Monitoring and Mapping Vineyard Water Status Using Non-Invasive Technologies by a Ground Robot

There is a growing need to provide support and applicable tools to farmers and the agro-industry in order to move from their traditional water status monitoring and high-water-demand cropping and irrigation practices to modern, more precise, reduced-demand systems and technologies. In precision viti...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 14; p. 2830
Main Authors Fernández-Novales, Juan, Saiz-Rubio, Verónica, Barrio, Ignacio, Rovira-Más, Francisco, Cuenca-Cuenca, Andrés, Santos Alves, Fernando, Valente, Joana, Tardaguila, Javier, Diago, María Paz
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a growing need to provide support and applicable tools to farmers and the agro-industry in order to move from their traditional water status monitoring and high-water-demand cropping and irrigation practices to modern, more precise, reduced-demand systems and technologies. In precision viticulture, very few approaches with ground robots have served as moving platforms for carrying non-invasive sensors to deliver field maps that help growers in decision making. The goal of this work is to demonstrate the capability of the VineScout (developed in the context of a H2020 EU project), a ground robot designed to assess and map vineyard water status using thermal infrared radiometry in commercial vineyards. The trials were carried out in Douro Superior (Portugal) under different irrigation treatments during seasons 2019 and 2020. Grapevines of Vitis vinifera L. Touriga Nacional were monitored at different timings of the day using leaf water potential (Ψl) as reference indicators of plant water status. Grapevines’ canopy temperature (Tc) values, recorded with an infrared radiometer, as well as data acquired with an environmental sensor (Tair, RH, and AP) and NDVI measurements collected with a multispectral sensor were automatically saved in the computer of the autonomous robot to assess and map the spatial variability of a commercial vineyard water status. Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.57 in the morning time and a r2cv of 0.42 in the midday. The root mean square error of cross-validation (RMSEcv) was 0.191 MPa and 0.139 MPa at morning and midday, respectively. Spatial–temporal variation maps were developed at two different times of the day to illustrate the capability to monitor the grapevine water status in order to reduce the consumption of water, implementing appropriate irrigation strategies and increase the efficiency in the real time vineyard management. The promising outcomes gathered with the VineScout using different sensors based on thermography, multispectral imaging and environmental data disclose the need for further studies considering new variables related with the plant water status, and more grapevine cultivars, seasons and locations to improve the accuracy, robustness and reliability of the predictive models, in the context of precision and sustainable viticulture.
AbstractList There is a growing need to provide support and applicable tools to farmers and the agro-industry in order to move from their traditional water status monitoring and high-water-demand cropping and irrigation practices to modern, more precise, reduced-demand systems and technologies. In precision viticulture, very few approaches with ground robots have served as moving platforms for carrying non-invasive sensors to deliver field maps that help growers in decision making. The goal of this work is to demonstrate the capability of the VineScout (developed in the context of a H2020 EU project), a ground robot designed to assess and map vineyard water status using thermal infrared radiometry in commercial vineyards. The trials were carried out in Douro Superior (Portugal) under different irrigation treatments during seasons 2019 and 2020. Grapevines of Vitis vinifera L. Touriga Nacional were monitored at different timings of the day using leaf water potential (Ψl) as reference indicators of plant water status. Grapevines’ canopy temperature (Tc) values, recorded with an infrared radiometer, as well as data acquired with an environmental sensor (Tair, RH, and AP) and NDVI measurements collected with a multispectral sensor were automatically saved in the computer of the autonomous robot to assess and map the spatial variability of a commercial vineyard water status. Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.57 in the morning time and a r2cv of 0.42 in the midday. The root mean square error of cross-validation (RMSEcv) was 0.191 MPa and 0.139 MPa at morning and midday, respectively. Spatial–temporal variation maps were developed at two different times of the day to illustrate the capability to monitor the grapevine water status in order to reduce the consumption of water, implementing appropriate irrigation strategies and increase the efficiency in the real time vineyard management. The promising outcomes gathered with the VineScout using different sensors based on thermography, multispectral imaging and environmental data disclose the need for further studies considering new variables related with the plant water status, and more grapevine cultivars, seasons and locations to improve the accuracy, robustness and reliability of the predictive models, in the context of precision and sustainable viticulture.
Author Diago, María Paz
Fernández-Novales, Juan
Rovira-Más, Francisco
Tardaguila, Javier
Saiz-Rubio, Verónica
Cuenca-Cuenca, Andrés
Santos Alves, Fernando
Barrio, Ignacio
Valente, Joana
Author_xml – sequence: 1
  givenname: Juan
  surname: Fernández-Novales
  fullname: Fernández-Novales, Juan
– sequence: 2
  givenname: Verónica
  orcidid: 0000-0003-4188-3666
  surname: Saiz-Rubio
  fullname: Saiz-Rubio, Verónica
– sequence: 3
  givenname: Ignacio
  surname: Barrio
  fullname: Barrio, Ignacio
– sequence: 4
  givenname: Francisco
  orcidid: 0000-0002-2589-9281
  surname: Rovira-Más
  fullname: Rovira-Más, Francisco
– sequence: 5
  givenname: Andrés
  surname: Cuenca-Cuenca
  fullname: Cuenca-Cuenca, Andrés
– sequence: 6
  givenname: Fernando
  surname: Santos Alves
  fullname: Santos Alves, Fernando
– sequence: 7
  givenname: Joana
  surname: Valente
  fullname: Valente, Joana
– sequence: 8
  givenname: Javier
  orcidid: 0000-0002-6639-8723
  surname: Tardaguila
  fullname: Tardaguila, Javier
– sequence: 9
  givenname: María Paz
  surname: Diago
  fullname: Diago, María Paz
BookMark eNpNUcFKAzEUDFLBWnvxCwLehNVsXrZJjlK0FloFbfVmyO5m65aarEm20L93a0V9lze8GWYezCnqWWcNQucpuQKQ5NqHFFJGBZAj1KeE04RRSXv_8AkahrAm3QCkkrA-eps7W0fna7vC2pZ4rptmj19qa3bal_hVR-Pxc9SxDXgZ9tyDs8nUbnWotwYvTPFu3catahNwvsMaT7xrO6cnl7t4ho4rvQlm-LMHaHl3uxjfJ7PHyXR8M0sKGKUxKcusqiglwKsiK2Wej4BWqckZcAMZB8YEpCQHTlnGmNRaEEpNTrgAQQTlMEDTg2_p9Fo1vv7QfqecrtX3wfmV0j7WxcYoybiEQtCsygQTssipMWUXxEouRcd0XhcHr8a7z9aEqNau9bZ7X9EsY3xEhGCd6vKgKrwLwZvqNzUlal-H-qsDvgBrrXwU
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e16322
crossref_primary_10_17660_ActaHortic_2024_1390_33
crossref_primary_10_1002_rob_22179
crossref_primary_10_1016_j_atech_2021_100005
crossref_primary_10_1016_j_robot_2023_104514
crossref_primary_10_3389_fhort_2023_1282615
crossref_primary_10_1016_j_eja_2022_126586
crossref_primary_10_1093_icb_icae073
crossref_primary_10_3390_plants12244142
crossref_primary_10_1016_j_atech_2023_100344
crossref_primary_10_3390_agriengineering4030043
crossref_primary_10_1016_j_dcan_2023_05_006
crossref_primary_10_3390_agronomy12030555
crossref_primary_10_1016_j_biosystemseng_2022_05_007
crossref_primary_10_48077_scihor1_2024_127
crossref_primary_10_34133_2022_9760269
crossref_primary_10_3390_app13042436
crossref_primary_10_3390_su14073949
crossref_primary_10_1002_rob_22194
crossref_primary_10_48077_scihor9_2023_167
crossref_primary_10_3390_agriculture12101695
Cites_doi 10.1093/jxb/ers165
10.1007/s00271-005-0015-7
10.3390/s20123596
10.1111/nph.12912
10.1371/journal.pone.0192037
10.21273/JASHS.127.3.448
10.20870/oeno-one.2009.43.3.798
10.1007/s11119-008-9073-1
10.21273/HORTSCI.43.2.333
10.1016/j.agwat.2020.106070
10.1016/S0168-1923(99)00030-1
10.1016/j.compag.2020.105678
10.1007/s11119-020-09768-6
10.1093/jxb/erf083
10.1109/JSEN.2020.3016081
10.1007/s00271-012-0382-9
10.1016/j.agwat.2014.10.017
10.1093/jxb/erh213
10.1080/14620316.2015.1110991
10.1016/j.agwat.2016.05.008
10.1016/j.scienta.2015.03.012
10.1016/j.agwat.2018.06.001
10.3390/agronomy10020207
10.1111/j.1755-0238.2004.tb00006.x
10.1146/annurev-control-053018-023617
10.1111/j.1755-0238.2005.tb00277.x
10.1111/ajgw.12173
10.1007/s00271-009-0150-7
10.1080/014311697217396
10.3390/rs8100822
10.13031/2013.8855
10.1007/s11119-009-9111-7
10.1016/0003-2670(86)80028-9
10.1016/j.agwat.2015.06.001
10.3390/s16122136
10.1016/j.agwat.2018.06.002
10.1016/j.biosystemseng.2019.01.002
10.1111/pce.13923
10.1007/s11119-016-9484-3
10.1016/j.agwat.2010.01.025
10.1016/0002-1571(81)90032-7
10.1007/978-3-319-70833-1_21
10.1071/FP11156
10.3389/fpls.2020.00705
10.1016/j.agrformet.2005.07.010
10.1061/(ASCE)0733-9437(2008)134:3(286)
10.1016/j.fcr.2012.10.013
10.1016/j.scienta.2019.108825
10.1007/s11119-016-9489-y
10.1016/j.agwat.2006.05.021
10.1016/j.agwat.2010.03.012
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs13142830
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Earth, Atmospheric & Aquatic Science Database
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_94793c825f58489cb2eed4374d79893c
10_3390_rs13142830
GeographicLocations Portugal
Germany
GeographicLocations_xml – name: Germany
– name: Portugal
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-dd5ff22037fc5d9bb632f1eb437e3573448310b37245449aa8022eb0783808273
IEDL.DBID 8FG
ISSN 2072-4292
IngestDate Tue Oct 22 15:13:37 EDT 2024
Sat Nov 09 14:08:14 EST 2024
Thu Sep 26 21:18:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-dd5ff22037fc5d9bb632f1eb437e3573448310b37245449aa8022eb0783808273
ORCID 0000-0002-6639-8723
0000-0003-4188-3666
0000-0002-2589-9281
OpenAccessLink https://www.proquest.com/docview/2554760884?pq-origsite=%requestingapplication%
PQID 2554760884
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_94793c825f58489cb2eed4374d79893c
proquest_journals_2554760884
crossref_primary_10_3390_rs13142830
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rouse (ref_26) 1974; 351
Williams (ref_31) 2002; 127
Evett (ref_42) 2015; 159
Pinol (ref_27) 1997; 18
ref_14
Williams (ref_25) 2005; 132
Evett (ref_51) 2010; 97
Costa (ref_17) 2019; 216
Sebastian (ref_34) 2015; 148
Volder (ref_55) 2020; 233
Petrie (ref_15) 2019; 179
Tisseyre (ref_12) 2008; 9
ref_18
Sadler (ref_48) 2002; 45
Fuentes (ref_9) 2010; 97
Trout (ref_24) 2008; 43
Baluja (ref_16) 2012; 30
Jones (ref_13) 2002; 53
Berni (ref_58) 2012; 154
Leeuwen (ref_40) 2009; 43
ref_23
Dayer (ref_36) 2020; 11
ref_22
Girona (ref_32) 2006; 24
Bramley (ref_7) 2004; 10
ref_29
Falkenberg (ref_49) 2007; 87
Sadler (ref_41) 2005; 60
Costa (ref_45) 2016; 176
Peters (ref_50) 2008; 134
Alchanatis (ref_62) 2010; 11
Liu (ref_19) 2020; 177
Idso (ref_53) 1981; 24
Bellvert (ref_56) 2016; 22
Agam (ref_61) 2009; 27
Grant (ref_60) 2016; 91
Jones (ref_54) 1999; 95
ref_39
ref_38
Marabel (ref_28) 2015; 188
Dayer (ref_35) 2021; 44
Intrigliolo (ref_46) 2021; 22
Poyatos (ref_59) 2014; 204
Bailey (ref_21) 2020; 259
Vougioukas (ref_1) 2019; 2
ref_47
ref_44
Maes (ref_20) 2012; 63
ref_43
Rubio (ref_52) 2018; 208
Williams (ref_33) 2012; 46
Jones (ref_11) 2004; 55
ref_3
Cohen (ref_10) 2017; 18
ref_2
Ecarnot (ref_30) 2013; 140
Bramley (ref_8) 2005; 11
ref_5
Geladi (ref_37) 1986; 185
ref_4
Costa (ref_57) 2012; 39
ref_6
References_xml – volume: 63
  start-page: 4671
  year: 2012
  ident: ref_20
  article-title: Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers165
  contributor:
    fullname: Maes
– volume: 24
  start-page: 115
  year: 2006
  ident: ref_32
  article-title: The use of midday leaf water potential for scheduling deficit irrigation in vineyards
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-005-0015-7
  contributor:
    fullname: Girona
– ident: ref_14
  doi: 10.3390/s20123596
– volume: 204
  start-page: 105
  year: 2014
  ident: ref_59
  article-title: A new look at water transport regulation in plants
  publication-title: New Phytol.
  doi: 10.1111/nph.12912
  contributor:
    fullname: Poyatos
– ident: ref_18
  doi: 10.1371/journal.pone.0192037
– volume: 127
  start-page: 448
  year: 2002
  ident: ref_31
  article-title: Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera
  publication-title: J. Am. Soc. Hortic. Sci.
  doi: 10.21273/JASHS.127.3.448
  contributor:
    fullname: Williams
– volume: 43
  start-page: 121
  year: 2009
  ident: ref_40
  article-title: Vine water status is a key factor in grape ripening and vintage quality for red bordeaux wine. How can it be assessed for vineyard management purposes?
  publication-title: OENO One
  doi: 10.20870/oeno-one.2009.43.3.798
  contributor:
    fullname: Leeuwen
– ident: ref_39
– volume: 9
  start-page: 285
  year: 2008
  ident: ref_12
  article-title: The potential of high spatial resolution information to define within-vineyard zones related to vine water status
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-008-9073-1
  contributor:
    fullname: Tisseyre
– volume: 43
  start-page: 333
  year: 2008
  ident: ref_24
  article-title: Remote sensing of canopy cover in horticultural crops
  publication-title: HortScience
  doi: 10.21273/HORTSCI.43.2.333
  contributor:
    fullname: Trout
– volume: 233
  start-page: 106070
  year: 2020
  ident: ref_55
  article-title: Modeling of reference temperatures for calculating crop water stress indices from infrared thermography
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106070
  contributor:
    fullname: Volder
– volume: 95
  start-page: 139
  year: 1999
  ident: ref_54
  article-title: Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(99)00030-1
  contributor:
    fullname: Jones
– volume: 177
  start-page: 105678
  year: 2020
  ident: ref_19
  article-title: Recognition method of thermal infrared images of plant canopies based on the characteristic registration of heterogeneous images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105678
  contributor:
    fullname: Liu
– volume: 22
  start-page: 964
  year: 2021
  ident: ref_46
  article-title: Normalization of the crop water stress index to assess the within-field spatial variability of water stress sensitivity
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-020-09768-6
  contributor:
    fullname: Intrigliolo
– volume: 53
  start-page: 2249
  year: 2002
  ident: ref_13
  article-title: Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erf083
  contributor:
    fullname: Jones
– volume: 154
  start-page: 156
  year: 2012
  ident: ref_58
  article-title: Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent
  publication-title: Agric. For. Meteorol.
  contributor:
    fullname: Berni
– ident: ref_23
  doi: 10.1109/JSEN.2020.3016081
– ident: ref_4
– volume: 30
  start-page: 511
  year: 2012
  ident: ref_16
  article-title: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV)
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-012-0382-9
  contributor:
    fullname: Baluja
– volume: 148
  start-page: 269
  year: 2015
  ident: ref_34
  article-title: Response of grapevine cv. Syrah to irrigation frequency and water distribution pattern in a clay soil
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2014.10.017
  contributor:
    fullname: Sebastian
– volume: 60
  start-page: 371
  year: 2005
  ident: ref_41
  article-title: Opportunities for conservation with precision irrigation
  publication-title: J. Soil Water Conserv.
  contributor:
    fullname: Sadler
– volume: 55
  start-page: 2427
  year: 2004
  ident: ref_11
  article-title: Irrigation scheduling: Advantages and pitfalls of plant-based methods
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erh213
  contributor:
    fullname: Jones
– ident: ref_38
– volume: 91
  start-page: 43
  year: 2016
  ident: ref_60
  article-title: Thermal imaging to detect spatial and temporal variation in the water status of grapevine (Vitis vinifera L.)
  publication-title: J. Hortic. Sci. Biotechnol.
  doi: 10.1080/14620316.2015.1110991
  contributor:
    fullname: Grant
– volume: 176
  start-page: 80
  year: 2016
  ident: ref_45
  article-title: Thermal data to monitor crop-water status in irrigated Mediterranean viticulture
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2016.05.008
  contributor:
    fullname: Costa
– volume: 188
  start-page: 15
  year: 2015
  ident: ref_28
  article-title: Spectroscopic estimation of leaf water content in commercial vineyards using continuum removal and partial least squares regression
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2015.03.012
  contributor:
    fullname: Marabel
– volume: 216
  start-page: 484
  year: 2019
  ident: ref_17
  article-title: Canopy and soil thermal patterns to support water and heat stress management in vineyards
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.06.001
  contributor:
    fullname: Costa
– ident: ref_2
  doi: 10.3390/agronomy10020207
– volume: 10
  start-page: 32
  year: 2004
  ident: ref_7
  article-title: Understanding variability in winegrape production systems: 1. Within vineyard variation in yield over several vintages
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/j.1755-0238.2004.tb00006.x
  contributor:
    fullname: Bramley
– volume: 2
  start-page: 365
  year: 2019
  ident: ref_1
  article-title: Agricultural robotics
  publication-title: Annu. Rev. Control. Robot. Auton. Syst.
  doi: 10.1146/annurev-control-053018-023617
  contributor:
    fullname: Vougioukas
– volume: 351
  start-page: 309
  year: 1974
  ident: ref_26
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: NASA Spec. Publ.
  contributor:
    fullname: Rouse
– ident: ref_3
– volume: 11
  start-page: 33
  year: 2005
  ident: ref_8
  article-title: Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/j.1755-0238.2005.tb00277.x
  contributor:
    fullname: Bramley
– volume: 22
  start-page: 307
  year: 2016
  ident: ref_56
  article-title: Vineyard irrigation scheduling based on airborne thermal imagery and water potential thresholds
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/ajgw.12173
  contributor:
    fullname: Bellvert
– volume: 27
  start-page: 367
  year: 2009
  ident: ref_61
  article-title: Evaluating water stress in irrigated olives: Correlation of soil water status, tree water status, and thermal imagery
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-009-0150-7
  contributor:
    fullname: Agam
– volume: 18
  start-page: 2869
  year: 1997
  ident: ref_27
  article-title: Estimation of plant water concentration by the reflectance water index WI (R900/R970)
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697217396
  contributor:
    fullname: Pinol
– ident: ref_47
  doi: 10.3390/rs8100822
– volume: 45
  start-page: 581
  year: 2002
  ident: ref_48
  article-title: Corn canopy temperatures measured with a moving infrared thermometer array
  publication-title: Trans. ASAE
  doi: 10.13031/2013.8855
  contributor:
    fullname: Sadler
– volume: 11
  start-page: 27
  year: 2010
  ident: ref_62
  article-title: Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-009-9111-7
  contributor:
    fullname: Alchanatis
– volume: 185
  start-page: 1
  year: 1986
  ident: ref_37
  article-title: Partial least-squares regression: A tutorial
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(86)80028-9
  contributor:
    fullname: Geladi
– volume: 159
  start-page: 123
  year: 2015
  ident: ref_42
  article-title: Dynamic prescription maps for site-specific variable rate irrigation of cotton
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.06.001
  contributor:
    fullname: Evett
– ident: ref_5
  doi: 10.3390/s16122136
– volume: 208
  start-page: 176
  year: 2018
  ident: ref_52
  article-title: Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.06.002
  contributor:
    fullname: Rubio
– volume: 179
  start-page: 126
  year: 2019
  ident: ref_15
  article-title: The accuracy and utility of a low cost thermal camera and smartphone-based system to assess grapevine water status
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.01.002
  contributor:
    fullname: Petrie
– ident: ref_44
– volume: 46
  start-page: 207
  year: 2012
  ident: ref_33
  article-title: Leaf water potentials of sunlit and/or shaded grapevine leaves are sensitive alternatives to stem water potential
  publication-title: J. Int. Sci. Vigne Vin
  contributor:
    fullname: Williams
– volume: 44
  start-page: 387
  year: 2021
  ident: ref_35
  article-title: Nighttime transpiration represents a negligible part of water loss and does not increase the risk of water stress in grapevine
  publication-title: Plant. Cell Environ.
  doi: 10.1111/pce.13923
  contributor:
    fullname: Dayer
– volume: 18
  start-page: 801
  year: 2017
  ident: ref_10
  article-title: Mapping water status based on aerial thermal imagery: Comparison of methodologies for upscaling from a single leaf to commercial fields
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-016-9484-3
  contributor:
    fullname: Cohen
– volume: 97
  start-page: 956
  year: 2010
  ident: ref_9
  article-title: Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2010.01.025
  contributor:
    fullname: Fuentes
– volume: 24
  start-page: 45
  year: 1981
  ident: ref_53
  article-title: Normalizing the stress-degree-day parameter for environmental variability
  publication-title: Agric. Meteorol.
  doi: 10.1016/0002-1571(81)90032-7
  contributor:
    fullname: Idso
– ident: ref_6
  doi: 10.1007/978-3-319-70833-1_21
– volume: 39
  start-page: 179
  year: 2012
  ident: ref_57
  article-title: Grapevine varieties exhibiting differences in stomatal response to water deficit
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP11156
  contributor:
    fullname: Costa
– volume: 11
  start-page: 705
  year: 2020
  ident: ref_36
  article-title: Comparing hydraulics between two grapevine cultivars reveals differences in stomatal regulation under water stress and exogenous ABA applications
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00705
  contributor:
    fullname: Dayer
– volume: 132
  start-page: 201
  year: 2005
  ident: ref_25
  article-title: Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2005.07.010
  contributor:
    fullname: Williams
– volume: 134
  start-page: 286
  year: 2008
  ident: ref_50
  article-title: Automation of a center pivot using the temperature-time-threshold method of irrigation scheduling
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2008)134:3(286)
  contributor:
    fullname: Peters
– volume: 140
  start-page: 44
  year: 2013
  ident: ref_30
  article-title: Assessing leaf nitrogen content and leaf mass per unit area of wheat in the field throughout plant cycle with a portable spectrometer
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2012.10.013
  contributor:
    fullname: Ecarnot
– volume: 259
  start-page: 108825
  year: 2020
  ident: ref_21
  article-title: Sensitivity analysis of four crop water stress indices to ambient environmental conditions and stomatal conductance
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2019.108825
  contributor:
    fullname: Bailey
– ident: ref_43
– ident: ref_22
– ident: ref_29
  doi: 10.1007/s11119-016-9489-y
– volume: 87
  start-page: 23
  year: 2007
  ident: ref_49
  article-title: Remote sensing of biotic and abiotic stress for irrigation management of cotton
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2006.05.021
  contributor:
    fullname: Falkenberg
– volume: 97
  start-page: 1310
  year: 2010
  ident: ref_51
  article-title: Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2010.03.012
  contributor:
    fullname: Evett
SSID ssj0000331904
Score 2.4413044
Snippet There is a growing need to provide support and applicable tools to farmers and the agro-industry in order to move from their traditional water status...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 2830
SubjectTerms Agricultural industry
Agricultural production
agricultural robotics
Agriculture
Automation
Cameras
chemometrics
Context
Cultivars
Data acquisition
Decision making
Grapevines
Infrared radiometers
Irrigation
Irrigation practices
Irrigation water
Leaves
Mapping
non-invasive proximal sensing
precision viticulture
Prediction models
Radiometry
Regression analysis
Remote sensing
Robotics
Robots
Sensors
Temporal variations
Thermography
Vineyards
Viticulture
Water consumption
Water monitoring
Water potential
water stress
Wineries & vineyards
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF1gQn6JQkCVYoya2E8cjIKqC1A6IQiesXOzAlKA2Req_5-ykpYiBhTWKkujOd_fe5fxMyBVXseEmLDCQwDhR7RRjzpoATBRbrGhRlriNwqNxMpyIh2k83Tjqy82ENfLAjeH6yrV-cuQxBZbKVOXAMKsLLoWRCmtt7rNvqDbIlM_BHJdWKBo9Uo68vj-bR9yri4U_KpAX6v-Vh31xGeyR3RYV0uvma_bJli0PyHZ7QPn78pC8NrHnmnAUuT8dZU5X4Y0-I0hcopPpC2LGGXXQcTGnfg6AjqsyuC8_MzegTtctdGTGFJY0o67rhE96rKCqj8hkcPd0OwzaoxGCnCdRHRgTFwVjIZdFHhsFkHBWRBbQMJbHkiPpQtwGXDI0v1BZ5nbUWnD_7FIs-pIfk05ZlfaEUJuJWEIElhklBDDIJXoIYZxhUIBKu-RyZS790ShgaGQOzqj626hdcuMsub7DqVb7C-hL3fpS_-XLLumt_KDbUJpr5DxCJpgMxel_vOOM7DA3luInbnukU88W9hxxRQ0Xfgl9ASMZyTY
  priority: 102
  providerName: Directory of Open Access Journals
Title Monitoring and Mapping Vineyard Water Status Using Non-Invasive Technologies by a Ground Robot
URI https://www.proquest.com/docview/2554760884
https://doaj.org/article/94793c825f58489cb2eed4374d79893c
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1ROLQ9VEBBXQorS_QakdhOnJwqqFg-JFYIlY8TUSZ2tqeEZhek_fed8XoXoUpckyiKZjyeNy_jNwA_VJFaZeOGAgkti2rnFHPORmiT1FFGS6qMDwpfjbPzW335kD4Ewm0a2iqXe6LfqG1XM0d-RNBXm4xiQv98-hvx1Cj-uxpGaHyAjUQaw8VXPjpbcSyxogUW64UqqaLq_qifJsprjMVv8pCX6_9vN_YpZrQJXwI2FMcLZ27Bmmu34fPxpA_6GG4bPoah5X_mX-FxEY9MzImqteKqYq2Fibgj4Dgnx4t7wpG9YDj5PBW-N0CMuza6aF8qbloXK1qdqmWBc1EJZqLoTTcddrMduB2d_v51HoVxCVGtsmQWWZs2jZSxMk2d2gIxU7JJHGplnEqNokKMsBwqI8kluqgqPmXrkP_j5QQEjNqF9bZr3TcQrtKpwQSdtIXWKLE25DWCdlZig0U-gMOl8cqnhSpGSdUEm7h8NfEATtiuqydYydpf6PpJGQKjLJjaq6lObQgK5UWNkrI2fbK2piAsVQ9gf-mVMoTXtHxdDHvv3_4OnyQ3ofj-2n1Yn_XP7oBQxAyHfqkMYePkdHx9M_S1-D9bkMit
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9tAEB215EA5oPIl0lJYCa4W9u7aG58qQEEJTSKE-DrV8njX4WRTJ1TKv--MswmqKvVqW5Y1s7Pz5nn2DcCZSmOrbFhSIKFlUe0exZyzAdoodpTRojzhg8LjSTJ40DfP8bMn3Ga-rXK1J7Ybta0L5sjPCfpqk1BM6O-vvwKeGsV_V_0IjY_QYakqKr46l_3J7d2aZQkVLbFQL3VJFdX3580sUq3KWPhXJmoF-__Zj9skc_0Ztj06FBdLd-7AB1ftwtbFtPEKGW4XNv3Y8pfFHvxcRiRTcyKvrBjnrLYwFY8EHRfkevFESLIRDCjfZqLtDhCTugqG1e-c29bFmlinelngQuSCuSh6012N9XwfHq7791eDwA9MCAqVRPPA2rgspQyVKYvYpoiJkmXkUCvjVGwUlWKE5lAZSU7RaZ7zOVuH_CevR1DAqAPYqOrKHYJwuY4NRuikTbVGiYUhvxG4sxJLTHtdOF0ZL3td6mJkVE-wibN3E3fhku26foK1rNsLdTPNfGhkKZN7BVWqJYGhXlqgpLxNn6ytSQlNFV04Wnkl8wE2y96Xw5f_3z6BzcH9eJSNhpMfX-GT5JaUttv2CDbmzZv7Rphijsd-4fwBTELKbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6VIPE4VOWlBmi7Unu1Yu-uvfEJASWCFiKEeJ2wPN51erLBCUj598w4myCE1Kttrax57HwzO_sNwC-VxlbZsCRHQsuk2n3yOWcDtFHsKKJFecIXhS-GyemN_nMf3_v-p7Fvq5zvie1GbeuCa-Q9gr7aJOQTulf6tojL34ODx6eAJ0jxSasfp7EEy0YnKuzA8tHJ8PJqUXEJFZlbqGccpYpy_V4zjlTLOBa-i0otef-HvbkNOIMv8NkjRXE4U-0GfHLVJqwfjhrPluE2YdWPMP833YKHmXdymU7klRUXOTMvjMQtwcgpmYG4I1TZCAaXz2PRdgqIYV0FZ9VLzi3sYlFkp9xZ4FTkgutStNJVjfVkG24GJ9fHp4EfnhAUKokmgbVxWUoZKlMWsU0REyXLyKFWxqnYKErLCNmhMpIUpNM85zu3DvlUr0-wwKgd6FR15b6CcLmODUbopE21RomFIR0S0LMSS0z7Xfg5F172OOPIyCi3YBFnbyLuwhHLdfEF81q3D-pmlHk3yVIu9BWUtZYEjPppgZJiOP2ytiYlZFV0YX-ulcw72zh7M43d_7_-AStkM9n52fDvHqxJ7k5pG2_3oTNpnt03ghcT_O7t5hWXjM6d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+and+Mapping+Vineyard+Water+Status+Using+Non-Invasive+Technologies+by+a+Ground+Robot&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Fern%C3%A1ndez-Novales%2C+Juan&rft.au=Saiz-Rubio%2C+Ver%C3%B3nica&rft.au=Barrio%2C+Ignacio&rft.au=Rovira-M%C3%A1s%2C+Francisco&rft.date=2021-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=14&rft.spage=2830&rft_id=info:doi/10.3390%2Frs13142830&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon