Monitoring and Mapping Vineyard Water Status Using Non-Invasive Technologies by a Ground Robot
There is a growing need to provide support and applicable tools to farmers and the agro-industry in order to move from their traditional water status monitoring and high-water-demand cropping and irrigation practices to modern, more precise, reduced-demand systems and technologies. In precision viti...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 14; p. 2830 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a growing need to provide support and applicable tools to farmers and the agro-industry in order to move from their traditional water status monitoring and high-water-demand cropping and irrigation practices to modern, more precise, reduced-demand systems and technologies. In precision viticulture, very few approaches with ground robots have served as moving platforms for carrying non-invasive sensors to deliver field maps that help growers in decision making. The goal of this work is to demonstrate the capability of the VineScout (developed in the context of a H2020 EU project), a ground robot designed to assess and map vineyard water status using thermal infrared radiometry in commercial vineyards. The trials were carried out in Douro Superior (Portugal) under different irrigation treatments during seasons 2019 and 2020. Grapevines of Vitis vinifera L. Touriga Nacional were monitored at different timings of the day using leaf water potential (Ψl) as reference indicators of plant water status. Grapevines’ canopy temperature (Tc) values, recorded with an infrared radiometer, as well as data acquired with an environmental sensor (Tair, RH, and AP) and NDVI measurements collected with a multispectral sensor were automatically saved in the computer of the autonomous robot to assess and map the spatial variability of a commercial vineyard water status. Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.57 in the morning time and a r2cv of 0.42 in the midday. The root mean square error of cross-validation (RMSEcv) was 0.191 MPa and 0.139 MPa at morning and midday, respectively. Spatial–temporal variation maps were developed at two different times of the day to illustrate the capability to monitor the grapevine water status in order to reduce the consumption of water, implementing appropriate irrigation strategies and increase the efficiency in the real time vineyard management. The promising outcomes gathered with the VineScout using different sensors based on thermography, multispectral imaging and environmental data disclose the need for further studies considering new variables related with the plant water status, and more grapevine cultivars, seasons and locations to improve the accuracy, robustness and reliability of the predictive models, in the context of precision and sustainable viticulture. |
---|---|
AbstractList | There is a growing need to provide support and applicable tools to farmers and the agro-industry in order to move from their traditional water status monitoring and high-water-demand cropping and irrigation practices to modern, more precise, reduced-demand systems and technologies. In precision viticulture, very few approaches with ground robots have served as moving platforms for carrying non-invasive sensors to deliver field maps that help growers in decision making. The goal of this work is to demonstrate the capability of the VineScout (developed in the context of a H2020 EU project), a ground robot designed to assess and map vineyard water status using thermal infrared radiometry in commercial vineyards. The trials were carried out in Douro Superior (Portugal) under different irrigation treatments during seasons 2019 and 2020. Grapevines of Vitis vinifera L. Touriga Nacional were monitored at different timings of the day using leaf water potential (Ψl) as reference indicators of plant water status. Grapevines’ canopy temperature (Tc) values, recorded with an infrared radiometer, as well as data acquired with an environmental sensor (Tair, RH, and AP) and NDVI measurements collected with a multispectral sensor were automatically saved in the computer of the autonomous robot to assess and map the spatial variability of a commercial vineyard water status. Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.57 in the morning time and a r2cv of 0.42 in the midday. The root mean square error of cross-validation (RMSEcv) was 0.191 MPa and 0.139 MPa at morning and midday, respectively. Spatial–temporal variation maps were developed at two different times of the day to illustrate the capability to monitor the grapevine water status in order to reduce the consumption of water, implementing appropriate irrigation strategies and increase the efficiency in the real time vineyard management. The promising outcomes gathered with the VineScout using different sensors based on thermography, multispectral imaging and environmental data disclose the need for further studies considering new variables related with the plant water status, and more grapevine cultivars, seasons and locations to improve the accuracy, robustness and reliability of the predictive models, in the context of precision and sustainable viticulture. |
Author | Diago, María Paz Fernández-Novales, Juan Rovira-Más, Francisco Tardaguila, Javier Saiz-Rubio, Verónica Cuenca-Cuenca, Andrés Santos Alves, Fernando Barrio, Ignacio Valente, Joana |
Author_xml | – sequence: 1 givenname: Juan surname: Fernández-Novales fullname: Fernández-Novales, Juan – sequence: 2 givenname: Verónica orcidid: 0000-0003-4188-3666 surname: Saiz-Rubio fullname: Saiz-Rubio, Verónica – sequence: 3 givenname: Ignacio surname: Barrio fullname: Barrio, Ignacio – sequence: 4 givenname: Francisco orcidid: 0000-0002-2589-9281 surname: Rovira-Más fullname: Rovira-Más, Francisco – sequence: 5 givenname: Andrés surname: Cuenca-Cuenca fullname: Cuenca-Cuenca, Andrés – sequence: 6 givenname: Fernando surname: Santos Alves fullname: Santos Alves, Fernando – sequence: 7 givenname: Joana surname: Valente fullname: Valente, Joana – sequence: 8 givenname: Javier orcidid: 0000-0002-6639-8723 surname: Tardaguila fullname: Tardaguila, Javier – sequence: 9 givenname: María Paz surname: Diago fullname: Diago, María Paz |
BookMark | eNpNUcFKAzEUDFLBWnvxCwLehNVsXrZJjlK0FloFbfVmyO5m65aarEm20L93a0V9lze8GWYezCnqWWcNQucpuQKQ5NqHFFJGBZAj1KeE04RRSXv_8AkahrAm3QCkkrA-eps7W0fna7vC2pZ4rptmj19qa3bal_hVR-Pxc9SxDXgZ9tyDs8nUbnWotwYvTPFu3catahNwvsMaT7xrO6cnl7t4ho4rvQlm-LMHaHl3uxjfJ7PHyXR8M0sKGKUxKcusqiglwKsiK2Wej4BWqckZcAMZB8YEpCQHTlnGmNRaEEpNTrgAQQTlMEDTg2_p9Fo1vv7QfqecrtX3wfmV0j7WxcYoybiEQtCsygQTssipMWUXxEouRcd0XhcHr8a7z9aEqNau9bZ7X9EsY3xEhGCd6vKgKrwLwZvqNzUlal-H-qsDvgBrrXwU |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e16322 crossref_primary_10_17660_ActaHortic_2024_1390_33 crossref_primary_10_1002_rob_22179 crossref_primary_10_1016_j_atech_2021_100005 crossref_primary_10_1016_j_robot_2023_104514 crossref_primary_10_3389_fhort_2023_1282615 crossref_primary_10_1016_j_eja_2022_126586 crossref_primary_10_1093_icb_icae073 crossref_primary_10_3390_plants12244142 crossref_primary_10_1016_j_atech_2023_100344 crossref_primary_10_3390_agriengineering4030043 crossref_primary_10_1016_j_dcan_2023_05_006 crossref_primary_10_3390_agronomy12030555 crossref_primary_10_1016_j_biosystemseng_2022_05_007 crossref_primary_10_48077_scihor1_2024_127 crossref_primary_10_34133_2022_9760269 crossref_primary_10_3390_app13042436 crossref_primary_10_3390_su14073949 crossref_primary_10_1002_rob_22194 crossref_primary_10_48077_scihor9_2023_167 crossref_primary_10_3390_agriculture12101695 |
Cites_doi | 10.1093/jxb/ers165 10.1007/s00271-005-0015-7 10.3390/s20123596 10.1111/nph.12912 10.1371/journal.pone.0192037 10.21273/JASHS.127.3.448 10.20870/oeno-one.2009.43.3.798 10.1007/s11119-008-9073-1 10.21273/HORTSCI.43.2.333 10.1016/j.agwat.2020.106070 10.1016/S0168-1923(99)00030-1 10.1016/j.compag.2020.105678 10.1007/s11119-020-09768-6 10.1093/jxb/erf083 10.1109/JSEN.2020.3016081 10.1007/s00271-012-0382-9 10.1016/j.agwat.2014.10.017 10.1093/jxb/erh213 10.1080/14620316.2015.1110991 10.1016/j.agwat.2016.05.008 10.1016/j.scienta.2015.03.012 10.1016/j.agwat.2018.06.001 10.3390/agronomy10020207 10.1111/j.1755-0238.2004.tb00006.x 10.1146/annurev-control-053018-023617 10.1111/j.1755-0238.2005.tb00277.x 10.1111/ajgw.12173 10.1007/s00271-009-0150-7 10.1080/014311697217396 10.3390/rs8100822 10.13031/2013.8855 10.1007/s11119-009-9111-7 10.1016/0003-2670(86)80028-9 10.1016/j.agwat.2015.06.001 10.3390/s16122136 10.1016/j.agwat.2018.06.002 10.1016/j.biosystemseng.2019.01.002 10.1111/pce.13923 10.1007/s11119-016-9484-3 10.1016/j.agwat.2010.01.025 10.1016/0002-1571(81)90032-7 10.1007/978-3-319-70833-1_21 10.1071/FP11156 10.3389/fpls.2020.00705 10.1016/j.agrformet.2005.07.010 10.1061/(ASCE)0733-9437(2008)134:3(286) 10.1016/j.fcr.2012.10.013 10.1016/j.scienta.2019.108825 10.1007/s11119-016-9489-y 10.1016/j.agwat.2006.05.021 10.1016/j.agwat.2010.03.012 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs13142830 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Earth, Atmospheric & Aquatic Science Database ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Agriculture |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_94793c825f58489cb2eed4374d79893c 10_3390_rs13142830 |
GeographicLocations | Portugal Germany |
GeographicLocations_xml | – name: Germany – name: Portugal |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c361t-dd5ff22037fc5d9bb632f1eb437e3573448310b37245449aa8022eb0783808273 |
IEDL.DBID | 8FG |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:13:37 EDT 2024 Sat Nov 09 14:08:14 EST 2024 Thu Sep 26 21:18:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-dd5ff22037fc5d9bb632f1eb437e3573448310b37245449aa8022eb0783808273 |
ORCID | 0000-0002-6639-8723 0000-0003-4188-3666 0000-0002-2589-9281 |
OpenAccessLink | https://www.proquest.com/docview/2554760884?pq-origsite=%requestingapplication% |
PQID | 2554760884 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_94793c825f58489cb2eed4374d79893c proquest_journals_2554760884 crossref_primary_10_3390_rs13142830 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Rouse (ref_26) 1974; 351 Williams (ref_31) 2002; 127 Evett (ref_42) 2015; 159 Pinol (ref_27) 1997; 18 ref_14 Williams (ref_25) 2005; 132 Evett (ref_51) 2010; 97 Costa (ref_17) 2019; 216 Sebastian (ref_34) 2015; 148 Volder (ref_55) 2020; 233 Petrie (ref_15) 2019; 179 Tisseyre (ref_12) 2008; 9 ref_18 Sadler (ref_48) 2002; 45 Fuentes (ref_9) 2010; 97 Trout (ref_24) 2008; 43 Baluja (ref_16) 2012; 30 Jones (ref_13) 2002; 53 Berni (ref_58) 2012; 154 Leeuwen (ref_40) 2009; 43 ref_23 Dayer (ref_36) 2020; 11 ref_22 Girona (ref_32) 2006; 24 Bramley (ref_7) 2004; 10 ref_29 Falkenberg (ref_49) 2007; 87 Sadler (ref_41) 2005; 60 Costa (ref_45) 2016; 176 Peters (ref_50) 2008; 134 Alchanatis (ref_62) 2010; 11 Liu (ref_19) 2020; 177 Idso (ref_53) 1981; 24 Bellvert (ref_56) 2016; 22 Agam (ref_61) 2009; 27 Grant (ref_60) 2016; 91 Jones (ref_54) 1999; 95 ref_39 ref_38 Marabel (ref_28) 2015; 188 Dayer (ref_35) 2021; 44 Intrigliolo (ref_46) 2021; 22 Poyatos (ref_59) 2014; 204 Bailey (ref_21) 2020; 259 Vougioukas (ref_1) 2019; 2 ref_47 ref_44 Maes (ref_20) 2012; 63 ref_43 Rubio (ref_52) 2018; 208 Williams (ref_33) 2012; 46 Jones (ref_11) 2004; 55 ref_3 Cohen (ref_10) 2017; 18 ref_2 Ecarnot (ref_30) 2013; 140 Bramley (ref_8) 2005; 11 ref_5 Geladi (ref_37) 1986; 185 ref_4 Costa (ref_57) 2012; 39 ref_6 |
References_xml | – volume: 63 start-page: 4671 year: 2012 ident: ref_20 article-title: Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers165 contributor: fullname: Maes – volume: 24 start-page: 115 year: 2006 ident: ref_32 article-title: The use of midday leaf water potential for scheduling deficit irrigation in vineyards publication-title: Irrig. Sci. doi: 10.1007/s00271-005-0015-7 contributor: fullname: Girona – ident: ref_14 doi: 10.3390/s20123596 – volume: 204 start-page: 105 year: 2014 ident: ref_59 article-title: A new look at water transport regulation in plants publication-title: New Phytol. doi: 10.1111/nph.12912 contributor: fullname: Poyatos – ident: ref_18 doi: 10.1371/journal.pone.0192037 – volume: 127 start-page: 448 year: 2002 ident: ref_31 article-title: Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/JASHS.127.3.448 contributor: fullname: Williams – volume: 43 start-page: 121 year: 2009 ident: ref_40 article-title: Vine water status is a key factor in grape ripening and vintage quality for red bordeaux wine. How can it be assessed for vineyard management purposes? publication-title: OENO One doi: 10.20870/oeno-one.2009.43.3.798 contributor: fullname: Leeuwen – ident: ref_39 – volume: 9 start-page: 285 year: 2008 ident: ref_12 article-title: The potential of high spatial resolution information to define within-vineyard zones related to vine water status publication-title: Precis. Agric. doi: 10.1007/s11119-008-9073-1 contributor: fullname: Tisseyre – volume: 43 start-page: 333 year: 2008 ident: ref_24 article-title: Remote sensing of canopy cover in horticultural crops publication-title: HortScience doi: 10.21273/HORTSCI.43.2.333 contributor: fullname: Trout – volume: 233 start-page: 106070 year: 2020 ident: ref_55 article-title: Modeling of reference temperatures for calculating crop water stress indices from infrared thermography publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106070 contributor: fullname: Volder – volume: 95 start-page: 139 year: 1999 ident: ref_54 article-title: Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(99)00030-1 contributor: fullname: Jones – volume: 177 start-page: 105678 year: 2020 ident: ref_19 article-title: Recognition method of thermal infrared images of plant canopies based on the characteristic registration of heterogeneous images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105678 contributor: fullname: Liu – volume: 22 start-page: 964 year: 2021 ident: ref_46 article-title: Normalization of the crop water stress index to assess the within-field spatial variability of water stress sensitivity publication-title: Precis. Agric. doi: 10.1007/s11119-020-09768-6 contributor: fullname: Intrigliolo – volume: 53 start-page: 2249 year: 2002 ident: ref_13 article-title: Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine publication-title: J. Exp. Bot. doi: 10.1093/jxb/erf083 contributor: fullname: Jones – volume: 154 start-page: 156 year: 2012 ident: ref_58 article-title: Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent publication-title: Agric. For. Meteorol. contributor: fullname: Berni – ident: ref_23 doi: 10.1109/JSEN.2020.3016081 – ident: ref_4 – volume: 30 start-page: 511 year: 2012 ident: ref_16 article-title: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV) publication-title: Irrig. Sci. doi: 10.1007/s00271-012-0382-9 contributor: fullname: Baluja – volume: 148 start-page: 269 year: 2015 ident: ref_34 article-title: Response of grapevine cv. Syrah to irrigation frequency and water distribution pattern in a clay soil publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2014.10.017 contributor: fullname: Sebastian – volume: 60 start-page: 371 year: 2005 ident: ref_41 article-title: Opportunities for conservation with precision irrigation publication-title: J. Soil Water Conserv. contributor: fullname: Sadler – volume: 55 start-page: 2427 year: 2004 ident: ref_11 article-title: Irrigation scheduling: Advantages and pitfalls of plant-based methods publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh213 contributor: fullname: Jones – ident: ref_38 – volume: 91 start-page: 43 year: 2016 ident: ref_60 article-title: Thermal imaging to detect spatial and temporal variation in the water status of grapevine (Vitis vinifera L.) publication-title: J. Hortic. Sci. Biotechnol. doi: 10.1080/14620316.2015.1110991 contributor: fullname: Grant – volume: 176 start-page: 80 year: 2016 ident: ref_45 article-title: Thermal data to monitor crop-water status in irrigated Mediterranean viticulture publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2016.05.008 contributor: fullname: Costa – volume: 188 start-page: 15 year: 2015 ident: ref_28 article-title: Spectroscopic estimation of leaf water content in commercial vineyards using continuum removal and partial least squares regression publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.03.012 contributor: fullname: Marabel – volume: 216 start-page: 484 year: 2019 ident: ref_17 article-title: Canopy and soil thermal patterns to support water and heat stress management in vineyards publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.06.001 contributor: fullname: Costa – ident: ref_2 doi: 10.3390/agronomy10020207 – volume: 10 start-page: 32 year: 2004 ident: ref_7 article-title: Understanding variability in winegrape production systems: 1. Within vineyard variation in yield over several vintages publication-title: Aust. J. Grape Wine Res. doi: 10.1111/j.1755-0238.2004.tb00006.x contributor: fullname: Bramley – volume: 2 start-page: 365 year: 2019 ident: ref_1 article-title: Agricultural robotics publication-title: Annu. Rev. Control. Robot. Auton. Syst. doi: 10.1146/annurev-control-053018-023617 contributor: fullname: Vougioukas – volume: 351 start-page: 309 year: 1974 ident: ref_26 article-title: Monitoring vegetation systems in the Great Plains with ERTS publication-title: NASA Spec. Publ. contributor: fullname: Rouse – ident: ref_3 – volume: 11 start-page: 33 year: 2005 ident: ref_8 article-title: Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages publication-title: Aust. J. Grape Wine Res. doi: 10.1111/j.1755-0238.2005.tb00277.x contributor: fullname: Bramley – volume: 22 start-page: 307 year: 2016 ident: ref_56 article-title: Vineyard irrigation scheduling based on airborne thermal imagery and water potential thresholds publication-title: Aust. J. Grape Wine Res. doi: 10.1111/ajgw.12173 contributor: fullname: Bellvert – volume: 27 start-page: 367 year: 2009 ident: ref_61 article-title: Evaluating water stress in irrigated olives: Correlation of soil water status, tree water status, and thermal imagery publication-title: Irrig. Sci. doi: 10.1007/s00271-009-0150-7 contributor: fullname: Agam – volume: 18 start-page: 2869 year: 1997 ident: ref_27 article-title: Estimation of plant water concentration by the reflectance water index WI (R900/R970) publication-title: Int. J. Remote Sens. doi: 10.1080/014311697217396 contributor: fullname: Pinol – ident: ref_47 doi: 10.3390/rs8100822 – volume: 45 start-page: 581 year: 2002 ident: ref_48 article-title: Corn canopy temperatures measured with a moving infrared thermometer array publication-title: Trans. ASAE doi: 10.13031/2013.8855 contributor: fullname: Sadler – volume: 11 start-page: 27 year: 2010 ident: ref_62 article-title: Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging publication-title: Precis. Agric. doi: 10.1007/s11119-009-9111-7 contributor: fullname: Alchanatis – volume: 185 start-page: 1 year: 1986 ident: ref_37 article-title: Partial least-squares regression: A tutorial publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(86)80028-9 contributor: fullname: Geladi – volume: 159 start-page: 123 year: 2015 ident: ref_42 article-title: Dynamic prescription maps for site-specific variable rate irrigation of cotton publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2015.06.001 contributor: fullname: Evett – ident: ref_5 doi: 10.3390/s16122136 – volume: 208 start-page: 176 year: 2018 ident: ref_52 article-title: Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.06.002 contributor: fullname: Rubio – volume: 179 start-page: 126 year: 2019 ident: ref_15 article-title: The accuracy and utility of a low cost thermal camera and smartphone-based system to assess grapevine water status publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.01.002 contributor: fullname: Petrie – ident: ref_44 – volume: 46 start-page: 207 year: 2012 ident: ref_33 article-title: Leaf water potentials of sunlit and/or shaded grapevine leaves are sensitive alternatives to stem water potential publication-title: J. Int. Sci. Vigne Vin contributor: fullname: Williams – volume: 44 start-page: 387 year: 2021 ident: ref_35 article-title: Nighttime transpiration represents a negligible part of water loss and does not increase the risk of water stress in grapevine publication-title: Plant. Cell Environ. doi: 10.1111/pce.13923 contributor: fullname: Dayer – volume: 18 start-page: 801 year: 2017 ident: ref_10 article-title: Mapping water status based on aerial thermal imagery: Comparison of methodologies for upscaling from a single leaf to commercial fields publication-title: Precis. Agric. doi: 10.1007/s11119-016-9484-3 contributor: fullname: Cohen – volume: 97 start-page: 956 year: 2010 ident: ref_9 article-title: Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2010.01.025 contributor: fullname: Fuentes – volume: 24 start-page: 45 year: 1981 ident: ref_53 article-title: Normalizing the stress-degree-day parameter for environmental variability publication-title: Agric. Meteorol. doi: 10.1016/0002-1571(81)90032-7 contributor: fullname: Idso – ident: ref_6 doi: 10.1007/978-3-319-70833-1_21 – volume: 39 start-page: 179 year: 2012 ident: ref_57 article-title: Grapevine varieties exhibiting differences in stomatal response to water deficit publication-title: Funct. Plant Biol. doi: 10.1071/FP11156 contributor: fullname: Costa – volume: 11 start-page: 705 year: 2020 ident: ref_36 article-title: Comparing hydraulics between two grapevine cultivars reveals differences in stomatal regulation under water stress and exogenous ABA applications publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00705 contributor: fullname: Dayer – volume: 132 start-page: 201 year: 2005 ident: ref_25 article-title: Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2005.07.010 contributor: fullname: Williams – volume: 134 start-page: 286 year: 2008 ident: ref_50 article-title: Automation of a center pivot using the temperature-time-threshold method of irrigation scheduling publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2008)134:3(286) contributor: fullname: Peters – volume: 140 start-page: 44 year: 2013 ident: ref_30 article-title: Assessing leaf nitrogen content and leaf mass per unit area of wheat in the field throughout plant cycle with a portable spectrometer publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2012.10.013 contributor: fullname: Ecarnot – volume: 259 start-page: 108825 year: 2020 ident: ref_21 article-title: Sensitivity analysis of four crop water stress indices to ambient environmental conditions and stomatal conductance publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2019.108825 contributor: fullname: Bailey – ident: ref_43 – ident: ref_22 – ident: ref_29 doi: 10.1007/s11119-016-9489-y – volume: 87 start-page: 23 year: 2007 ident: ref_49 article-title: Remote sensing of biotic and abiotic stress for irrigation management of cotton publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2006.05.021 contributor: fullname: Falkenberg – volume: 97 start-page: 1310 year: 2010 ident: ref_51 article-title: Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2010.03.012 contributor: fullname: Evett |
SSID | ssj0000331904 |
Score | 2.4413044 |
Snippet | There is a growing need to provide support and applicable tools to farmers and the agro-industry in order to move from their traditional water status... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2830 |
SubjectTerms | Agricultural industry Agricultural production agricultural robotics Agriculture Automation Cameras chemometrics Context Cultivars Data acquisition Decision making Grapevines Infrared radiometers Irrigation Irrigation practices Irrigation water Leaves Mapping non-invasive proximal sensing precision viticulture Prediction models Radiometry Regression analysis Remote sensing Robotics Robots Sensors Temporal variations Thermography Vineyards Viticulture Water consumption Water monitoring Water potential water stress Wineries & vineyards |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF1gQn6JQkCVYoya2E8cjIKqC1A6IQiesXOzAlKA2Req_5-ykpYiBhTWKkujOd_fe5fxMyBVXseEmLDCQwDhR7RRjzpoATBRbrGhRlriNwqNxMpyIh2k83Tjqy82ENfLAjeH6yrV-cuQxBZbKVOXAMKsLLoWRCmtt7rNvqDbIlM_BHJdWKBo9Uo68vj-bR9yri4U_KpAX6v-Vh31xGeyR3RYV0uvma_bJli0PyHZ7QPn78pC8NrHnmnAUuT8dZU5X4Y0-I0hcopPpC2LGGXXQcTGnfg6AjqsyuC8_MzegTtctdGTGFJY0o67rhE96rKCqj8hkcPd0OwzaoxGCnCdRHRgTFwVjIZdFHhsFkHBWRBbQMJbHkiPpQtwGXDI0v1BZ5nbUWnD_7FIs-pIfk05ZlfaEUJuJWEIElhklBDDIJXoIYZxhUIBKu-RyZS790ShgaGQOzqj626hdcuMsub7DqVb7C-hL3fpS_-XLLumt_KDbUJpr5DxCJpgMxel_vOOM7DA3luInbnukU88W9hxxRQ0Xfgl9ASMZyTY priority: 102 providerName: Directory of Open Access Journals |
Title | Monitoring and Mapping Vineyard Water Status Using Non-Invasive Technologies by a Ground Robot |
URI | https://www.proquest.com/docview/2554760884 https://doaj.org/article/94793c825f58489cb2eed4374d79893c |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1ROLQ9VEBBXQorS_QakdhOnJwqqFg-JFYIlY8TUSZ2tqeEZhek_fed8XoXoUpckyiKZjyeNy_jNwA_VJFaZeOGAgkti2rnFHPORmiT1FFGS6qMDwpfjbPzW335kD4Ewm0a2iqXe6LfqG1XM0d-RNBXm4xiQv98-hvx1Cj-uxpGaHyAjUQaw8VXPjpbcSyxogUW64UqqaLq_qifJsprjMVv8pCX6_9vN_YpZrQJXwI2FMcLZ27Bmmu34fPxpA_6GG4bPoah5X_mX-FxEY9MzImqteKqYq2Fibgj4Dgnx4t7wpG9YDj5PBW-N0CMuza6aF8qbloXK1qdqmWBc1EJZqLoTTcddrMduB2d_v51HoVxCVGtsmQWWZs2jZSxMk2d2gIxU7JJHGplnEqNokKMsBwqI8kluqgqPmXrkP_j5QQEjNqF9bZr3TcQrtKpwQSdtIXWKLE25DWCdlZig0U-gMOl8cqnhSpGSdUEm7h8NfEATtiuqydYydpf6PpJGQKjLJjaq6lObQgK5UWNkrI2fbK2piAsVQ9gf-mVMoTXtHxdDHvv3_4OnyQ3ofj-2n1Yn_XP7oBQxAyHfqkMYePkdHx9M_S1-D9bkMit |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9tAEB215EA5oPIl0lJYCa4W9u7aG58qQEEJTSKE-DrV8njX4WRTJ1TKv--MswmqKvVqW5Y1s7Pz5nn2DcCZSmOrbFhSIKFlUe0exZyzAdoodpTRojzhg8LjSTJ40DfP8bMn3Ga-rXK1J7Ybta0L5sjPCfpqk1BM6O-vvwKeGsV_V_0IjY_QYakqKr46l_3J7d2aZQkVLbFQL3VJFdX3580sUq3KWPhXJmoF-__Zj9skc_0Ztj06FBdLd-7AB1ftwtbFtPEKGW4XNv3Y8pfFHvxcRiRTcyKvrBjnrLYwFY8EHRfkevFESLIRDCjfZqLtDhCTugqG1e-c29bFmlinelngQuSCuSh6012N9XwfHq7791eDwA9MCAqVRPPA2rgspQyVKYvYpoiJkmXkUCvjVGwUlWKE5lAZSU7RaZ7zOVuH_CevR1DAqAPYqOrKHYJwuY4NRuikTbVGiYUhvxG4sxJLTHtdOF0ZL3td6mJkVE-wibN3E3fhku26foK1rNsLdTPNfGhkKZN7BVWqJYGhXlqgpLxNn6ytSQlNFV04Wnkl8wE2y96Xw5f_3z6BzcH9eJSNhpMfX-GT5JaUttv2CDbmzZv7Rphijsd-4fwBTELKbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6VIPE4VOWlBmi7Unu1Yu-uvfEJASWCFiKEeJ2wPN51erLBCUj598w4myCE1Kttrax57HwzO_sNwC-VxlbZsCRHQsuk2n3yOWcDtFHsKKJFecIXhS-GyemN_nMf3_v-p7Fvq5zvie1GbeuCa-Q9gr7aJOQTulf6tojL34ODx6eAJ0jxSasfp7EEy0YnKuzA8tHJ8PJqUXEJFZlbqGccpYpy_V4zjlTLOBa-i0otef-HvbkNOIMv8NkjRXE4U-0GfHLVJqwfjhrPluE2YdWPMP833YKHmXdymU7klRUXOTMvjMQtwcgpmYG4I1TZCAaXz2PRdgqIYV0FZ9VLzi3sYlFkp9xZ4FTkgutStNJVjfVkG24GJ9fHp4EfnhAUKokmgbVxWUoZKlMWsU0REyXLyKFWxqnYKErLCNmhMpIUpNM85zu3DvlUr0-wwKgd6FR15b6CcLmODUbopE21RomFIR0S0LMSS0z7Xfg5F172OOPIyCi3YBFnbyLuwhHLdfEF81q3D-pmlHk3yVIu9BWUtZYEjPppgZJiOP2ytiYlZFV0YX-ulcw72zh7M43d_7_-AStkM9n52fDvHqxJ7k5pG2_3oTNpnt03ghcT_O7t5hWXjM6d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+and+Mapping+Vineyard+Water+Status+Using+Non-Invasive+Technologies+by+a+Ground+Robot&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Fern%C3%A1ndez-Novales%2C+Juan&rft.au=Saiz-Rubio%2C+Ver%C3%B3nica&rft.au=Barrio%2C+Ignacio&rft.au=Rovira-M%C3%A1s%2C+Francisco&rft.date=2021-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=14&rft.spage=2830&rft_id=info:doi/10.3390%2Frs13142830&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |