08.002
10.1016/j.gete.2020.100209
10.1190/geo2017-0776.1
10.1007/s13202-021-01268-1
10.1007/978-3-030-67670-4_36
10.1007/s11053-019-09576-4
10.1016/j.petrol.2020.106937
10.1016/j.cose.2021.102289
10.1016/j.egyr.2021.07.053
10.1016/S1876-3804(21)60028-9
10.1016/j.inffus.2020.07.007
10.3390/en12010078
10.1016/j.asoc.2018.10.036
10.1016/j.jngse.2021.103962
10.1016/j.jhydrol.2019.04.085
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en16020643
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Geology
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_3d01ef2ca9e04a04b8cbaa19ea39790b
10_3390_en16020643
GeographicLocations China
Tarim Basin
GeographicLocations_xml – name: China
– name: Tarim Basin
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-ddcf732d166eb10005699d4544eccd7c27e3014461a4cbf7baeaf8dd18fb32b3
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Wed Aug 27 01:26:49 EDT 2025
Mon Jun 30 07:31:20 EDT 2025
Thu Apr 24 23:07:59 EDT 2025
Tue Jul 01 01:58:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-ddcf732d166eb10005699d4544eccd7c27e3014461a4cbf7baeaf8dd18fb32b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7354-5111
OpenAccessLink https://www.proquest.com/docview/2767214654?pq-origsite=%requestingapplication%
PQID 2767214654
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_3d01ef2ca9e04a04b8cbaa19ea39790b
proquest_journals_2767214654
crossref_primary_10_3390_en16020643
crossref_citationtrail_10_3390_en16020643
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Firme (ref_1) 2021; 25
Li (ref_25) 2019; 84
Berrar (ref_78) 2019; Volume 1–3
ref_14
Pirizadeh (ref_47) 2021; 198
Liu (ref_41) 2020; 188
Morozov (ref_44) 2020; 194
Wu (ref_33) 2022; 160
Liu (ref_38) 2022; 13
ref_51
Zhang (ref_54) 2021; 48
Chen (ref_77) 2021; 71
Loule (ref_24) 2018; 36
Zhang (ref_32) 2022; 97
Kuncheva (ref_76) 2020; 193
Meng (ref_23) 2021; 9
Rokach (ref_63) 2020; 64
Qaid (ref_48) 2021; 2021
Jin (ref_30) 2021; 127
Haghighat (ref_85) 2021; 152
Li (ref_5) 2018; 45
Xu (ref_8) 2021; 43
Rahman (ref_73) 2021; 93
Ma (ref_60) 2018; 31
Sun (ref_18) 2011; 8
Wu (ref_31) 2020; 125
ref_69
Huang (ref_70) 2019; 574
ref_67
Xu (ref_7) 2021; 11
ref_66
Liu (ref_65) 2021; 106
Chen (ref_50) 2012; 23
ref_62
Liu (ref_39) 2021; 126
Ruan (ref_49) 2013; 73
Otchere (ref_42) 2021; 91
Friedman (ref_56) 2001; 29
He (ref_6) 2010; 31
Tian (ref_17) 2012; 33
ref_29
Tian (ref_26) 2016; 69
ref_28
Yang (ref_11) 2016; 43
He (ref_15) 2010; 31
Hou (ref_80) 2021; 14
Yang (ref_10) 2014; 29
Pazzi (ref_19) 2018; 243
Jain (ref_82) 2021; 212
Zeid (ref_21) 2019; 27
ref_71
Cui (ref_59) 2020; 168
Li (ref_27) 2016; 75
Garland (ref_2) 2012; 370
Bradley (ref_79) 1997; 30
Hu (ref_9) 2013; 34
ref_34
Abraim (ref_83) 2021; 7
Han (ref_37) 2021; 195
Shen (ref_35) 2020; 29
Murali (ref_72) 2021; 2
ref_75
ref_74
Ding (ref_52) 2020; 47
Gu (ref_40) 2021; 205
Rao (ref_55) 2019; 74
Sun (ref_36) 2021; 196
Loucks (ref_12) 1999; 83
Baena (ref_22) 2021; 187
ref_81
Wu (ref_53) 2019; 102
Ke (ref_61) 2017; 30
Tang (ref_45) 2021; 26
Dhananjay (ref_68) 2021; 68
Zhu (ref_58) 2021; 13
Zhao (ref_16) 2015; 42
Zheng (ref_86) 2019; 46
Pacifici (ref_84) 2007; 45
ref_3
Li (ref_57) 2022; 36
Zhong (ref_46) 2020; 220
Pan (ref_43) 2022; 208
ref_4
Wang (ref_64) 2021; 68
He (ref_13) 2021; 48
Torrese (ref_20) 2020; 580
References_xml – volume: 125
  start-page: e2020JB019685
  year: 2020
  ident: ref_31
  article-title: Deep learning for characterizing paleokarst collapse features in 3-D seismic images
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2020JB019685
– volume: 212
  start-page: 102713
  year: 2021
  ident: ref_82
  article-title: Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection
  publication-title: Sci. Comput. Program
  doi: 10.1016/j.scico.2021.102713
– volume: 208
  start-page: 109520
  year: 2022
  ident: ref_43
  article-title: An optimized XGBoost method for predicting reservoir porosity using petrophysical logs
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109520
– volume: 48
  start-page: 824
  year: 2021
  ident: ref_13
  article-title: Construction of carbonate reservoir knowledge base and its application in fracture-cavity reservoir geological modeling
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(21)60069-1
– ident: ref_74
– volume: 83
  start-page: 1795
  year: 1999
  ident: ref_12
  article-title: Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications
  publication-title: Am. Assoc. Pet. Geol. Bull.
– volume: 30
  start-page: 3146
  year: 2017
  ident: ref_61
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 29
  start-page: 251
  year: 2014
  ident: ref_10
  article-title: The early Hercynian paleo-karstification in the Block 12 of Tahe oilfield, northern Tarim Basin, China
  publication-title: Carbonates Evaporites
  doi: 10.1007/s13146-013-0167-0
– volume: 13
  start-page: 101311
  year: 2022
  ident: ref_38
  article-title: Integrating deep learning and logging data analytics for lithofacies classification and 3D modeling of tight sandstone reservoirs
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2021.101311
– volume: 370
  start-page: 1
  year: 2012
  ident: ref_2
  article-title: Advances in carbonate exploration and reservoir analysis
  publication-title: Geol. Soc. Lond. Spec. Publ.
  doi: 10.1144/SP370.15
– volume: 127
  start-page: 104987
  year: 2021
  ident: ref_30
  article-title: Rock type prediction and 3D modeling of clastic paleokarst fillings in deeply-buried carbonates using the Democratic Neural Networks Association technique
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2021.104987
– volume: 2021
  start-page: 9996737
  year: 2021
  ident: ref_48
  article-title: Hybrid Deep-Learning and Machine-Learning Models for Predicting COVID-19
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/9996737
– ident: ref_4
  doi: 10.3390/en14144134
– volume: 36
  start-page: 671
  year: 2022
  ident: ref_57
  article-title: A data-driven field-scale approach to estimate the permeability of fractured rocks
  publication-title: Int. J. Min. Reclam. Environ.
  doi: 10.1080/17480930.2022.2086769
– volume: 580
  start-page: 124257
  year: 2020
  ident: ref_20
  article-title: Investigating karst aquifers: Using pseudo 3-D electrical resistivity tomography to identify major karst features
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124257
– ident: ref_71
– ident: ref_34
  doi: 10.2523/19941-Abstract
– volume: 196
  start-page: 107955
  year: 2021
  ident: ref_36
  article-title: A new method for predicting formation lithology while drilling at horizontal well bit
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107955
– volume: 45
  start-page: 800
  year: 2007
  ident: ref_84
  article-title: Use of neural networks for automatic classification from high-resolution images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.892009
– ident: ref_14
  doi: 10.3390/en13030603
– volume: 45
  start-page: 712
  year: 2018
  ident: ref_5
  article-title: Theories and practices of carbonate reservoirs development in China
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(18)30074-0
– volume: 47
  start-page: 306
  year: 2020
  ident: ref_52
  article-title: Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang oilfield, Tarim Basin
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(20)60048-9
– volume: 36
  start-page: 61
  year: 2018
  ident: ref_24
  article-title: An opportunity to re-evaluate the petroleum potential of the Douala/Kribi-Campo Basin, Cameroon
  publication-title: First Break
  doi: 10.3997/1365-2397.n0078
– volume: 205
  start-page: 108879
  year: 2021
  ident: ref_40
  article-title: Reservoir production optimization based on surrograte model and differential evolution algorithm
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108879
– volume: 68
  start-page: 102610
  year: 2021
  ident: ref_68
  article-title: Analysis and classification of heart rate using CatBoost feature ranking model
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102610
– volume: 43
  start-page: 655
  year: 2016
  ident: ref_11
  article-title: Features and classified hierarchical modeling of carbonate fracture-cavity reservoirs
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(16)30076-3
– ident: ref_69
  doi: 10.3390/ijerph17031082
– volume: 8
  start-page: 433
  year: 2011
  ident: ref_18
  article-title: Fractured reservoir modeling by discrete fracture network and seismic modeling in the Tarim Basin, China
  publication-title: Pet. Sci.
  doi: 10.1007/s12182-011-0161-x
– volume: 71
  start-page: 1309
  year: 2021
  ident: ref_77
  article-title: Multiclass Classification for Self-Admitted Technical Debt Based on XGBoost
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2021.3087864
– volume: 23
  start-page: 506
  year: 2012
  ident: ref_50
  article-title: Features and controlling factors of epigenic karstification of the Ordovician carbonates in Akekule Arch, Tarim Basin
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-012-0271-4
– volume: 126
  start-page: 104939
  year: 2021
  ident: ref_39
  article-title: An intelligent approach for reservoir quality evaluation in tight sandstone reservoir using gradient boosting decision tree algorithm-A case study of the Yanchang Formation, mid-eastern Ordos Basin, China
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2021.104939
– ident: ref_66
– volume: 26
  start-page: 482
  year: 2021
  ident: ref_45
  article-title: A New Ensemble Machine-Learning Framework for Searching Sweet Spots in Shale Reservoirs
  publication-title: SPE J.
  doi: 10.2118/204224-PA
– ident: ref_62
– volume: 31
  start-page: 743
  year: 2010
  ident: ref_6
  article-title: Controlling factors and genetic pattern of the Ordovician reservoirs in the Tahe area, Tarim Basin
  publication-title: Oil Gas Geol.
– volume: 30
  start-page: 1145
  year: 1997
  ident: ref_79
  article-title: The Use of the Area under the Roc Curve in the Evaluation of Machine Learning Algorithms
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 93
  start-page: 107252
  year: 2021
  ident: ref_73
  article-title: Deep pre-trained networks as a feature extractor with XGBoost to detect tuberculosis from chest X-ray
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107252
– volume: 198
  start-page: 108214
  year: 2021
  ident: ref_47
  article-title: A new machine learning ensemble model for class imbalance problem of screening enhanced oil recovery methods
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.108214
– ident: ref_51
  doi: 10.3390/w11051045
– volume: 68
  start-page: 102630
  year: 2021
  ident: ref_64
  article-title: Fertility-LightGBM: A fertility-related protein prediction model by multi-information fusion and light gradient boosting machine
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102630
– volume: 33
  start-page: 900
  year: 2012
  ident: ref_17
  article-title: A new logging recognition method of small fracture-cave and fills in fracture-cavity reservoirs in Tahe oilfield
  publication-title: Oil Gas Geol.
– volume: 160
  start-page: 105038
  year: 2022
  ident: ref_33
  article-title: Automatic extraction of outcrop cavity based on a multiscale regional convolution neural network
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2022.105038
– volume: 195
  start-page: 104480
  year: 2021
  ident: ref_37
  article-title: Lithology identification of igneous rocks based on XGboost and conventional logging curves, a case study of the eastern depression of Liaohe Basin
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2021.104480
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_56
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 27
  start-page: 101976
  year: 2019
  ident: ref_21
  article-title: Deep in a Paleolithic archive: Integrated geophysical investigations and laser-scanner reconstruction at Fumane Cave, Italy
  publication-title: J. Archaeol. Sci. Rep.
– volume: 9
  start-page: B77
  year: 2021
  ident: ref_23
  article-title: A case study of complex carbonate reservoir connectivity analysis, Tarim Basin, China
  publication-title: Interpretation
  doi: 10.1190/INT-2020-0189.1
– volume: 243
  start-page: 282
  year: 2018
  ident: ref_19
  article-title: Integrated geophysical survey in a sinkhole-prone area: Microgravity, electrical resistivity tomographies, and seismic noise measurements to delimit its extension
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.07.016
– volume: 34
  start-page: 383
  year: 2013
  ident: ref_9
  article-title: Three-dimensional geological modeling of factured-vuggy carbonate reservoirs: A case from the Ordovician reservoirs in Tahe-IV block, Tahe oilfield
  publication-title: Oil Gas Geol.
– volume: 187
  start-page: 104287
  year: 2021
  ident: ref_22
  article-title: Development and collapse of karstic cavities in folded marbles: Geomorphological and geophysical evidences in Nerja Cave (southern Spain)
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2021.104287
– volume: 97
  start-page: 104340
  year: 2022
  ident: ref_32
  article-title: Seismic characterization of deeply buried paleocaves based on Bayesian deep learning
  publication-title: J. Nat. Gas. Sci. Eng.
  doi: 10.1016/j.jngse.2021.104340
– volume: 220
  start-page: 103416
  year: 2020
  ident: ref_46
  article-title: Generating pseudo density log from drilling and logging-while-drilling data using extreme gradient boosting (XGBoost)
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2020.103416
– volume: 102
  start-page: 557
  year: 2019
  ident: ref_53
  article-title: Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin, China
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2019.01.014
– volume: 46
  start-page: 786
  year: 2019
  ident: ref_86
  article-title: Controlling factors of remaining oil distribution after water flooding and enhanced oil recovery methods for fracture-cavity carbonate reservoirs in Tahe Oilfield
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(19)60236-3
– volume: 42
  start-page: 277
  year: 2015
  ident: ref_16
  article-title: A reserve calculation method for fracture-cavity carbonate reservoirs in Tarim Basin, NW China
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(15)30017-3
– volume: 152
  start-page: 111399
  year: 2021
  ident: ref_85
  article-title: Predicting the trend of indicators related to COVID-19 using the combined MLP-MC model
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111399
– volume: 73
  start-page: 469
  year: 2013
  ident: ref_49
  article-title: Prediction of buried calcite dissolution in the Ordovician carbonate reservoir of the Tahe Oilfield, NW china: Evidence from formation water
  publication-title: Geochemistry
  doi: 10.1016/j.chemer.2013.03.004
– ident: ref_28
  doi: 10.3390/w11020256
– volume: 168
  start-page: 136
  year: 2020
  ident: ref_59
  article-title: Optimization scheme for intrusion detection scheme GBDT in edge computing center
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.12.007
– volume: 194
  start-page: 107504
  year: 2020
  ident: ref_44
  article-title: Data-driven model for hydraulic fracturing design optimization: Focus on building digital database and production forecast
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107504
– volume: 75
  start-page: 192
  year: 2016
  ident: ref_27
  article-title: Application of multi-seismic attributes analysis in the study of distributary channels
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2016.04.016
– ident: ref_67
– volume: 13
  start-page: 1231
  year: 2021
  ident: ref_58
  article-title: Prediction of rockhead using a hybrid N-XGBoost machine learning framework
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2021.06.012
– volume: 2
  start-page: 375
  year: 2021
  ident: ref_72
  article-title: ResNet-50 vs VGG-19 vs Training from Scratch: A comparative analysis of the segmentation and classification of Pneumonia from chest x-ray images
  publication-title: Glob. Transit. Proc.
  doi: 10.1016/j.gltp.2021.08.027
– volume: Volume 1–3
  start-page: 546
  year: 2019
  ident: ref_78
  article-title: Performance Measures for Binary Classification
  publication-title: Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics
  doi: 10.1016/B978-0-12-809633-8.20351-8
– volume: 14
  start-page: 123
  year: 2021
  ident: ref_80
  article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2021.05.004
– volume: 43
  start-page: 1031
  year: 2021
  ident: ref_8
  article-title: Genetic mechanism of inner reservoirs of Yingshan Formation of Middle-Lower Ordovician in Tahe Oil Field, Tarim Basin
  publication-title: Pet. Geol. Exp.
– volume: 69
  start-page: 53
  year: 2016
  ident: ref_26
  article-title: Multi-layered Ordovician paleokarst reservoir detection and spatial delineation: A case study in the Tahe Oilfield, Tarim Basin, Western China
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2015.10.015
– ident: ref_29
  doi: 10.3390/w12061765
– volume: 193
  start-page: 105434
  year: 2020
  ident: ref_76
  article-title: Random Balance ensembles for multiclass imbalance learning
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.105434
– ident: ref_81
  doi: 10.1016/j.ssci.2019.05.046
– volume: 31
  start-page: 24
  year: 2018
  ident: ref_60
  article-title: Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning
  publication-title: Electron. Commer. Res. Appl.
  doi: 10.1016/j.elerap.2018.08.002
– volume: 25
  start-page: 100209
  year: 2021
  ident: ref_1
  article-title: Mechanical behavior of carbonate reservoirs with single karst cavities
  publication-title: Geomech. Energy Environ.
  doi: 10.1016/j.gete.2020.100209
– volume: 84
  start-page: B59
  year: 2019
  ident: ref_25
  article-title: Identification of fractured carbonate vuggy reservoirs in the S48 well area using 3D 3C seismic technique: A case history from the Tarim Basin
  publication-title: Geophysics
  doi: 10.1190/geo2017-0776.1
– volume: 11
  start-page: 3889
  year: 2021
  ident: ref_7
  article-title: Research progress and prospect of Ordovician carbonate rocks in Tahe oilfield: Karst feature
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-021-01268-1
– ident: ref_75
  doi: 10.1007/978-3-030-67670-4_36
– volume: 29
  start-page: 2257
  year: 2020
  ident: ref_35
  article-title: A novel hybrid technique of integrating gradient-boosted machine and clustering algorithms for lithology classification
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09576-4
– volume: 188
  start-page: 106937
  year: 2020
  ident: ref_41
  article-title: Predictive model for water absorption in sublayers using a Joint Distribution Adaption based XGBoost transfer learning method
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.106937
– volume: 106
  start-page: 102289
  year: 2021
  ident: ref_65
  article-title: A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102289
– volume: 7
  start-page: 888
  year: 2021
  ident: ref_83
  article-title: Short term solar irradiance forecasting using sky images based on a hybrid CNN–MLP model
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.07.053
– volume: 48
  start-page: 354
  year: 2021
  ident: ref_54
  article-title: Formation of hoodoo-upland on Ordovician karst slope and its significance in petroleum geology in Tahe area, Tarim Basin, NW China
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(21)60028-9
– volume: 64
  start-page: 205
  year: 2020
  ident: ref_63
  article-title: A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.07.007
– ident: ref_3
  doi: 10.3390/en12010078
– volume: 74
  start-page: 634
  year: 2019
  ident: ref_55
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.10.036
– volume: 31
  start-page: 743
  year: 2010
  ident: ref_15
  article-title: Controls on reservoir formation in Ordovician of Tahe oilfield, Tarim basin, and combinational genetic mechanism
  publication-title: Oil Gas Geol.
– volume: 91
  start-page: 103962
  year: 2021
  ident: ref_42
  article-title: A novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction
  publication-title: J. Nat. Gas. Sci. Eng.
  doi: 10.1016/j.jngse.2021.103962
– volume: 574
  start-page: 1029
  year: 2019
  ident: ref_70
  article-title: Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.04.085
SSID ssj0000331333
Score 2.348056
Snippet The precise characterization of geological bodies in fracture-vuggy carbonates is challenging due to their high complexity and heterogeneous distribution. This...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 643
SubjectTerms Accuracy
Algorithms
Caves
Classification
Datasets
Decision trees
Enhanced oil recovery
fracture-vuggy carbonate reservoir
Geology
gradient-boosting decision trees (GBDT)
Hydrocarbons
karst cavities
Machine learning
Neural networks
Reservoirs
Software
Tahe oilfield
uncertainty
Visual Geometry Group 16 pre-trained (VGG-16)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPMXSgizBgUqNmtjOi1u3y7aAoAcW6C3ycxtpN0FOdiX-Kz-GGScti0Diwi2JRrGVmczLM98Q8jKLc2aKREdOcMxW5SwqnTKRix1TsjQ6YdiN_OFjdv5ZvLtML3dGfWFN2AAPPHy4Y27ixDqmZWljIWOhCq2kTEor8UQqVqh9webtBFNBB3MOwRcf8Eg5xPXHtkkycI0ywX-zQAGo_w89HIzL_B65O3qF9GTYzX1yyzYPyJ0drMCH5MfQUuvGHBttHX0PQWlPT-U2oKJS7BShbEY_2bpb15p-lVtL34JbbJCzcAWqo6NTMFuGwgvOfKj26qNp23ZY_Exn47wduvAWKE9Wy9bX_dW6o6_OprPF4WtYq7O48oU37TYkROgc26w23kZfNsvld6DwChPylmJNn9-2tT-iC3ll6UW9CuVyeOvrNW6kbo5oGOD9iCzmbxan59E4miHSPEv6yBjtcs5MkmWg7NHxy8rSiFQIEAmTa5bbEKtliRRauVxJK11hTFI4xZnij8le0zb2CaEutUwZ0DoiKYVIy0IaBz5bwSGQEikTE3J4za1Kj7DlOD1jVUH4gpytfnF2Ql7c0H4bwDr-SjVFpt9QIMB2eABiV41iV_1L7Cbk4FpkqvGv7yqWZzkOSk_F0_-xxj65jcPth4TPAdnr_cY-AxeoV8-DtP8EBFYHJg
  priority: 102
  providerName: Directory of Open Access Journals
Title Identification of Karst Cavities from 2D Seismic Wave Impedance Images Based on Gradient-Boosting Decision Trees Algorithms (GBDT): Case of Ordovician Fracture-Vuggy Carbonate Reservoir, Tahe Oilfield, Tarim Basin, China
URI https://www.proquest.com/docview/2767214654
https://doaj.org/article/3d01ef2ca9e04a04b8cbaa19ea39790b
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7RVEhwQFBADZRoJThQqVa9D7-4oKZpUkC0CALkZu0ztZTExXYi9b_yY5jdOCkIxMXyY-S1POvZmc8z8yH0Kg4TqlOiAsuZQ6sSGmRW6sCGlkqRaUWoq0b-eBGff-XvJ9GkBdzqNq1yYxO9odalchj5MU3ixJFQR_zt9Y_AsUa5v6sthcYO2gUTnKYdtNs_u_j0eYuyhIxBEMbWfUkZxPfHZkFicJFizv5YiXzD_r_ssV9khg_Rg9Y7xCdrdT5Cd8xiD93_rWfgHro78ly8N4_Rz3WRrW1RN1xa_AHC1AafipXvk4pd7QimA_zFFPW8UPi7WBn8Dhxl7XQNe2BMatyHhUxjuMGo8vlfTdAvy9qlQ-NBy8CDx5UByZPZFF5JczWv8etRfzA-fANj1caNfFnpcuUhEjx0hVfLygTfltPpDUhU0kH0Brssv2pVFtURHosrgy-LmU-gc4dVMXcPUiyOsKf0foLGw7Px6XnQkjUEisWkCbRWNmFUkzgG8-9cwTjLNI84h0miE0UT46O3mAiupE2kMMKmWpPUSkYle4o6i3Jh9hG2kaFSgx3iJOM8ylKhLXhxKYPQikeUd9HhRm-5ahuZOz6NWQ4BjdNxfqvjLnq5lb1et-_4p1TfqX8r4Vpu-xNlNc3bLzhnOiTGUiUyE3IRcpkqKQTJjHC_RkPZRQebyZO3dqDOb2fts_9ffo7uOSL7NbhzgDpNtTQvwN1pZA_tpMNRr53ZPQ8awHY0Ib8ARGYEug
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEQIOCAqIhQKWAIlKjZrYzgsJoW6XfdDXgRR6i-zY3kba3ZQku2h_FP-IH8PYyW5BIG695TGyk8xkPDOemQ-h14EbEhl5maMZNdGqkDixFtLRriaCxzLziKlGPj4Jhmfs07l_voF-rGphTFrlSidaRS2LzMTI90gYhAaE2mcfLr85BjXK7K6uIDQasThUy-_gslXvRz3g7xtC-h-Tg6HTogo4GQ282pEy0yEl0gsC0FPGZgniWDKfMXgbGWYkVNbNCDzOMqFDwRXXkZRepAUlgsKwN9BNRmEhN4Xp_cE6pONSCh4fbZqgwn13T828AOyxgNE_lj2LDvCX8rcrWv8-uteaoni_kZ0HaEPNttDd3xoUbqFbAwv8u3yIfjYVvboN8eFC40PwiWt8wBe2KSs2hSqY9PBnlVfTPMNf-ULhEVjl0ggWHIHmqnAXVk2JYYBBaZPNaqdbFJXJvca9Fu4HJ6UCyv3JGL5_fTGt8NtBt5fsvIO5KmVmPi1lsbDxGNw3VV7zUjlf5uPxEihKYfYDFDYpheWiyMtdnPALhU_zic3WM6dlPjUPks92scUPf4SS6-DhY7Q5K2bqCcLaV0RIUHrMixnz44hLDSZjRMGPYz5hHbSz4luatV3TDXjHJAXvyfA4veJxB71a0142vUL-SdU17F9TmP7e9kJRjtNWXaRUup7SJOOxchl3mYgywbkXK272YV3RQdsr4UlbpVOlV7_I0__ffoluD5Pjo_RodHL4DN0hYLc1UaVttFmXc_Uc7KxavLDSjVF6zX_TLw4hPiQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJxA8IBggCgMsARKTFjWxnX9ICK3r2pVCN0GAvUV2bHeR2mYkaVE_Gt-FD8M5STsQiLe95c_JTnTn89357n4IvfBsn8jASSzNqIlW-cQKtZCWtjURPJSJQ0w18oexd_yZvTtzz7bQj3UtjEmrXOvESlHLLDEx8g7xPd-AULuso5u0iNNe_-3FN8sgSJmT1jWcRi0iI7X6Du5b8WbYA16_JKR_FB0eWw3CgJVQzyktKRPtUyIdzwOdZewXLwwlcxmDP5N-QnxVuRyew1kitC-44jqQ0gm0oERQGPYa2vaNU9RC292j8enHTYDHphT8P1q3RKU0tDtq7nhgnXmM_rEJVlgBf20F1f7Wv4NuN4YpPqgl6S7aUvMddOu3doU76PqgggFe3UM_6_pe3QT8cKbxCDzkEh_yZdWiFZuyFUx6-JNKi1ma4K98qfAQbHRpxAyuQI8VuAt7qMQwwCCvUs9Kq5tlhcnExr0G_AdHuQLKg-kEOFCezwr8atDtRXuvYa5CmZlPcpktq-gM7puar0WurC-LyWQFFLkwpwMKmwTDfJml-T6O-LnCJ-m0yt0zt3k6Mx-SzvdxhSZ-H0VXwcUHqDXP5uohwtpVREhQgcwJGXPDgEsNBmRAwatjLmFttLfmW5w0PdQNlMc0Bl_K8Di-5HEbPd_QXtSdQ_5J1TXs31CYbt_VgyyfxI3yiKm0HaVJwkNlM24zESSCcydU3JzK2qKNdtfCEzcqqIgvF8yj_79-hm7ASorfD8ejx-gmASOuDjHtolaZL9QTMLpK8bQRb4ziK15QvwDmREO2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Karst+Cavities+from+2D+Seismic+Wave+Impedance+Images+Based+on+Gradient-Boosting+Decision+Trees+Algorithms+%28GBDT%29%3A+Case+of+Ordovician+Fracture-Vuggy+Carbonate+Reservoir%2C+Tahe+Oilfield%2C+Tarim+Basin%2C+China&rft.jtitle=Energies+%28Basel%29&rft.au=Allou+Koffi+Franck+Kouassi&rft.au=Pan%2C+Lin&rft.au=Wang%2C+Xiao&rft.au=Wang%2C+Zhangheng&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=16&rft.issue=2&rft.spage=643&rft_id=info:doi/10.3390%2Fen16020643&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon