Insider Threat Detection Based on User Behavior Modeling and Anomaly Detection Algorithms
Insider threats are malicious activities by authorized users, such as theft of intellectual property or security information, fraud, and sabotage. Although the number of insider threats is much lower than external network attacks, insider threats can cause extensive damage. As insiders are very fami...
Saved in:
Published in | Applied sciences Vol. 9; no. 19; p. 4018 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app9194018 |
Cover
Loading…
Abstract | Insider threats are malicious activities by authorized users, such as theft of intellectual property or security information, fraud, and sabotage. Although the number of insider threats is much lower than external network attacks, insider threats can cause extensive damage. As insiders are very familiar with an organization’s system, it is very difficult to detect their malicious behavior. Traditional insider-threat detection methods focus on rule-based approaches built by domain experts, but they are neither flexible nor robust. In this paper, we propose insider-threat detection methods based on user behavior modeling and anomaly detection algorithms. Based on user log data, we constructed three types of datasets: user’s daily activity summary, e-mail contents topic distribution, and user’s weekly e-mail communication history. Then, we applied four anomaly detection algorithms and their combinations to detect malicious activities. Experimental results indicate that the proposed framework can work well for imbalanced datasets in which there are only a few insider threats and where no domain experts’ knowledge is provided. |
---|---|
AbstractList | Insider threats are malicious activities by authorized users, such as theft of intellectual property or security information, fraud, and sabotage. Although the number of insider threats is much lower than external network attacks, insider threats can cause extensive damage. As insiders are very familiar with an organization’s system, it is very difficult to detect their malicious behavior. Traditional insider-threat detection methods focus on rule-based approaches built by domain experts, but they are neither flexible nor robust. In this paper, we propose insider-threat detection methods based on user behavior modeling and anomaly detection algorithms. Based on user log data, we constructed three types of datasets: user’s daily activity summary, e-mail contents topic distribution, and user’s weekly e-mail communication history. Then, we applied four anomaly detection algorithms and their combinations to detect malicious activities. Experimental results indicate that the proposed framework can work well for imbalanced datasets in which there are only a few insider threats and where no domain experts’ knowledge is provided. |
Author | Kang, Pilsung Cho, Suhyoun Kim, Junhong Park, Minsik Kim, Haedong |
Author_xml | – sequence: 1 givenname: Junhong surname: Kim fullname: Kim, Junhong – sequence: 2 givenname: Minsik surname: Park fullname: Park, Minsik – sequence: 3 givenname: Haedong surname: Kim fullname: Kim, Haedong – sequence: 4 givenname: Suhyoun surname: Cho fullname: Cho, Suhyoun – sequence: 5 givenname: Pilsung surname: Kang fullname: Kang, Pilsung |
BookMark | eNptUU1rGzEQFSWBuqkv-QULvRWcSqsPr45O2qSGhF6SQ05iVhrZMuuVKykB__vKcUJD6VzmMfPemxnmEzkZ44iEnDN6wbmm32C300wLyroPZNLSuZpxweYn7_BHMs15Q2toxjtGJ-RxOebgMDX364RQmu9Y0JYQx-YSMrqmgodc25e4hucQU3MXHQ5hXDUwumYxxi0M-3eqxbCKKZT1Nn8mpx6GjNPXfEYern_cX_2c3f66WV4tbmeWK1ZmTjvFESjvNKW9R--lrIgzkBaF6oVgQtC57lTX9t4rlH0NnHPvtXTg-RlZHn1dhI3ZpbCFtDcRgnkpxLQykEqwAxohhe6dtC1wKRiAroMotlxYKrwWtnp9OXrtUvz9hLmYTXxKY13ftJJzpZhSurLokWVTzDmhNzYUOJxfEoTBMGoO_zB__1ElX_-RvC36H_IfW2iMfQ |
CitedBy_id | crossref_primary_10_1007_s12243_024_01023_7 crossref_primary_10_1007_s11042_024_19872_8 crossref_primary_10_1109_ACCESS_2023_3293825 crossref_primary_10_3389_fdata_2024_1375818 crossref_primary_10_3390_e23060776 crossref_primary_10_3390_jpm12020190 crossref_primary_10_3390_app10155208 crossref_primary_10_3390_fi15120373 crossref_primary_10_1109_ACCESS_2021_3118297 crossref_primary_10_1109_ACCESS_2023_3273895 crossref_primary_10_3390_app13095709 crossref_primary_10_3390_e23101258 crossref_primary_10_1007_s11276_024_03678_5 crossref_primary_10_3390_app9224943 crossref_primary_10_55648_1998_6920_2022_16_4_80_95 crossref_primary_10_3390_e23121645 crossref_primary_10_1007_s11071_023_08954_1 crossref_primary_10_24017_scence_2025_1_3 crossref_primary_10_1038_s41598_024_84673_w crossref_primary_10_1080_19393555_2021_1998735 crossref_primary_10_3103_S0278641924700237 crossref_primary_10_3390_fi17020093 crossref_primary_10_1109_ACCESS_2024_3372187 crossref_primary_10_1016_j_cose_2023_103350 crossref_primary_10_1016_j_cose_2024_103779 crossref_primary_10_1007_s11227_023_05049_x crossref_primary_10_1007_s12103_023_09727_7 crossref_primary_10_3390_app13010259 crossref_primary_10_3390_sym12081255 crossref_primary_10_1016_j_inffus_2023_101804 crossref_primary_10_1007_s11042_024_20273_0 crossref_primary_10_1051_e3sconf_202447104022 crossref_primary_10_1109_ACCESS_2024_3426959 crossref_primary_10_1016_j_neucom_2025_129762 crossref_primary_10_15407_emodel_42_04_071 crossref_primary_10_3390_jcp5010005 |
Cites_doi | 10.1038/234034a0 10.1109/SPW.2013.32 10.1016/j.inffus.2013.04.006 10.1007/s10994-006-9449-2 10.1080/19361610.2011.529413 10.1016/j.patcog.2014.05.003 10.1109/SPW.2013.37 10.1016/0169-7439(87)80084-9 10.1109/ICDM.2008.17 10.1016/j.cose.2005.05.002 10.1016/j.sigpro.2003.07.018 10.1142/S0218001409007326 10.1145/1541880.1541882 10.1016/S0167-4048(02)01009-X 10.1109/72.914517 10.1109/MILCOM.2015.7357562 10.1017/CBO9780511815478 10.1109/VIZSEC.2015.7312772 10.1145/1143844.1143967 10.1007/978-0-387-77322-3_5 10.1109/PASSAT/SocialCom.2011.211 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app9194018 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_4549bd5c2a3541aa99000e234c04f94c 10_3390_app9194018 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | .4S 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-d9d63ea038900bfeff5590031a5ce46b441440798682bff6e5bbbbe73ff95daf3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:26:43 EDT 2025 Mon Jun 30 11:11:07 EDT 2025 Tue Jul 01 03:00:57 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-d9d63ea038900bfeff5590031a5ce46b441440798682bff6e5bbbbe73ff95daf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/4549bd5c2a3541aa99000e234c04f94c |
PQID | 2533661669 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4549bd5c2a3541aa99000e234c04f94c proquest_journals_2533661669 crossref_citationtrail_10_3390_app9194018 crossref_primary_10_3390_app9194018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Tang (ref_39) 2006; 65 ref_14 ref_13 ref_11 Corchado (ref_37) 2014; 16 Eberle (ref_12) 2010; 6 ref_32 ref_31 Guyon (ref_24) 2003; 3 ref_18 ref_17 Ali (ref_29) 2013; 5 Wold (ref_34) 1987; 2 ref_15 Chandola (ref_30) 2009; 41 Markou (ref_35) 2003; 83 Theoharidou (ref_7) 2005; 24 Eldardiry (ref_10) 2014; 5 Schultz (ref_2) 2012; 21 Blei (ref_25) 2003; 3 Gavai (ref_16) 2015; 6 ref_23 ref_22 ref_20 Lindauer (ref_1) 2014; 5 ref_3 Britto (ref_38) 2014; 47 Salem (ref_6) 2008; 39 Sun (ref_19) 2009; 23 ref_28 ref_26 ref_9 McGough (ref_21) 2015; 6 ref_8 Levandowsky (ref_27) 1971; 234 Cernadas (ref_36) 2014; 15 ref_5 Muller (ref_33) 2001; 12 ref_4 |
References_xml | – volume: 6 start-page: 47 year: 2015 ident: ref_16 article-title: Supervised and Unsupervised methods to detect Insider Threat from Enterprise Social and Online Activity Data publication-title: JoWUA – volume: 234 start-page: 34 year: 1971 ident: ref_27 article-title: Distance between sets publication-title: Nature doi: 10.1038/234034a0 – ident: ref_9 – volume: 15 start-page: 3133 year: 2014 ident: ref_36 article-title: Do we need hundreds of classifiers to solve real world classification problems publication-title: J. Mach. Learn. Res. – ident: ref_5 – ident: ref_32 – ident: ref_22 doi: 10.1109/SPW.2013.32 – volume: 3 start-page: 993 year: 2003 ident: ref_25 article-title: Latent dirichlet allocation publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 3 year: 2014 ident: ref_37 article-title: A survey of multiple classifier systems as hybrid systems publication-title: Inf. Fusion doi: 10.1016/j.inffus.2013.04.006 – volume: 65 start-page: 247 year: 2006 ident: ref_39 article-title: An analysis of diversity measures publication-title: Mach. Learn. doi: 10.1007/s10994-006-9449-2 – ident: ref_11 – volume: 6 start-page: 32 year: 2010 ident: ref_12 article-title: Insider threat detection using a graph-based approach publication-title: J. Appl. Secur. Res. doi: 10.1080/19361610.2011.529413 – volume: 47 start-page: 3665 year: 2014 ident: ref_38 article-title: Dynamic selection of classifiers—A comprehensive review publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.05.003 – ident: ref_20 doi: 10.1109/SPW.2013.37 – volume: 2 start-page: 37 year: 1987 ident: ref_34 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 – ident: ref_18 doi: 10.1109/ICDM.2008.17 – volume: 24 start-page: 472 year: 2005 ident: ref_7 article-title: The insider threat to information systems and the effectiveness of ISO17799 publication-title: Comput. Secur. doi: 10.1016/j.cose.2005.05.002 – volume: 83 start-page: 2481 year: 2003 ident: ref_35 article-title: Novelty detection: A review—Part 1: Statistical approaches publication-title: Signal Process. doi: 10.1016/j.sigpro.2003.07.018 – ident: ref_23 – volume: 23 start-page: 687 year: 2009 ident: ref_19 article-title: Classification of imbalanced data: A review publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001409007326 – volume: 41 start-page: 1 year: 2009 ident: ref_30 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – volume: 5 start-page: 39 year: 2014 ident: ref_10 article-title: Multi-source fusion for anomaly detection: Using across-domain and across-time peer-group consistency checks publication-title: JoWUA – volume: 21 start-page: 526 year: 2012 ident: ref_2 article-title: A framework for understanding and predicting insider attacks publication-title: Comput. Secur. doi: 10.1016/S0167-4048(02)01009-X – volume: 5 start-page: 80 year: 2014 ident: ref_1 article-title: Generating Test Data for Insider Threat Detectors publication-title: JoWUA – volume: 12 start-page: 181 year: 2001 ident: ref_33 article-title: An introduction to kernel-based learning algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.914517 – ident: ref_8 – ident: ref_14 doi: 10.1109/MILCOM.2015.7357562 – ident: ref_4 – ident: ref_31 – volume: 5 start-page: 1 year: 2013 ident: ref_29 article-title: Classification with class imbalance problem publication-title: Int. J. Adv. Soft Comput. Appl. – volume: 3 start-page: 1157 year: 2003 ident: ref_24 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – ident: ref_28 doi: 10.1017/CBO9780511815478 – ident: ref_15 – ident: ref_3 doi: 10.1109/VIZSEC.2015.7312772 – volume: 6 start-page: 1 year: 2015 ident: ref_21 article-title: Detecting insider threats using Ben-ware: Beneficial intelligent software for identifying anomalous human behavior publication-title: J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. – ident: ref_26 doi: 10.1145/1143844.1143967 – ident: ref_17 – volume: 39 start-page: 69 year: 2008 ident: ref_6 article-title: A survey of insider attack detection research publication-title: Insid. Attack Cyber Secur. doi: 10.1007/978-0-387-77322-3_5 – ident: ref_13 doi: 10.1109/PASSAT/SocialCom.2011.211 |
SSID | ssj0000913810 |
Score | 2.4118788 |
Snippet | Insider threats are malicious activities by authorized users, such as theft of intellectual property or security information, fraud, and sabotage. Although the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4018 |
SubjectTerms | Algorithms anomaly detection behavioral model Classification Datasets e-mail network Electronic mail systems Employees insider threat detection Knowledge latent dirichlet allocation Machine learning Subject specialists Threats Universal Serial Bus User behavior |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELZ4XJYD4rGrLRRkiT0sh4g4dkx8Qi1QHtLuiUpwivykh5JCGw78e2YSt1QCkVOUOId4ZjzfTJzvI-SPQWU0J20STCETkWuZqEIICHeIchdEkBZbA__-y-uhuL3P72PDbRa3Vc7XxGahdhOLPfKTDHAJ5BIp1dnzS4KqUfh1NUporJJ1BpkGPbwYXC16LMh5WbC0ZSXlUN3jV2EFZXuKGh9Leaih6_-0GjcpZrBFNiM2pL3WmNtkxVc7ZGOJMXCHbMdYnNG_kTD6eJc83LSim_RuhBCQXvi62WBV0T7kKEfhZAieRiMX4pSiABr-hk515Wivmjzp8dvSU73xI7x5PXqa_STDweXd-XUSJRMSyyWrE6ec5F4ja16amuBDyFEWlDOdWy-kAfAjoIRThSwyE4L0uYHDn_IQVO504L_IWjWp_G9COWeOZQ7gjkgF88GwU4hWsKNnHkCL65Dj-QSWNvKJo6zFuIS6Aie7_JjsDjlajH1uWTS-HNVHOyxGIPN1c2EyfSxjIJUCClrjcptpngumtULVU59xYVMRlLAd0p1bsYzhOCs_nGfv-9v75AcgItXu1uuStXr66g8AddTmsHGtdwaN1ns priority: 102 providerName: ProQuest |
Title | Insider Threat Detection Based on User Behavior Modeling and Anomaly Detection Algorithms |
URI | https://www.proquest.com/docview/2533661669 https://doaj.org/article/4549bd5c2a3541aa99000e234c04f94c |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ba9swFH6s2WU9jCbdWLY0CLpDezCzLFmxjkmbLC20jNFAdzKSJbWF1B2Jd9i_73u22xo22GU5mSBj8_Se3vfZ8vcBfLbkjOZUEQWbqUimRkU6kxLLHavcBRlUQY8GLi7VciXPr9PrjtUX7Qlr5IGbwH2RSGCsS4vEiFRyYzS5XPpEyCKWQcuCVl_seR0yVa_BmpN0VaNHKpDX0_tgjYQ9JnePTgeqhfr_WIfr5rLYg7ctKmTT5m768MqXA9jtaAUOoN9W4ZYdtVLRx_vw46yx22RXtwT-2Kmv6q1VJZthd3IMD1aYY6xVQdwwsj6jD9CZKR1D6n9v1r87Z03XNw-bu-r2fvsOVov51ckyas0SokIoXkVOOyW8Ib28OLbBh5CSIajgJi28VBZhj0TypjOVJTYE5VOLPz8RIejUmSDeQ698KP0HYEJwxxOHQEfGkvtg-QTrFGfQc49wxQ3h-CmAedEqiZOhxTpHRkHBzl-CPYTD57E_G_2Mv46a0Tw8jyDN6_oPzIS8zYT8X5kwhNHTLOZtIW7zBOEsQhCl9Mf_cY1P8AYRk252842gV21--QNEJZUdw062-DqG17P55bfv4zodHwE5xOCt |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFS0glpZiCZDoISKOHTc-VNW2Zdmlj9OuVE4hfrWHbbbsBqH-KX4jM3lsi0DcmlOUODmM52mPvw_gnSFmNKdsFEymIpkWKtKZlGjuaOUuyKAsLQ2cnqnhRH45T89X4Fd3FobaKjufWDtqN7O0Rv4xwbwEY4lSev_6e0SsUbS72lFoNGpx7G9-Ysm22Bsd4fy-T5LBp_HhMGpZBSIrFK8ip50SviBguTg2wYeQEnOm4EVqvVQG8wOJVY7OVJaYEJRPDV5-V4SgU1cEgf99AA-lEJpaCLPB5-WaDmFsZjxuUFDxfUy70JprrGGyP-JeTQ_wl_evQ9rgKay1uSjrN8qzDiu-3IAndxAKN2C9tf0F-9ACVO88g6-jhuSTjS8p5WRHvqobukp2gDHRMbyZoGazFntxzohwjY69s6J0rF_OrorpzZ2v-tMLlHR1ebV4DpN7EeYLWC1npX8JTAjueOIwvZKx5D4YvoveAfXGc49JkuvBTifA3Lb45USjMc2xjiFh57fC7sHb5djrBrXjn6MOaB6WIwhpu34wm1_kreHmEgto41KbFCKVvCg0saz6REgby6Cl7cFWN4t5a_6L_FZZX_3_9Rt4NByfnuQno7PjTXiM2ZhuOgW3YLWa__CvMeOpzHatZgy-3bde_wbZAhRq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiF6QLSA2H6AJUCih6hx7HjjA6q2LEuXQsWhK5VTiGO7PWyz7W4Q6l_j1zGTONsiELfmFCVODuPxzBt_vAfw2pAymlVl5E2mIpkWKtKZlDjccZRbL70qaWrgy7E6nMhPp-npCvzqzsLQtsouJjaB2s5KmiPfSxCXYC5RSu_5sC3i63C0f3kVkYIUrbR2chqtixy5659Yvi3ejYfY12-SZPTh5P1hFBQGolIoXkdWWyVcQSRzcWy88z4lFU3Bi7R0UhnEChIrHp2pLDHeK5cavFxfeK9TW3iB_70H9_sii0k9IRt9XM7vEN9mxuOWEVUIHdOKtOYa65nsjxzYSAX8lQma9DZ6DI8CLmWD1pHWYcVVG7B2i61wA9ZDHFiwt4GsevcJfBu3gp_s5JzgJxu6utncVbEDzI-W4c0EvZwFHsY5I_E1OgLPisqyQTW7KKbXt74aTM_Q0vX5xeIpTO7EmM9gtZpV7jkwIbjliUWoJWPJnTe8j5ECfchxh4DJ9mC3M2BeBi5zktSY5ljTkLHzG2P34NWy7WXL4PHPVgfUD8sWxLrdPJjNz_IwiHOJxbSxaZkUIpW8KDQprrpEyDKWXsuyB9tdL-YhFCzyG8fd_P_rl_AAPTr_PD4-2oKHCMx0u2lwG1br-Q-3g-CnNi8aL2Pw_a7d-jddExiX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insider+Threat+Detection+Based+on+User+Behavior+Modeling+and+Anomaly+Detection+Algorithms&rft.jtitle=Applied+sciences&rft.au=Junhong+Kim&rft.au=Minsik+Park&rft.au=Haedong+Kim&rft.au=Suhyoun+Cho&rft.date=2019-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=19&rft.spage=4018&rft_id=info:doi/10.3390%2Fapp9194018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4549bd5c2a3541aa99000e234c04f94c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |