Recent Advances in Vibration Control Methods for Wind Turbine Towers

Wind power is a substantial resource to assist global efforts on the decarbonization of energy. The drive to increase capacity has led to ever-increasing blade tip heights and lightweight, slender towers. These structures are subject to a variety of environmental loads that give rise to vibrations w...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 14; no. 22; p. 7536
Main Authors Malliotakis, Georgios, Alevras, Panagiotis, Baniotopoulos, Charalampos
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wind power is a substantial resource to assist global efforts on the decarbonization of energy. The drive to increase capacity has led to ever-increasing blade tip heights and lightweight, slender towers. These structures are subject to a variety of environmental loads that give rise to vibrations with potentially catastrophic consequences, making the mitigation of the tower’s structural vibrations an important factor for low maintenance requirements and reduced damage risk. Recent advances in the most important vibration control methods for wind turbine towers are presented in this paper, exploring the impact of the installation environment harshness on the performance of state-of-the-art devices. An overview of the typical structural characteristics of a modern wind turbine tower is followed by a discussion of typical damages and their link to known collapse cases. Furthermore, the vibration properties of towers in harsh multi-hazard environments are presented and the typical design options are discussed. A comprehensive review of the most promising passive, active, and semi-active vibration control methods is conducted, focusing on recent advances around novel concepts and analyses of their performance under multiple environmental loads, including wind, waves, currents, and seismic excitations. The review highlights the benefits of installing structural systems in reducing the vibrational load of towers and therefore increasing their structural reliability and resilience to extreme events. It is also found that the stochastic nature of the typical tower loads remains a key issue for the design and the performance of the state-of-the-art vibration control methods.
AbstractList Wind power is a substantial resource to assist global efforts on the decarbonization of energy. The drive to increase capacity has led to ever-increasing blade tip heights and lightweight, slender towers. These structures are subject to a variety of environmental loads that give rise to vibrations with potentially catastrophic consequences, making the mitigation of the tower’s structural vibrations an important factor for low maintenance requirements and reduced damage risk. Recent advances in the most important vibration control methods for wind turbine towers are presented in this paper, exploring the impact of the installation environment harshness on the performance of state-of-the-art devices. An overview of the typical structural characteristics of a modern wind turbine tower is followed by a discussion of typical damages and their link to known collapse cases. Furthermore, the vibration properties of towers in harsh multi-hazard environments are presented and the typical design options are discussed. A comprehensive review of the most promising passive, active, and semi-active vibration control methods is conducted, focusing on recent advances around novel concepts and analyses of their performance under multiple environmental loads, including wind, waves, currents, and seismic excitations. The review highlights the benefits of installing structural systems in reducing the vibrational load of towers and therefore increasing their structural reliability and resilience to extreme events. It is also found that the stochastic nature of the typical tower loads remains a key issue for the design and the performance of the state-of-the-art vibration control methods.
Author Malliotakis, Georgios
Baniotopoulos, Charalampos
Alevras, Panagiotis
Author_xml – sequence: 1
  givenname: Georgios
  orcidid: 0000-0003-3790-6845
  surname: Malliotakis
  fullname: Malliotakis, Georgios
– sequence: 2
  givenname: Panagiotis
  surname: Alevras
  fullname: Alevras, Panagiotis
– sequence: 3
  givenname: Charalampos
  orcidid: 0000-0003-4740-8479
  surname: Baniotopoulos
  fullname: Baniotopoulos, Charalampos
BookMark eNptUMtKQzEQDaJgrW78goA7oTq56U1ullKfoAhSdRly89CUmmiSKv69sRUVcWYxw3DmzJmzhdZDDBahXQIHlAo4tIGMm4a3lK2hARGCjQhwuv6r30Q7Oc-gBqWEUjpAxzdW21DwkXlVQduMfcB3vk-q-BjwJIaS4hxf2fIYTcYuJnzvg8HTRep9sHga32zK22jDqXm2O191iG5PT6aT89Hl9dnF5OhypCkjZWRaAEVqciDOCNfxzgnoqbG2ihZVEVGtoK7tW63A9dw0HfAOdCeI6gynQ3Sx4jVRzeRz8k8qvcuovFwOYnqQKhWv51a6VgNowVn9dcxYJW6FJQ13DAjrrahceyuu5xRfFjYXOYuLFKp82TBoYAzNGCpqf4XSKeacrPu-SkB-mi5_TK9g-APWviyNLEn5-X8rHwfqgtw
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3325840
crossref_primary_10_3390_app14062538
crossref_primary_10_1016_j_engstruct_2023_115807
crossref_primary_10_1016_j_oceaneng_2024_117486
crossref_primary_10_21926_aeer_2501013
crossref_primary_10_3390_en17102420
crossref_primary_10_1016_j_istruc_2023_03_004
crossref_primary_10_1016_j_rser_2023_113698
crossref_primary_10_1016_j_oceaneng_2024_119613
crossref_primary_10_1007_s00419_022_02165_7
crossref_primary_10_1007_s43452_023_00665_z
crossref_primary_10_3390_eng4010053
crossref_primary_10_1016_j_apenergy_2023_120908
crossref_primary_10_1142_S0219455423500499
crossref_primary_10_1002_suco_202300873
crossref_primary_10_1051_e3sconf_202456302033
crossref_primary_10_1016_j_oceaneng_2022_112105
crossref_primary_10_1016_j_oceaneng_2023_114365
crossref_primary_10_1016_j_oceaneng_2023_115974
crossref_primary_10_3390_s24196255
crossref_primary_10_1016_j_egyr_2024_03_014
crossref_primary_10_1016_j_oceaneng_2024_117412
crossref_primary_10_1016_j_renene_2024_120056
crossref_primary_10_1016_j_oceaneng_2024_120099
crossref_primary_10_1080_13632469_2023_2195949
crossref_primary_10_3390_vibration8010007
crossref_primary_10_3390_s22155691
crossref_primary_10_3390_en15186598
Cites_doi 10.1016/j.engstruct.2020.111403
10.1016/j.proeng.2017.09.325
10.1016/j.engstruct.2014.02.040
10.1002/we.1968
10.1002/we.2281
10.3390/en12101947
10.1061/(ASCE)CF.1943-5509.0001279
10.1002/stab.201201598
10.1061/(ASCE)CF.1943-5509.0000898
10.1016/j.rser.2015.05.078
10.1109/CDC.2015.7402399
10.1088/1757-899X/245/2/022040
10.1016/j.apor.2006.03.004
10.1063/1.4984259
10.17159/2309-8775/2015/v57n4a4
10.1016/j.engstruct.2018.02.006
10.1007/978-3-7091-0953-3
10.3390/en8010111
10.1016/j.jcsr.2012.12.016
10.1177/1077546315591445
10.1016/j.proeng.2017.09.535
10.1016/j.oceaneng.2018.11.055
10.1007/s00707-015-1536-7
10.1016/j.engstruct.2005.05.009
10.3390/en10071037
10.1016/j.soildyn.2012.12.014
10.1016/j.prostr.2019.08.037
10.1016/j.jsv.2019.05.052
10.1016/j.soildyn.2019.105705
10.1016/j.oceaneng.2018.11.005
10.1088/1742-6596/1037/3/032002
10.3844/ajeassp.2015.471.480
10.1007/s11431-013-5442-8
10.3390/en12234406
10.1016/j.engstruct.2019.109949
10.1016/j.conbuildmat.2015.11.047
10.3390/en14082109
10.1088/1757-899X/276/1/012034
10.1002/we.124
10.1016/j.soildyn.2020.106071
10.1016/j.soildyn.2018.04.028
10.1016/j.oceaneng.2015.09.033
10.1109/TCST.2013.2260825
10.3390/met10060732
10.1016/j.egypro.2017.10.373
10.1016/j.soildyn.2018.03.009
10.1016/j.oceaneng.2015.04.017
10.1016/j.engstruct.2019.110087
10.1016/j.soildyn.2020.106483
10.1016/j.oceaneng.2021.109473
10.1016/j.engstruct.2008.09.001
10.1155/2014/486524
10.1111/j.1467-8667.2012.00772.x
10.1016/j.soildyn.2019.03.008
10.1680/geot.7.00196
10.1002/we.2576
10.1016/j.jfranklin.2017.04.002
10.1002/stab.201410178
10.1177/1369433218817892
10.1007/s11367-008-0033-9
10.1016/j.jsv.2017.12.026
10.1260/030952402321039412
10.1016/j.oceaneng.2016.02.036
10.1016/j.ymssp.2017.06.016
10.1016/j.engfailanal.2019.06.045
10.1016/j.engstruct.2016.07.008
10.3390/en13153950
10.1002/we.2063
10.1016/j.rser.2015.06.027
10.1016/j.oceaneng.2018.04.041
10.1016/j.jweia.2015.10.007
10.1051/e3sconf/202018401094
10.1016/j.rser.2015.10.096
10.3390/en11123319
10.1016/j.engstruct.2015.04.026
10.1007/s11803-015-0006-5
10.1007/s13296-018-0124-9
10.1016/j.engstruct.2014.08.010
10.1016/j.engstruct.2011.12.013
10.1002/we.249
10.1016/j.proeng.2017.09.336
10.1016/j.enconman.2017.12.061
10.1016/j.strusafe.2013.08.004
10.1016/j.oceaneng.2020.108084
10.1088/0964-1726/24/8/085010
10.1680/jstbu.17.00167
10.1016/j.finel.2016.06.006
10.1016/j.engstruct.2016.04.020
10.1093/ce/zkz028
10.1139/L11-002
10.1016/S0141-0296(03)00059-2
10.1016/j.jcsr.2020.106228
10.1016/j.renene.2020.03.149
10.1016/j.egypro.2012.06.120
10.1016/j.istruc.2015.03.005
10.1016/j.oceaneng.2018.03.033
10.2172/990101
10.1016/j.renene.2013.09.023
10.1016/j.compstruct.2009.01.005
10.1016/j.oceaneng.2020.107196
10.1002/we.2381
10.1177/0309524X18777366
10.1016/j.ifacol.2015.10.287
10.1533/9780857090638.2.274
10.1016/j.enconman.2017.04.019
10.1016/j.cemconcomp.2018.11.016
10.1016/S0141-0296(02)00021-4
10.1016/j.rser.2020.109710
10.1007/s11071-018-4282-2
10.1016/j.jsv.2013.05.019
10.1016/j.ymssp.2020.106984
10.3390/en13153991
10.3390/en13236325
10.1080/15732479.2015.1076853
10.1016/j.renene.2017.12.090
10.1016/j.jcsr.2015.09.002
10.1016/j.marstruc.2021.102938
10.1016/j.enpol.2008.12.035
10.1016/j.tws.2012.02.011
10.3390/en13071538
10.1016/j.engfailanal.2012.08.013
10.1016/j.jsv.2017.08.050
10.1016/j.egypro.2017.10.364
10.1016/j.ymssp.2017.12.011
10.1016/j.jsv.2015.01.022
10.1016/j.compgeo.2016.11.010
10.1088/1755-1315/410/1/012046
10.1016/j.engstruct.2014.03.011
10.3844/ajeassp.2015.489.503
10.1049/iet-rpg.2013.0163
10.1016/j.promfg.2020.02.198
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en14227536
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_f5c00c9760004661a559e127f6016be9
10_3390_en14227536
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c361t-d500a1a1a701fd9f878f90b3dee75393131a593f5b5ca0fb7d280780c891a8d73
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Wed Aug 27 01:32:14 EDT 2025
Mon Jun 30 11:21:29 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
Tue Jul 01 01:27:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-d500a1a1a701fd9f878f90b3dee75393131a593f5b5ca0fb7d280780c891a8d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4740-8479
0000-0003-3790-6845
OpenAccessLink https://doaj.org/article/f5c00c9760004661a559e127f6016be9
PQID 2602040240
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_f5c00c9760004661a559e127f6016be9
proquest_journals_2602040240
crossref_primary_10_3390_en14227536
crossref_citationtrail_10_3390_en14227536
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Katsanos (ref_86) 2016; 19
Young (ref_34) 2017; 9
Colwell (ref_136) 2009; 31
Ma (ref_32) 2014; 57
Dallyn (ref_65) 2015; 3
Murtagh (ref_114) 2008; 11
Ali (ref_111) 2021; 141
ref_14
ref_12
Segeren (ref_76) 2014; 8
Koh (ref_52) 2016; 54
ref_133
ref_97
Tziavos (ref_68) 2019; 171
Vaiana (ref_54) 2021; 146
Rahman (ref_146) 2015; 51
ref_19
Gaur (ref_122) 2020; 132
ref_17
Rezaee (ref_157) 2018; 25
ref_15
Klein (ref_110) 2017; 199
Zhang (ref_130) 2016; 126
Zhang (ref_131) 2019; 22
Hemmati (ref_138) 2019; 172
Wang (ref_100) 2020; 13
Stavridou (ref_27) 2020; 4
Zhao (ref_78) 2019; 33
Lavanya (ref_48) 2020; 184
Heistermann (ref_75) 2015; 115
ref_127
Sabau (ref_28) 2018; 42
Dai (ref_123) 2021; 24
Malliotakis (ref_7) 2020; 410
Dimopoulos (ref_22) 2012; 54
Madsen (ref_61) 2017; 276
Jin (ref_33) 2018; 96
Sadowski (ref_88) 2016; 46
Prendergast (ref_112) 2015; 101
Wieling (ref_37) 2017; 137
Lotsberg (ref_70) 2012; 81
Hemmati (ref_140) 2019; 125
Zuo (ref_95) 2019; 121
Zuo (ref_116) 2020; 121
Brodersen (ref_148) 2017; 20
Zeng (ref_144) 2015; 8
(ref_30) 2021; 227
Nuta (ref_79) 2011; 38
Park (ref_154) 2019; 22
Santos (ref_24) 2018; 18
Stamatopoulos (ref_87) 2013; 46
Sarkar (ref_134) 2019; 457
(ref_16) 2021; 137
ref_73
Stewart (ref_118) 2013; 21
Lochan (ref_57) 2019; 17
Coudurier (ref_143) 2018; 165
Adam (ref_63) 2019; 104
Graham (ref_11) 2009; 37
Cabboi (ref_66) 2020; 209
Jung (ref_109) 2015; 109
Polyzois (ref_38) 2009; 90
ref_81
ref_80
Ruiz (ref_132) 2016; 227
Heistermann (ref_74) 2015; 98
Iliopoulos (ref_67) 2016; 122
ref_85
Asareh (ref_90) 2016; 120
ref_145
Xie (ref_113) 2020; 210
Hu (ref_92) 2020; 216
Ko (ref_102) 2020; 156
Michel (ref_49) 2018; 109
Schaumann (ref_64) 2017; 137
Buckley (ref_99) 2018; 120
Tziavos (ref_72) 2016; 169
Ha (ref_129) 2016; 116
Smith (ref_89) 2016; 30
ref_50
Gollub (ref_71) 2014; 83
Chen (ref_83) 2015; 147
Fitzgerald (ref_147) 2018; 419
(ref_10) 2005; 8
Wei (ref_93) 2014; 79
Martynowicz (ref_158) 2017; 23
Lavassas (ref_20) 2003; 25
Bazeos (ref_21) 2002; 24
ref_58
ref_56
Ghaemmaghami (ref_128) 2013; 28
ref_55
Chen (ref_124) 2021; 77
Jahangiri (ref_119) 2020; 206
Quilligan (ref_31) 2012; 36
Sun (ref_153) 2018; 99
Zountouridou (ref_13) 2021; 51
Jayasinghe (ref_9) 2017; 143
Si (ref_117) 2014; 69
ref_59
LeBlanc (ref_105) 2010; 60
Matos (ref_46) 2016; 12
Molenaar (ref_106) 2002; 26
Mensah (ref_137) 2014; 47
Chen (ref_126) 2013; 332
Vernardos (ref_36) 2015; 8
Sanz (ref_47) 2009; 14
Sun (ref_120) 2018; 105
Vaiana (ref_53) 2018; 93
Cong (ref_152) 2019; 22
Hu (ref_149) 2017; 354
Hu (ref_151) 2017; 410
ref_60
ref_69
Corciulo (ref_107) 2017; 83
Leng (ref_125) 2021; 236
Coudurier (ref_142) 2015; 28
Wang (ref_51) 2018; 158
Dimopoulos (ref_23) 2013; 83
Stavridou (ref_62) 2015; 8
Muskulus (ref_26) 2012; 24
Schaumann (ref_35) 2008; 460
Chou (ref_84) 2018; 162
ref_115
Zhang (ref_141) 2018; 1037
ref_39
Caterino (ref_155) 2015; 345
Yadav (ref_25) 2020; 172
Hussan (ref_121) 2018; 160
Patil (ref_91) 2016; 120
ref_104
ref_103
Kim (ref_96) 2014; 65
Koob (ref_43) 2016; 4
Chen (ref_139) 2015; 14
Gkantou (ref_41) 2017; 199
Wu (ref_135) 2005; 27
ref_44
ref_42
Zaaijer (ref_108) 2006; 28
Caterino (ref_156) 2017; 245
Rebelo (ref_45) 2014; 74
ref_101
ref_1
Li (ref_82) 2013; 27
ref_3
ref_2
Ma (ref_77) 2019; 172
Salvi (ref_150) 2015; 24
Marx (ref_29) 2015; 57
Koulatsou (ref_98) 2020; 44
Wang (ref_94) 2018; 113
ref_8
Kong (ref_18) 2013; 8
ref_5
ref_4
ref_6
Rebelo (ref_40) 2017; 199
References_xml – volume: 227
  start-page: 111403
  year: 2021
  ident: ref_30
  article-title: Behavior study of prestressed concrete wind-turbine tower in circular cross-section
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111403
– volume: 199
  start-page: 3218
  year: 2017
  ident: ref_110
  article-title: The Influence of Soil-Structure-Interaction on the Fatigue Analysis in the Foundation Design of Onshore Wind Turbines
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.325
– volume: 74
  start-page: 283
  year: 2014
  ident: ref_45
  article-title: Comparative life cycle assessment of tubular wind towers and foundations - Part 1: Structural design
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2014.02.040
– volume: 19
  start-page: 2113
  year: 2016
  ident: ref_86
  article-title: Wind turbines and seismic hazard: A state-of-the-art review
  publication-title: Wind Energy
  doi: 10.1002/we.1968
– volume: 22
  start-page: 239
  year: 2019
  ident: ref_131
  article-title: Real-time hybrid aeroelastic simulation of wind turbines with various types of full-scale tuned liquid dampers
  publication-title: Wind Energy
  doi: 10.1002/we.2281
– volume: 4
  start-page: 1
  year: 2016
  ident: ref_43
  article-title: Optimization of a hybrid tower for onshore wind turbines by Building Information Modeling and prefabrication techniques
  publication-title: Vis. Eng.
– ident: ref_133
  doi: 10.3390/en12101947
– volume: 33
  start-page: 4019015
  year: 2019
  ident: ref_78
  article-title: Wind Turbine Tower Failure Modes under Seismic and Wind Loads
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0001279
– ident: ref_39
– volume: 81
  start-page: 695
  year: 2012
  ident: ref_70
  article-title: Design of grouted connections for monopile offshore structures: Results from two Joint Industry Projects
  publication-title: Stahlbau
  doi: 10.1002/stab.201201598
– volume: 30
  start-page: 4016043
  year: 2016
  ident: ref_89
  article-title: Multihazard Assessment of Wind Turbine Towers under Simultaneous Application of Wind, Operation, and Seismic Loads
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000898
– volume: 51
  start-page: 43
  year: 2015
  ident: ref_146
  article-title: Performance enhancement of wind turbine systems with vibration control: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.05.078
– ident: ref_1
– ident: ref_115
  doi: 10.1109/CDC.2015.7402399
– volume: 245
  start-page: 022040
  year: 2017
  ident: ref_156
  article-title: Structural Control of a Wind Turbine Accounting for Second Order Effects
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/245/2/022040
– volume: 28
  start-page: 45
  year: 2006
  ident: ref_108
  article-title: Foundation modelling to assess dynamic behaviour of offshore wind turbines
  publication-title: Appl. Ocean. Res.
  doi: 10.1016/j.apor.2006.03.004
– volume: 460
  start-page: 65
  year: 2008
  ident: ref_35
  article-title: Sandwich-Towers for Wind Energy Converters
  publication-title: Dewi Mag.
– ident: ref_4
– ident: ref_56
– volume: 9
  start-page: 033305
  year: 2017
  ident: ref_34
  article-title: Methodology for optimizing composite towers for use on floating wind turbines
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4984259
– volume: 57
  start-page: 30
  year: 2015
  ident: ref_29
  article-title: Design aspects of concrete towers for wind turbines
  publication-title: J. South. African Inst. Civ. Eng.
  doi: 10.17159/2309-8775/2015/v57n4a4
– volume: 162
  start-page: 257
  year: 2018
  ident: ref_84
  article-title: Structural failure simulation of onshore wind turbines impacted by strong winds
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.02.006
– ident: ref_19
  doi: 10.1007/978-3-7091-0953-3
– volume: 8
  start-page: 111
  year: 2015
  ident: ref_144
  article-title: A new energy-absorbing device for motion suppression in deep-sea floating platforms
  publication-title: Energies
  doi: 10.3390/en8010111
– volume: 83
  start-page: 62
  year: 2013
  ident: ref_23
  article-title: Comparison of stiffening types of the cutout in tubular wind turbine towers
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2012.12.016
– volume: 13
  start-page: 1
  year: 2020
  ident: ref_100
  article-title: Resonance characteristics of onshore wind turbine tower structure considering the impedance of piled foundations
  publication-title: Arab. J. Geosci.
– volume: 23
  start-page: 3468
  year: 2017
  ident: ref_158
  article-title: Vibration control of wind turbine tower-nacelle model with magnetorheological tuned vibration absorber
  publication-title: JVC/J. Vib. Control.
  doi: 10.1177/1077546315591445
– volume: 199
  start-page: 3200
  year: 2017
  ident: ref_41
  article-title: On the structural response of a tall hybrid onshore wind turbine tower
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.535
– volume: 172
  start-page: 286
  year: 2019
  ident: ref_138
  article-title: Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2018.11.055
– volume: 227
  start-page: 3275
  year: 2016
  ident: ref_132
  article-title: Modeling and experimental validation of a new type of tuned liquid damper
  publication-title: Acta Mech.
  doi: 10.1007/s00707-015-1536-7
– volume: 27
  start-page: 1893
  year: 2005
  ident: ref_135
  article-title: Design guidelines for tuned liquid column damper for structures responding to wind
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2005.05.009
– ident: ref_97
  doi: 10.3390/en10071037
– volume: 46
  start-page: 77
  year: 2013
  ident: ref_87
  article-title: Response of a wind turbine subjected to near-fault excitation and comparison with the Greek Aseismic Code provisions
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2012.12.014
– volume: 17
  start-page: 276
  year: 2019
  ident: ref_57
  article-title: A review of fatigue performance of bolted connections in offshore wind turbines
  publication-title: Procedia Struct. Integr.
  doi: 10.1016/j.prostr.2019.08.037
– volume: 457
  start-page: 15
  year: 2019
  ident: ref_134
  article-title: Development of semi-active vibration control strategy for horizontal axis wind turbine tower using multiple magneto-rheological tuned liquid column dampers
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.05.052
– volume: 125
  start-page: 105705
  year: 2019
  ident: ref_140
  article-title: Fragility reduction of offshore wind turbines using tuned liquid column dampers
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2019.105705
– volume: 171
  start-page: 633
  year: 2019
  ident: ref_68
  article-title: Non-linear finite element analysis of grouted connections for offshore monopile wind turbines
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2018.11.005
– volume: 1037
  start-page: 032002
  year: 2018
  ident: ref_141
  article-title: Vibration control of floating offshore wind turbines using liquid column dampers
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1037/3/032002
– volume: 8
  start-page: 471
  year: 2015
  ident: ref_36
  article-title: Cross-section optimization of sandwich-type cylindrical wind turbine towers
  publication-title: Am. J. Eng. Appl. Sci.
  doi: 10.3844/ajeassp.2015.471.480
– ident: ref_103
– volume: 57
  start-page: 414
  year: 2014
  ident: ref_32
  article-title: Optimization design of prestressed concrete wind-turbine tower
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-013-5442-8
– ident: ref_60
  doi: 10.3390/en12234406
– volume: 209
  start-page: 1
  year: 2020
  ident: ref_66
  article-title: Vibration-assisted installation and decommissioning of a slip-joint
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.109949
– ident: ref_59
– volume: 122
  start-page: 855
  year: 2016
  ident: ref_67
  article-title: Assessment of grouted samples from monopile wind turbine foundations using combined non-destructive techniques
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.11.047
– ident: ref_55
  doi: 10.3390/en14082109
– volume: 276
  start-page: 012024
  year: 2017
  ident: ref_61
  article-title: Analytical and numerical investigation of bolted steel ring flange connection for offshore wind monopile foundations
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/276/1/012034
– volume: 8
  start-page: 125
  year: 2005
  ident: ref_10
  article-title: Beyond NIMBYism: Towards an integrated framework for understanding public perceptions of wind energy
  publication-title: Wind Energy
  doi: 10.1002/we.124
– ident: ref_3
– volume: 132
  start-page: 106071
  year: 2020
  ident: ref_122
  article-title: Tuned mass dampers in wind response control of wind turbine with soil-structure interaction
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2020.106071
– volume: 113
  start-page: 47
  year: 2018
  ident: ref_94
  article-title: Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2018.04.028
– volume: 109
  start-page: 479
  year: 2015
  ident: ref_109
  article-title: Effect of monopile foundation modeling on the structural response of a 5-MW offshore wind turbine tower
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2015.09.033
– volume: 21
  start-page: 1090
  year: 2013
  ident: ref_118
  article-title: Offshore wind turbine load reduction employing optimal passive tuned mass damping systems
  publication-title: IEEE Trans. Control. Syst. Technol.
  doi: 10.1109/TCST.2013.2260825
– ident: ref_58
  doi: 10.3390/met10060732
– volume: 137
  start-page: 196
  year: 2017
  ident: ref_64
  article-title: Fatigue behaviour of grouted connections at different ambient conditions and loading scenarios
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.10.373
– volume: 109
  start-page: 299
  year: 2018
  ident: ref_49
  article-title: Pile-grid foundations of onshore wind turbines considering soil-structure-interaction under seismic loading
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2018.03.009
– volume: 101
  start-page: 1
  year: 2015
  ident: ref_112
  article-title: An investigation into the effect of scour on the natural frequency of an offshore wind turbine
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2015.04.017
– volume: 210
  start-page: 110087
  year: 2020
  ident: ref_113
  article-title: Structural control and vibration issues in wind turbines: A review
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.110087
– ident: ref_14
– ident: ref_44
– volume: 141
  start-page: 106483
  year: 2021
  ident: ref_111
  article-title: Seismic assessment of wind turbines: How crucial is rotor-nacelle-assembly numerical modeling?
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2020.106483
– ident: ref_73
– volume: 236
  start-page: 109473
  year: 2021
  ident: ref_125
  article-title: Vibration control of offshore wind turbine under multiple hazards using single variable-stiffness tuned mass damper
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2021.109473
– volume: 31
  start-page: 358
  year: 2009
  ident: ref_136
  article-title: Tuned liquid column dampers in offshore wind turbines for structural control
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2008.09.001
– ident: ref_80
  doi: 10.1155/2014/486524
– volume: 28
  start-page: 38
  year: 2013
  ident: ref_128
  article-title: Numerical Modeling of Dynamic Behavior of Annular Tuned Liquid Dampers for Applications in Wind Towers
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2012.00772.x
– ident: ref_6
– ident: ref_50
– volume: 121
  start-page: 151
  year: 2019
  ident: ref_95
  article-title: Influence of earthquake ground motion modelling on the dynamic responses of offshore wind turbines
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2019.03.008
– volume: 60
  start-page: 79
  year: 2010
  ident: ref_105
  article-title: Response of stiff piles in sand to long-term cyclic lateral loading
  publication-title: Geotechnique
  doi: 10.1680/geot.7.00196
– volume: 24
  start-page: 323
  year: 2021
  ident: ref_123
  article-title: Effects of soil–structure interaction on the design of tuned mass damper to control the seismic response of wind turbine towers with gravity base
  publication-title: Wind Energy
  doi: 10.1002/we.2576
– ident: ref_81
– volume: 354
  start-page: 4311
  year: 2017
  ident: ref_149
  article-title: Active structural control for load mitigation of wind turbines via adaptive sliding-mode approach
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2017.04.002
– volume: 25
  start-page: 1
  year: 2018
  ident: ref_157
  article-title: Vibration control in wind turbines to achieve desired system-level performance under single and multiple hazard loadings
  publication-title: Struct. Control. Heal. Monit.
– volume: 83
  start-page: 522
  year: 2014
  ident: ref_71
  article-title: Flanged foundation connection of the offshore wind farm Amrumbank West—Concept, approval, design, tests and installation
  publication-title: Stahlbau
  doi: 10.1002/stab.201410178
– volume: 22
  start-page: 1544
  year: 2019
  ident: ref_152
  article-title: Using active tuned mass dampers with constrained stroke to simultaneously control vibrations in wind turbine blades and tower
  publication-title: Adv. Struct. Eng.
  doi: 10.1177/1369433218817892
– volume: 14
  start-page: 52
  year: 2009
  ident: ref_47
  article-title: Life-cycle assessment of a 2-MW rated power wind turbine: CML method
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-008-0033-9
– volume: 419
  start-page: 103
  year: 2018
  ident: ref_147
  article-title: Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.12.026
– volume: 26
  start-page: 211
  year: 2002
  ident: ref_106
  article-title: Wind turbine structural dynamics—A review of the principles for modern power generation, onshore and offshore
  publication-title: Wind Eng.
  doi: 10.1260/030952402321039412
– ident: ref_101
– volume: 116
  start-page: 157
  year: 2016
  ident: ref_129
  article-title: Pitch motion mitigation of spar-type floating substructure for offshore wind turbine using multilayer tuned liquid damper
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2016.02.036
– volume: 99
  start-page: 285
  year: 2018
  ident: ref_153
  article-title: Semi-active control of monopile offshore wind turbines under multi-hazards
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2017.06.016
– volume: 104
  start-page: 932
  year: 2019
  ident: ref_63
  article-title: Wind turbine tower collapse due to flange failure: FEM and DOE analyses
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2019.06.045
– volume: 169
  start-page: 183
  year: 2016
  ident: ref_72
  article-title: Grouted connections on offshore wind turbines: A review
  publication-title: Proc. Inst. Civ. Eng. Eng. Comput. Mech.
– volume: 126
  start-page: 417
  year: 2016
  ident: ref_130
  article-title: Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.07.008
– volume: 8
  start-page: 15
  year: 2013
  ident: ref_18
  article-title: A Study on Optimal Design of Filament Winding Composite Tower for 2 MW Class Horizontal Axis Wind Turbine Systems
  publication-title: Proc. ASME Turbo. Expo.
– volume: 137
  start-page: 1
  year: 2021
  ident: ref_16
  article-title: Considerations for the structural analysis and design of wind turbine towers: A review
  publication-title: Renew. Sustain. Energy Rev.
– ident: ref_42
  doi: 10.3390/en13153950
– volume: 20
  start-page: 783
  year: 2017
  ident: ref_148
  article-title: Active tuned mass damper for damping of offshore wind turbine vibrations
  publication-title: Wind Energy
  doi: 10.1002/we.2063
– volume: 51
  start-page: 433
  year: 2021
  ident: ref_13
  article-title: Offshore floating wind parks in the deep waters of Mediterranean Sea
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.06.027
– volume: 160
  start-page: 449
  year: 2018
  ident: ref_121
  article-title: Multiple tuned mass damper for multi-mode vibration reduction of offshore wind turbine under seismic excitation
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2018.04.041
– ident: ref_5
– volume: 147
  start-page: 132
  year: 2015
  ident: ref_83
  article-title: Failure investigation on a coastal wind farm damaged by super typhoon: A forensic engineering study
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2015.10.007
– volume: 184
  start-page: 1
  year: 2020
  ident: ref_48
  article-title: Foundation Types for Land and Offshore Sustainable Wind Energy Turbine Towers
  publication-title: E3S Web Conf.
  doi: 10.1051/e3sconf/202018401094
– volume: 54
  start-page: 797
  year: 2016
  ident: ref_52
  article-title: Downwind offshore wind turbines: Opportunities, trends and technical challenges
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.10.096
– ident: ref_127
  doi: 10.3390/en11123319
– volume: 98
  start-page: 151
  year: 2015
  ident: ref_74
  article-title: Friction connection vs. ring flange connection in steel towers for wind converters
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.04.026
– volume: 14
  start-page: 55
  year: 2015
  ident: ref_139
  article-title: Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD
  publication-title: Earthq. Eng. Eng. Vib.
  doi: 10.1007/s11803-015-0006-5
– volume: 18
  start-page: 1318
  year: 2018
  ident: ref_24
  article-title: Ultimate Strength of 10 MW Wind Turbine Tower Considering Opening, Stiffener, and Initial Imperfection
  publication-title: Int. J. Steel Struct.
  doi: 10.1007/s13296-018-0124-9
– volume: 79
  start-page: 58
  year: 2014
  ident: ref_93
  article-title: Incremental wind-wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2014.08.010
– volume: 36
  start-page: 270
  year: 2012
  ident: ref_31
  article-title: Fragility analysis of steel and concrete wind turbine towers
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2011.12.013
– volume: 11
  start-page: 305
  year: 2008
  ident: ref_114
  article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence
  publication-title: Wind Energy
  doi: 10.1002/we.249
– volume: 199
  start-page: 3236
  year: 2017
  ident: ref_40
  article-title: New Lattice-Tubular Tower for Onshore WEC—Part 1: Structural Optimization
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.336
– volume: 158
  start-page: 103
  year: 2018
  ident: ref_51
  article-title: A review on recent advancements of substructures for offshore wind turbines
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.12.061
– ident: ref_104
– volume: 47
  start-page: 78
  year: 2014
  ident: ref_137
  article-title: Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs)
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2013.08.004
– volume: 216
  start-page: 108084
  year: 2020
  ident: ref_92
  article-title: Dynamic analysis of offshore steel wind turbine towers subjected to wind, wave and current loading during construction
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2020.108084
– volume: 24
  start-page: 085010
  year: 2015
  ident: ref_150
  article-title: On the optimization of a hybrid tuned mass damper for impulse loading
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/8/085010
– volume: 172
  start-page: 547
  year: 2019
  ident: ref_77
  article-title: Wind turbine tower collapse cases: A historical overview
  publication-title: Proc. Inst. Civ. Eng. Struct. Build.
  doi: 10.1680/jstbu.17.00167
– volume: 120
  start-page: 57
  year: 2016
  ident: ref_90
  article-title: Fragility analysis of a 5-MW NREL wind turbine considering aero-elastic and seismic interaction using finite element method
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2016.06.006
– volume: 120
  start-page: 92
  year: 2016
  ident: ref_91
  article-title: Structural performance of a parked wind turbine tower subjected to strong ground motions
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.04.020
– volume: 4
  start-page: 48
  year: 2020
  ident: ref_27
  article-title: A comparative life-cycle analysis of tall onshore steel wind-turbine towers
  publication-title: Clean Energy
  doi: 10.1093/ce/zkz028
– ident: ref_69
– volume: 38
  start-page: 293
  year: 2011
  ident: ref_79
  article-title: Methodology for seismic risk assessment for tubular steel wind turbine towers: Application to canadian seismic environment
  publication-title: Can. J. Civ. Eng.
  doi: 10.1139/L11-002
– volume: 25
  start-page: 1097
  year: 2003
  ident: ref_20
  article-title: Analysis and design of the prototype of a steel 1-MW wind turbine tower
  publication-title: Eng. Struct.
  doi: 10.1016/S0141-0296(03)00059-2
– volume: 172
  start-page: 106228
  year: 2020
  ident: ref_25
  article-title: Imperfection insensitive thin cylindrical shells for next generation wind turbine towers
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2020.106228
– volume: 156
  start-page: 777
  year: 2020
  ident: ref_102
  article-title: A simplified structural model for monopile-supported offshore wind turbines with tapered towers
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.03.149
– volume: 24
  start-page: 371
  year: 2012
  ident: ref_26
  article-title: The full-height lattice tower concept
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.06.120
– volume: 3
  start-page: 90
  year: 2015
  ident: ref_65
  article-title: Experimental testing of grouted connections for offshore substructures: A critical review
  publication-title: Structures
  doi: 10.1016/j.istruc.2015.03.005
– volume: 165
  start-page: 277
  year: 2018
  ident: ref_143
  article-title: Modelling of a tuned liquid multi-column damper. Application to floating wind turbine for improved robustness against wave incidence
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2018.03.033
– ident: ref_15
  doi: 10.2172/990101
– volume: 65
  start-page: 250
  year: 2014
  ident: ref_96
  article-title: Seismic fragility analysis of 5MW offshore wind turbine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.09.023
– volume: 90
  start-page: 34
  year: 2009
  ident: ref_38
  article-title: Static and dynamic characteristics of multi-cell jointed GFRP wind turbine towers
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2009.01.005
– volume: 46
  start-page: 201
  year: 2016
  ident: ref_88
  article-title: Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections
  publication-title: J. Int. Assoc. Earthq. Eng.
– volume: 206
  start-page: 107196
  year: 2020
  ident: ref_119
  article-title: Three-dimensional vibration control of offshore floating wind turbines using multiple tuned mass dampers
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2020.107196
– volume: 22
  start-page: 1451
  year: 2019
  ident: ref_154
  article-title: An investigation on the impacts of passive and semiactive structural control on a fixed bottom and a floating offshore wind turbine
  publication-title: Wind Energy
  doi: 10.1002/we.2381
– volume: 42
  start-page: 353
  year: 2018
  ident: ref_28
  article-title: Stability analysis of newly developed polygonal cross-sections for lattice wind towers
  publication-title: Wind Eng.
  doi: 10.1177/0309524X18777366
– volume: 28
  start-page: 241
  year: 2015
  ident: ref_142
  article-title: Passive and semi-active control of an offshore floating wind turbine using a tuned liquid column damper
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.10.287
– ident: ref_8
  doi: 10.1533/9780857090638.2.274
– volume: 143
  start-page: 252
  year: 2017
  ident: ref_9
  article-title: A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.04.019
– volume: 96
  start-page: 87
  year: 2018
  ident: ref_33
  article-title: Development of lightweight engineered cementitious composite for durability enhancement of tall concrete wind towers
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2018.11.016
– volume: 24
  start-page: 1015
  year: 2002
  ident: ref_21
  article-title: Static, seismic and stability analyses of a prototype wind turbine steel tower
  publication-title: Eng. Struct.
  doi: 10.1016/S0141-0296(02)00021-4
– volume: 121
  start-page: 109710
  year: 2020
  ident: ref_116
  article-title: A state-of-the-art review on the vibration mitigation of wind turbines
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109710
– volume: 93
  start-page: 1647
  year: 2018
  ident: ref_53
  article-title: A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4282-2
– volume: 332
  start-page: 5271
  year: 2013
  ident: ref_126
  article-title: Tuned rolling-ball dampers for vibration control in wind turbines
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2013.05.019
– volume: 146
  start-page: 106984
  year: 2021
  ident: ref_54
  article-title: A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2020.106984
– ident: ref_145
  doi: 10.3390/en13153991
– ident: ref_17
  doi: 10.3390/en13236325
– volume: 12
  start-page: 1038
  year: 2016
  ident: ref_46
  article-title: Improved design of tubular wind tower foundations using steel micropiles
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732479.2015.1076853
– volume: 120
  start-page: 322
  year: 2018
  ident: ref_99
  article-title: Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.12.090
– volume: 115
  start-page: 445
  year: 2015
  ident: ref_75
  article-title: Connections in towers for wind converters, part I: Evaluation of down-scaled experiments
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2015.09.002
– volume: 77
  start-page: 1
  year: 2021
  ident: ref_124
  article-title: Passive control of jacket–type offshore wind turbine vibrations by single and multiple tuned mass dampers
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2021.102938
– volume: 37
  start-page: 3348
  year: 2009
  ident: ref_11
  article-title: Public perceptions of wind energy developments: Case studies from New Zealand
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.12.035
– volume: 54
  start-page: 140
  year: 2012
  ident: ref_22
  article-title: Experimental investigation of buckling of wind turbine tower cylindrical shells with opening and stiffening under bending
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2012.02.011
– ident: ref_12
  doi: 10.3390/en13071538
– ident: ref_2
– ident: ref_85
– volume: 27
  start-page: 165
  year: 2013
  ident: ref_82
  article-title: Design defect of wind turbine operating in typhoon activity zone
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2012.08.013
– volume: 410
  start-page: 447
  year: 2017
  ident: ref_151
  article-title: Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.08.050
– volume: 137
  start-page: 401
  year: 2017
  ident: ref_37
  article-title: The C-Tower project-A composite tower for offshore wind turbines
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2017.10.364
– volume: 105
  start-page: 338
  year: 2018
  ident: ref_120
  article-title: Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2017.12.011
– volume: 345
  start-page: 1
  year: 2015
  ident: ref_155
  article-title: Semi-active control of a wind turbine via magnetorheological dampers
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.01.022
– volume: 83
  start-page: 221
  year: 2017
  ident: ref_107
  article-title: Transient response of offshore wind turbines on monopiles in sand: Role of cyclic hydro–mechanical soil behaviour
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2016.11.010
– volume: 410
  start-page: 012046
  year: 2020
  ident: ref_7
  article-title: Small wind turbines: Sustainability criteria related to the local built environment
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/410/1/012046
– volume: 69
  start-page: 168
  year: 2014
  ident: ref_117
  article-title: Modelling and optimization of a passive structural control design for a spar-type floating wind turbine
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2014.03.011
– volume: 8
  start-page: 489
  year: 2015
  ident: ref_62
  article-title: Welded connections of wind turbine towers under fatigue loading: Finite element analysis and comparative study
  publication-title: Am. J. Eng. Appl. Sci.
  doi: 10.3844/ajeassp.2015.489.503
– volume: 8
  start-page: 422
  year: 2014
  ident: ref_76
  article-title: Investigation of a slip joint connection between the monopile and the tower of an offshore wind turbine
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2013.0163
– volume: 44
  start-page: 4
  year: 2020
  ident: ref_98
  article-title: Resonance Investigation and its Effects on Weight Optimization of Tubular Steel Wind Turbine Towers
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.02.198
SSID ssj0000331333
Score 2.420599
SecondaryResourceType review_article
Snippet Wind power is a substantial resource to assist global efforts on the decarbonization of energy. The drive to increase capacity has led to ever-increasing blade...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7536
SubjectTerms Alternative energy sources
Climate change
Design
Electricity
Emissions
Energy resources
Fossil fuels
Load
multi-hazard
Renewable resources
review
Trends
tuned liquid column damper
tuned mass damper
Turbines
vibration control
Wind farms
Wind power
wind turbine tower
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaJaAXD4tJs9lNTtKqpQgtIvVxW_IUQbba1v_vZDetiiJ7y-aSyWRmvpnkG4ROHaiRdDwUWZlOUkVIoplSiWLSWsNpzmx4OzwcZYP79OaJP8WE2yxeq1zYxMpQ24kJOfJziLs7oHDggC7e3pPQNSpUV2MLjVXUBBMsRAM1e9ej27tlloUwBiCM1bykDPD9uStD1gOC9OyHJ6oI-3_Z48rJ9DfRRowOcbfezi204spttP6NM3AHXUGgB44Cd-vi_Qy_lPghYN4gYXxZ3zzHw6ox9AxDSIofAXbj8ccUMLDD46or2i6671-PLwdJbIWQGJbReWI5IYrClxPqrfQiF14SzaxzsBQJi6SKS-a55kYRr3MbWG4EMUJSJWzO9lCjnJRuH2HXyYTXlqTUu1RRqXOvjPaZSqXQGVEtdLYQS2EiT3hoV_FaAF4IIiy-RNhCJ8u5bzU7xp-zekG6yxmB0boamEyfi3hACs8NIUaGOiFA9gyWw6WjndwHvhjtZAu1F3tTxGM2K76U4uD_34dorRMuo1SPCNuoMZ9-uCOIJub6OKrMJ8iTyNI
  priority: 102
  providerName: ProQuest
Title Recent Advances in Vibration Control Methods for Wind Turbine Towers
URI https://www.proquest.com/docview/2602040240
https://doaj.org/article/f5c00c9760004661a559e127f6016be9
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwGA06X_RBvOJ0joC--FCWNL0kj9vcBWFDZNO9laRJQJAqu_x_v6TdnCj4IoU-lEDb86X5zmmS8yF0a6AbCRO7SVamgkgSEigmZSCZ0DqPacq02zs8GifDafQwi2dbpb7cmrDSHrgErmXjnJBcuPkjkHIJlUCBDQ1T63xElPFb9yDnbYkpPwYzBuKLlX6kDHR9yxTubweQ8-RbBvJG_T_GYZ9c-kfosGKFuF0-zTHaMcUJOtjyCjxF90DwIEHgdjlpv8CvBX52Wtchi7vlinM88gWhFxioKH4BuY0nqzloX4MnvhraGZr2e5PuMKhKIAQ5S-gy0DEhksKREmq1sDzlVhDFtDHwKgJeEgARzMYqziWxKtXO3YaTnAsquU7ZOaoV74W5QNiECbdKk4haE0kqVGplrmwiI8FVQmQd3a1hyfLKH9yVqXjLQCc4CLMvCOvoZtP2o3TF-LVVx6G7aeGcrP0FiG9WxTf7K7511FjHJqs-r0UGIiyE0QfYyOV_3OMK7YduqYrfYthAteV8Za6BayxVE-3y_qCJ9jq98eNT03cyOA9m9BOkptIZ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07TxwxEB4BKQJFlBfKEUIskRQpVtjrfblAEYEcR-CojkC3-BkhoT1ydyjiT_EbmdnHQRSUDm23fhTjz54Ze2Y-gE8eYaR8So-s0kSJ5jwyUutIS-WcTUUuHeUOD4-zwUny4yw9W4DbLheGwiq7M7E-qN3Y0h35FtrdMQIOFdDXq98RsUbR62pHodHA4tDf_EGXbbp9sIfr-zmO-99Hu4OoZRWIrMzELHIp51rgl3MRnApFXgTFjXTeo-mupJBCp0qG1KRW82ByRwVjCm4LJXThconzLsKzRKImp8z0_v78TodLHC1lUwUV2_mWr-iOBefN_tJ7NT3AP6d_rdL6L-FFa4uynQY8r2DBV69h5UGFwjewh2YlqiW204QKTNlFxX6Sh03ryXabOHc2rGmopwwNYHaKTj4bXU_Q4_ZsVHOwvYWTJxHRKixV48q_A-bjrAjG8UQEn2ihTB60NSHTiSpMxnUPvnRiKW1blZzIMS5L9E5IhOW9CHuwOe971dTieLTXN5LuvAfVz65_jCe_ynY7liG1nFtFr5I8QRNFo2PlRZwHqk5jvOrBerc2Zbupp-U9BNf-3_wRng9Gw6Py6OD48D0sxxQGU6cvrsPSbHLtP6AdMzMbNXgYnD81Wu8ACwoDww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gkhg5GJ9xEbUT9eBhst3T8-qDIcCyAZENMYtyG_tJSMgs7C4h_DV_HVXzWDQab2RuMz19qP66q6q7-vsAPniEkfIpHbJKEyWa88hIrSMtlXM2Fbl0dHf4cJztHSdfTtKTFfjV3YWhsspuTawXaje1tEc-wLg7RsChAxqEtiziaDjavLiMSEGKTlo7OY0GIgf-5hrTt_nn_SGO9cc4Hu1OdvaiVmEgsjITi8ilnGuBT85FcCoUeREUN9J5j2G8kkIKnSoZUpNazYPJHZHHFNwWSujC5RL7fQCrOWVFPVjd3h0ffVvu8HCJ_0vZcKJKqfjAV7Tjgj1nf3jBWizgL19QO7jRE3jcRqZsq4HSU1jx1TNY-42v8DkMMchEJ8W2msKBOTur2HfKt2l02U5T9c4Oa1HqOcNwmP3AlJ9NrmaYf3s2qRXZXsDxvRjpJfSqaeVfAfNxVgTjeCKCT7RQJg_ampDpRBUm47oPnzqzlLblKCepjPMScxUyYXlnwj68X7a9aJg5_tlqm6y7bEFs2vWL6ey0bCdnGVLLuVV0RskTDFg0pllexHkgrhrjVR82urEp2yk-L-8Auf7_z-_gISK1_Lo_PngNj2KqianvMm5AbzG78m8wqFmYty16GPy8b8DeAmV5CVU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Vibration+Control+Methods+for+Wind+Turbine+Towers&rft.jtitle=Energies+%28Basel%29&rft.au=Georgios+Malliotakis&rft.au=Panagiotis+Alevras&rft.au=Charalampos+Baniotopoulos&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=22&rft.spage=7536&rft_id=info:doi/10.3390%2Fen14227536&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f5c00c9760004661a559e127f6016be9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon