Recent Advances in Vibration Control Methods for Wind Turbine Towers
Wind power is a substantial resource to assist global efforts on the decarbonization of energy. The drive to increase capacity has led to ever-increasing blade tip heights and lightweight, slender towers. These structures are subject to a variety of environmental loads that give rise to vibrations w...
Saved in:
Published in | Energies (Basel) Vol. 14; no. 22; p. 7536 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wind power is a substantial resource to assist global efforts on the decarbonization of energy. The drive to increase capacity has led to ever-increasing blade tip heights and lightweight, slender towers. These structures are subject to a variety of environmental loads that give rise to vibrations with potentially catastrophic consequences, making the mitigation of the tower’s structural vibrations an important factor for low maintenance requirements and reduced damage risk. Recent advances in the most important vibration control methods for wind turbine towers are presented in this paper, exploring the impact of the installation environment harshness on the performance of state-of-the-art devices. An overview of the typical structural characteristics of a modern wind turbine tower is followed by a discussion of typical damages and their link to known collapse cases. Furthermore, the vibration properties of towers in harsh multi-hazard environments are presented and the typical design options are discussed. A comprehensive review of the most promising passive, active, and semi-active vibration control methods is conducted, focusing on recent advances around novel concepts and analyses of their performance under multiple environmental loads, including wind, waves, currents, and seismic excitations. The review highlights the benefits of installing structural systems in reducing the vibrational load of towers and therefore increasing their structural reliability and resilience to extreme events. It is also found that the stochastic nature of the typical tower loads remains a key issue for the design and the performance of the state-of-the-art vibration control methods. |
---|---|
AbstractList | Wind power is a substantial resource to assist global efforts on the decarbonization of energy. The drive to increase capacity has led to ever-increasing blade tip heights and lightweight, slender towers. These structures are subject to a variety of environmental loads that give rise to vibrations with potentially catastrophic consequences, making the mitigation of the tower’s structural vibrations an important factor for low maintenance requirements and reduced damage risk. Recent advances in the most important vibration control methods for wind turbine towers are presented in this paper, exploring the impact of the installation environment harshness on the performance of state-of-the-art devices. An overview of the typical structural characteristics of a modern wind turbine tower is followed by a discussion of typical damages and their link to known collapse cases. Furthermore, the vibration properties of towers in harsh multi-hazard environments are presented and the typical design options are discussed. A comprehensive review of the most promising passive, active, and semi-active vibration control methods is conducted, focusing on recent advances around novel concepts and analyses of their performance under multiple environmental loads, including wind, waves, currents, and seismic excitations. The review highlights the benefits of installing structural systems in reducing the vibrational load of towers and therefore increasing their structural reliability and resilience to extreme events. It is also found that the stochastic nature of the typical tower loads remains a key issue for the design and the performance of the state-of-the-art vibration control methods. |
Author | Malliotakis, Georgios Baniotopoulos, Charalampos Alevras, Panagiotis |
Author_xml | – sequence: 1 givenname: Georgios orcidid: 0000-0003-3790-6845 surname: Malliotakis fullname: Malliotakis, Georgios – sequence: 2 givenname: Panagiotis surname: Alevras fullname: Alevras, Panagiotis – sequence: 3 givenname: Charalampos orcidid: 0000-0003-4740-8479 surname: Baniotopoulos fullname: Baniotopoulos, Charalampos |
BookMark | eNptUMtKQzEQDaJgrW78goA7oTq56U1ullKfoAhSdRly89CUmmiSKv69sRUVcWYxw3DmzJmzhdZDDBahXQIHlAo4tIGMm4a3lK2hARGCjQhwuv6r30Q7Oc-gBqWEUjpAxzdW21DwkXlVQduMfcB3vk-q-BjwJIaS4hxf2fIYTcYuJnzvg8HTRep9sHga32zK22jDqXm2O191iG5PT6aT89Hl9dnF5OhypCkjZWRaAEVqciDOCNfxzgnoqbG2ihZVEVGtoK7tW63A9dw0HfAOdCeI6gynQ3Sx4jVRzeRz8k8qvcuovFwOYnqQKhWv51a6VgNowVn9dcxYJW6FJQ13DAjrrahceyuu5xRfFjYXOYuLFKp82TBoYAzNGCpqf4XSKeacrPu-SkB-mi5_TK9g-APWviyNLEn5-X8rHwfqgtw |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3325840 crossref_primary_10_3390_app14062538 crossref_primary_10_1016_j_engstruct_2023_115807 crossref_primary_10_1016_j_oceaneng_2024_117486 crossref_primary_10_21926_aeer_2501013 crossref_primary_10_3390_en17102420 crossref_primary_10_1016_j_istruc_2023_03_004 crossref_primary_10_1016_j_rser_2023_113698 crossref_primary_10_1016_j_oceaneng_2024_119613 crossref_primary_10_1007_s00419_022_02165_7 crossref_primary_10_1007_s43452_023_00665_z crossref_primary_10_3390_eng4010053 crossref_primary_10_1016_j_apenergy_2023_120908 crossref_primary_10_1142_S0219455423500499 crossref_primary_10_1002_suco_202300873 crossref_primary_10_1051_e3sconf_202456302033 crossref_primary_10_1016_j_oceaneng_2022_112105 crossref_primary_10_1016_j_oceaneng_2023_114365 crossref_primary_10_1016_j_oceaneng_2023_115974 crossref_primary_10_3390_s24196255 crossref_primary_10_1016_j_egyr_2024_03_014 crossref_primary_10_1016_j_oceaneng_2024_117412 crossref_primary_10_1016_j_renene_2024_120056 crossref_primary_10_1016_j_oceaneng_2024_120099 crossref_primary_10_1080_13632469_2023_2195949 crossref_primary_10_3390_vibration8010007 crossref_primary_10_3390_s22155691 crossref_primary_10_3390_en15186598 |
Cites_doi | 10.1016/j.engstruct.2020.111403 10.1016/j.proeng.2017.09.325 10.1016/j.engstruct.2014.02.040 10.1002/we.1968 10.1002/we.2281 10.3390/en12101947 10.1061/(ASCE)CF.1943-5509.0001279 10.1002/stab.201201598 10.1061/(ASCE)CF.1943-5509.0000898 10.1016/j.rser.2015.05.078 10.1109/CDC.2015.7402399 10.1088/1757-899X/245/2/022040 10.1016/j.apor.2006.03.004 10.1063/1.4984259 10.17159/2309-8775/2015/v57n4a4 10.1016/j.engstruct.2018.02.006 10.1007/978-3-7091-0953-3 10.3390/en8010111 10.1016/j.jcsr.2012.12.016 10.1177/1077546315591445 10.1016/j.proeng.2017.09.535 10.1016/j.oceaneng.2018.11.055 10.1007/s00707-015-1536-7 10.1016/j.engstruct.2005.05.009 10.3390/en10071037 10.1016/j.soildyn.2012.12.014 10.1016/j.prostr.2019.08.037 10.1016/j.jsv.2019.05.052 10.1016/j.soildyn.2019.105705 10.1016/j.oceaneng.2018.11.005 10.1088/1742-6596/1037/3/032002 10.3844/ajeassp.2015.471.480 10.1007/s11431-013-5442-8 10.3390/en12234406 10.1016/j.engstruct.2019.109949 10.1016/j.conbuildmat.2015.11.047 10.3390/en14082109 10.1088/1757-899X/276/1/012034 10.1002/we.124 10.1016/j.soildyn.2020.106071 10.1016/j.soildyn.2018.04.028 10.1016/j.oceaneng.2015.09.033 10.1109/TCST.2013.2260825 10.3390/met10060732 10.1016/j.egypro.2017.10.373 10.1016/j.soildyn.2018.03.009 10.1016/j.oceaneng.2015.04.017 10.1016/j.engstruct.2019.110087 10.1016/j.soildyn.2020.106483 10.1016/j.oceaneng.2021.109473 10.1016/j.engstruct.2008.09.001 10.1155/2014/486524 10.1111/j.1467-8667.2012.00772.x 10.1016/j.soildyn.2019.03.008 10.1680/geot.7.00196 10.1002/we.2576 10.1016/j.jfranklin.2017.04.002 10.1002/stab.201410178 10.1177/1369433218817892 10.1007/s11367-008-0033-9 10.1016/j.jsv.2017.12.026 10.1260/030952402321039412 10.1016/j.oceaneng.2016.02.036 10.1016/j.ymssp.2017.06.016 10.1016/j.engfailanal.2019.06.045 10.1016/j.engstruct.2016.07.008 10.3390/en13153950 10.1002/we.2063 10.1016/j.rser.2015.06.027 10.1016/j.oceaneng.2018.04.041 10.1016/j.jweia.2015.10.007 10.1051/e3sconf/202018401094 10.1016/j.rser.2015.10.096 10.3390/en11123319 10.1016/j.engstruct.2015.04.026 10.1007/s11803-015-0006-5 10.1007/s13296-018-0124-9 10.1016/j.engstruct.2014.08.010 10.1016/j.engstruct.2011.12.013 10.1002/we.249 10.1016/j.proeng.2017.09.336 10.1016/j.enconman.2017.12.061 10.1016/j.strusafe.2013.08.004 10.1016/j.oceaneng.2020.108084 10.1088/0964-1726/24/8/085010 10.1680/jstbu.17.00167 10.1016/j.finel.2016.06.006 10.1016/j.engstruct.2016.04.020 10.1093/ce/zkz028 10.1139/L11-002 10.1016/S0141-0296(03)00059-2 10.1016/j.jcsr.2020.106228 10.1016/j.renene.2020.03.149 10.1016/j.egypro.2012.06.120 10.1016/j.istruc.2015.03.005 10.1016/j.oceaneng.2018.03.033 10.2172/990101 10.1016/j.renene.2013.09.023 10.1016/j.compstruct.2009.01.005 10.1016/j.oceaneng.2020.107196 10.1002/we.2381 10.1177/0309524X18777366 10.1016/j.ifacol.2015.10.287 10.1533/9780857090638.2.274 10.1016/j.enconman.2017.04.019 10.1016/j.cemconcomp.2018.11.016 10.1016/S0141-0296(02)00021-4 10.1016/j.rser.2020.109710 10.1007/s11071-018-4282-2 10.1016/j.jsv.2013.05.019 10.1016/j.ymssp.2020.106984 10.3390/en13153991 10.3390/en13236325 10.1080/15732479.2015.1076853 10.1016/j.renene.2017.12.090 10.1016/j.jcsr.2015.09.002 10.1016/j.marstruc.2021.102938 10.1016/j.enpol.2008.12.035 10.1016/j.tws.2012.02.011 10.3390/en13071538 10.1016/j.engfailanal.2012.08.013 10.1016/j.jsv.2017.08.050 10.1016/j.egypro.2017.10.364 10.1016/j.ymssp.2017.12.011 10.1016/j.jsv.2015.01.022 10.1016/j.compgeo.2016.11.010 10.1088/1755-1315/410/1/012046 10.1016/j.engstruct.2014.03.011 10.3844/ajeassp.2015.489.503 10.1049/iet-rpg.2013.0163 10.1016/j.promfg.2020.02.198 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/en14227536 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_f5c00c9760004661a559e127f6016be9 10_3390_en14227536 |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c361t-d500a1a1a701fd9f878f90b3dee75393131a593f5b5ca0fb7d280780c891a8d73 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:32:14 EDT 2025 Mon Jun 30 11:21:29 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 Tue Jul 01 01:27:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-d500a1a1a701fd9f878f90b3dee75393131a593f5b5ca0fb7d280780c891a8d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4740-8479 0000-0003-3790-6845 |
OpenAccessLink | https://doaj.org/article/f5c00c9760004661a559e127f6016be9 |
PQID | 2602040240 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f5c00c9760004661a559e127f6016be9 proquest_journals_2602040240 crossref_primary_10_3390_en14227536 crossref_citationtrail_10_3390_en14227536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Katsanos (ref_86) 2016; 19 Young (ref_34) 2017; 9 Colwell (ref_136) 2009; 31 Ma (ref_32) 2014; 57 Dallyn (ref_65) 2015; 3 Murtagh (ref_114) 2008; 11 Ali (ref_111) 2021; 141 ref_14 ref_12 Segeren (ref_76) 2014; 8 Koh (ref_52) 2016; 54 ref_133 ref_97 Tziavos (ref_68) 2019; 171 Vaiana (ref_54) 2021; 146 Rahman (ref_146) 2015; 51 ref_19 Gaur (ref_122) 2020; 132 ref_17 Rezaee (ref_157) 2018; 25 ref_15 Klein (ref_110) 2017; 199 Zhang (ref_130) 2016; 126 Zhang (ref_131) 2019; 22 Hemmati (ref_138) 2019; 172 Wang (ref_100) 2020; 13 Stavridou (ref_27) 2020; 4 Zhao (ref_78) 2019; 33 Lavanya (ref_48) 2020; 184 Heistermann (ref_75) 2015; 115 ref_127 Sabau (ref_28) 2018; 42 Dai (ref_123) 2021; 24 Malliotakis (ref_7) 2020; 410 Dimopoulos (ref_22) 2012; 54 Madsen (ref_61) 2017; 276 Jin (ref_33) 2018; 96 Sadowski (ref_88) 2016; 46 Prendergast (ref_112) 2015; 101 Wieling (ref_37) 2017; 137 Lotsberg (ref_70) 2012; 81 Hemmati (ref_140) 2019; 125 Zuo (ref_95) 2019; 121 Zuo (ref_116) 2020; 121 Brodersen (ref_148) 2017; 20 Zeng (ref_144) 2015; 8 (ref_30) 2021; 227 Nuta (ref_79) 2011; 38 Park (ref_154) 2019; 22 Santos (ref_24) 2018; 18 Stamatopoulos (ref_87) 2013; 46 Sarkar (ref_134) 2019; 457 (ref_16) 2021; 137 ref_73 Stewart (ref_118) 2013; 21 Lochan (ref_57) 2019; 17 Coudurier (ref_143) 2018; 165 Adam (ref_63) 2019; 104 Graham (ref_11) 2009; 37 Cabboi (ref_66) 2020; 209 Jung (ref_109) 2015; 109 Polyzois (ref_38) 2009; 90 ref_81 ref_80 Ruiz (ref_132) 2016; 227 Heistermann (ref_74) 2015; 98 Iliopoulos (ref_67) 2016; 122 ref_85 Asareh (ref_90) 2016; 120 ref_145 Xie (ref_113) 2020; 210 Hu (ref_92) 2020; 216 Ko (ref_102) 2020; 156 Michel (ref_49) 2018; 109 Schaumann (ref_64) 2017; 137 Buckley (ref_99) 2018; 120 Tziavos (ref_72) 2016; 169 Ha (ref_129) 2016; 116 Smith (ref_89) 2016; 30 ref_50 Gollub (ref_71) 2014; 83 Chen (ref_83) 2015; 147 Fitzgerald (ref_147) 2018; 419 (ref_10) 2005; 8 Wei (ref_93) 2014; 79 Martynowicz (ref_158) 2017; 23 Lavassas (ref_20) 2003; 25 Bazeos (ref_21) 2002; 24 ref_58 ref_56 Ghaemmaghami (ref_128) 2013; 28 ref_55 Chen (ref_124) 2021; 77 Jahangiri (ref_119) 2020; 206 Quilligan (ref_31) 2012; 36 Sun (ref_153) 2018; 99 Zountouridou (ref_13) 2021; 51 Jayasinghe (ref_9) 2017; 143 Si (ref_117) 2014; 69 ref_59 LeBlanc (ref_105) 2010; 60 Matos (ref_46) 2016; 12 Molenaar (ref_106) 2002; 26 Mensah (ref_137) 2014; 47 Chen (ref_126) 2013; 332 Vernardos (ref_36) 2015; 8 Sanz (ref_47) 2009; 14 Sun (ref_120) 2018; 105 Vaiana (ref_53) 2018; 93 Cong (ref_152) 2019; 22 Hu (ref_149) 2017; 354 Hu (ref_151) 2017; 410 ref_60 ref_69 Corciulo (ref_107) 2017; 83 Leng (ref_125) 2021; 236 Coudurier (ref_142) 2015; 28 Wang (ref_51) 2018; 158 Dimopoulos (ref_23) 2013; 83 Stavridou (ref_62) 2015; 8 Muskulus (ref_26) 2012; 24 Schaumann (ref_35) 2008; 460 Chou (ref_84) 2018; 162 ref_115 Zhang (ref_141) 2018; 1037 ref_39 Caterino (ref_155) 2015; 345 Yadav (ref_25) 2020; 172 Hussan (ref_121) 2018; 160 Patil (ref_91) 2016; 120 ref_104 ref_103 Kim (ref_96) 2014; 65 Koob (ref_43) 2016; 4 Chen (ref_139) 2015; 14 Gkantou (ref_41) 2017; 199 Wu (ref_135) 2005; 27 ref_44 ref_42 Zaaijer (ref_108) 2006; 28 Caterino (ref_156) 2017; 245 Rebelo (ref_45) 2014; 74 ref_101 ref_1 Li (ref_82) 2013; 27 ref_3 ref_2 Ma (ref_77) 2019; 172 Salvi (ref_150) 2015; 24 Marx (ref_29) 2015; 57 Koulatsou (ref_98) 2020; 44 Wang (ref_94) 2018; 113 ref_8 Kong (ref_18) 2013; 8 ref_5 ref_4 ref_6 Rebelo (ref_40) 2017; 199 |
References_xml | – volume: 227 start-page: 111403 year: 2021 ident: ref_30 article-title: Behavior study of prestressed concrete wind-turbine tower in circular cross-section publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.111403 – volume: 199 start-page: 3218 year: 2017 ident: ref_110 article-title: The Influence of Soil-Structure-Interaction on the Fatigue Analysis in the Foundation Design of Onshore Wind Turbines publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.09.325 – volume: 74 start-page: 283 year: 2014 ident: ref_45 article-title: Comparative life cycle assessment of tubular wind towers and foundations - Part 1: Structural design publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2014.02.040 – volume: 19 start-page: 2113 year: 2016 ident: ref_86 article-title: Wind turbines and seismic hazard: A state-of-the-art review publication-title: Wind Energy doi: 10.1002/we.1968 – volume: 22 start-page: 239 year: 2019 ident: ref_131 article-title: Real-time hybrid aeroelastic simulation of wind turbines with various types of full-scale tuned liquid dampers publication-title: Wind Energy doi: 10.1002/we.2281 – volume: 4 start-page: 1 year: 2016 ident: ref_43 article-title: Optimization of a hybrid tower for onshore wind turbines by Building Information Modeling and prefabrication techniques publication-title: Vis. Eng. – ident: ref_133 doi: 10.3390/en12101947 – volume: 33 start-page: 4019015 year: 2019 ident: ref_78 article-title: Wind Turbine Tower Failure Modes under Seismic and Wind Loads publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0001279 – ident: ref_39 – volume: 81 start-page: 695 year: 2012 ident: ref_70 article-title: Design of grouted connections for monopile offshore structures: Results from two Joint Industry Projects publication-title: Stahlbau doi: 10.1002/stab.201201598 – volume: 30 start-page: 4016043 year: 2016 ident: ref_89 article-title: Multihazard Assessment of Wind Turbine Towers under Simultaneous Application of Wind, Operation, and Seismic Loads publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000898 – volume: 51 start-page: 43 year: 2015 ident: ref_146 article-title: Performance enhancement of wind turbine systems with vibration control: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.05.078 – ident: ref_1 – ident: ref_115 doi: 10.1109/CDC.2015.7402399 – volume: 245 start-page: 022040 year: 2017 ident: ref_156 article-title: Structural Control of a Wind Turbine Accounting for Second Order Effects publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/245/2/022040 – volume: 28 start-page: 45 year: 2006 ident: ref_108 article-title: Foundation modelling to assess dynamic behaviour of offshore wind turbines publication-title: Appl. Ocean. Res. doi: 10.1016/j.apor.2006.03.004 – volume: 460 start-page: 65 year: 2008 ident: ref_35 article-title: Sandwich-Towers for Wind Energy Converters publication-title: Dewi Mag. – ident: ref_4 – ident: ref_56 – volume: 9 start-page: 033305 year: 2017 ident: ref_34 article-title: Methodology for optimizing composite towers for use on floating wind turbines publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4984259 – volume: 57 start-page: 30 year: 2015 ident: ref_29 article-title: Design aspects of concrete towers for wind turbines publication-title: J. South. African Inst. Civ. Eng. doi: 10.17159/2309-8775/2015/v57n4a4 – volume: 162 start-page: 257 year: 2018 ident: ref_84 article-title: Structural failure simulation of onshore wind turbines impacted by strong winds publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.02.006 – ident: ref_19 doi: 10.1007/978-3-7091-0953-3 – volume: 8 start-page: 111 year: 2015 ident: ref_144 article-title: A new energy-absorbing device for motion suppression in deep-sea floating platforms publication-title: Energies doi: 10.3390/en8010111 – volume: 83 start-page: 62 year: 2013 ident: ref_23 article-title: Comparison of stiffening types of the cutout in tubular wind turbine towers publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2012.12.016 – volume: 13 start-page: 1 year: 2020 ident: ref_100 article-title: Resonance characteristics of onshore wind turbine tower structure considering the impedance of piled foundations publication-title: Arab. J. Geosci. – volume: 23 start-page: 3468 year: 2017 ident: ref_158 article-title: Vibration control of wind turbine tower-nacelle model with magnetorheological tuned vibration absorber publication-title: JVC/J. Vib. Control. doi: 10.1177/1077546315591445 – volume: 199 start-page: 3200 year: 2017 ident: ref_41 article-title: On the structural response of a tall hybrid onshore wind turbine tower publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.09.535 – volume: 172 start-page: 286 year: 2019 ident: ref_138 article-title: Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2018.11.055 – volume: 227 start-page: 3275 year: 2016 ident: ref_132 article-title: Modeling and experimental validation of a new type of tuned liquid damper publication-title: Acta Mech. doi: 10.1007/s00707-015-1536-7 – volume: 27 start-page: 1893 year: 2005 ident: ref_135 article-title: Design guidelines for tuned liquid column damper for structures responding to wind publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2005.05.009 – ident: ref_97 doi: 10.3390/en10071037 – volume: 46 start-page: 77 year: 2013 ident: ref_87 article-title: Response of a wind turbine subjected to near-fault excitation and comparison with the Greek Aseismic Code provisions publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2012.12.014 – volume: 17 start-page: 276 year: 2019 ident: ref_57 article-title: A review of fatigue performance of bolted connections in offshore wind turbines publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2019.08.037 – volume: 457 start-page: 15 year: 2019 ident: ref_134 article-title: Development of semi-active vibration control strategy for horizontal axis wind turbine tower using multiple magneto-rheological tuned liquid column dampers publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.05.052 – volume: 125 start-page: 105705 year: 2019 ident: ref_140 article-title: Fragility reduction of offshore wind turbines using tuned liquid column dampers publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2019.105705 – volume: 171 start-page: 633 year: 2019 ident: ref_68 article-title: Non-linear finite element analysis of grouted connections for offshore monopile wind turbines publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2018.11.005 – volume: 1037 start-page: 032002 year: 2018 ident: ref_141 article-title: Vibration control of floating offshore wind turbines using liquid column dampers publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1037/3/032002 – volume: 8 start-page: 471 year: 2015 ident: ref_36 article-title: Cross-section optimization of sandwich-type cylindrical wind turbine towers publication-title: Am. J. Eng. Appl. Sci. doi: 10.3844/ajeassp.2015.471.480 – ident: ref_103 – volume: 57 start-page: 414 year: 2014 ident: ref_32 article-title: Optimization design of prestressed concrete wind-turbine tower publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-013-5442-8 – ident: ref_60 doi: 10.3390/en12234406 – volume: 209 start-page: 1 year: 2020 ident: ref_66 article-title: Vibration-assisted installation and decommissioning of a slip-joint publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.109949 – ident: ref_59 – volume: 122 start-page: 855 year: 2016 ident: ref_67 article-title: Assessment of grouted samples from monopile wind turbine foundations using combined non-destructive techniques publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.11.047 – ident: ref_55 doi: 10.3390/en14082109 – volume: 276 start-page: 012024 year: 2017 ident: ref_61 article-title: Analytical and numerical investigation of bolted steel ring flange connection for offshore wind monopile foundations publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/276/1/012034 – volume: 8 start-page: 125 year: 2005 ident: ref_10 article-title: Beyond NIMBYism: Towards an integrated framework for understanding public perceptions of wind energy publication-title: Wind Energy doi: 10.1002/we.124 – ident: ref_3 – volume: 132 start-page: 106071 year: 2020 ident: ref_122 article-title: Tuned mass dampers in wind response control of wind turbine with soil-structure interaction publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2020.106071 – volume: 113 start-page: 47 year: 2018 ident: ref_94 article-title: Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2018.04.028 – volume: 109 start-page: 479 year: 2015 ident: ref_109 article-title: Effect of monopile foundation modeling on the structural response of a 5-MW offshore wind turbine tower publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2015.09.033 – volume: 21 start-page: 1090 year: 2013 ident: ref_118 article-title: Offshore wind turbine load reduction employing optimal passive tuned mass damping systems publication-title: IEEE Trans. Control. Syst. Technol. doi: 10.1109/TCST.2013.2260825 – ident: ref_58 doi: 10.3390/met10060732 – volume: 137 start-page: 196 year: 2017 ident: ref_64 article-title: Fatigue behaviour of grouted connections at different ambient conditions and loading scenarios publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.10.373 – volume: 109 start-page: 299 year: 2018 ident: ref_49 article-title: Pile-grid foundations of onshore wind turbines considering soil-structure-interaction under seismic loading publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2018.03.009 – volume: 101 start-page: 1 year: 2015 ident: ref_112 article-title: An investigation into the effect of scour on the natural frequency of an offshore wind turbine publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2015.04.017 – volume: 210 start-page: 110087 year: 2020 ident: ref_113 article-title: Structural control and vibration issues in wind turbines: A review publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.110087 – ident: ref_14 – ident: ref_44 – volume: 141 start-page: 106483 year: 2021 ident: ref_111 article-title: Seismic assessment of wind turbines: How crucial is rotor-nacelle-assembly numerical modeling? publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2020.106483 – ident: ref_73 – volume: 236 start-page: 109473 year: 2021 ident: ref_125 article-title: Vibration control of offshore wind turbine under multiple hazards using single variable-stiffness tuned mass damper publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2021.109473 – volume: 31 start-page: 358 year: 2009 ident: ref_136 article-title: Tuned liquid column dampers in offshore wind turbines for structural control publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2008.09.001 – ident: ref_80 doi: 10.1155/2014/486524 – volume: 28 start-page: 38 year: 2013 ident: ref_128 article-title: Numerical Modeling of Dynamic Behavior of Annular Tuned Liquid Dampers for Applications in Wind Towers publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2012.00772.x – ident: ref_6 – ident: ref_50 – volume: 121 start-page: 151 year: 2019 ident: ref_95 article-title: Influence of earthquake ground motion modelling on the dynamic responses of offshore wind turbines publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2019.03.008 – volume: 60 start-page: 79 year: 2010 ident: ref_105 article-title: Response of stiff piles in sand to long-term cyclic lateral loading publication-title: Geotechnique doi: 10.1680/geot.7.00196 – volume: 24 start-page: 323 year: 2021 ident: ref_123 article-title: Effects of soil–structure interaction on the design of tuned mass damper to control the seismic response of wind turbine towers with gravity base publication-title: Wind Energy doi: 10.1002/we.2576 – ident: ref_81 – volume: 354 start-page: 4311 year: 2017 ident: ref_149 article-title: Active structural control for load mitigation of wind turbines via adaptive sliding-mode approach publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2017.04.002 – volume: 25 start-page: 1 year: 2018 ident: ref_157 article-title: Vibration control in wind turbines to achieve desired system-level performance under single and multiple hazard loadings publication-title: Struct. Control. Heal. Monit. – volume: 83 start-page: 522 year: 2014 ident: ref_71 article-title: Flanged foundation connection of the offshore wind farm Amrumbank West—Concept, approval, design, tests and installation publication-title: Stahlbau doi: 10.1002/stab.201410178 – volume: 22 start-page: 1544 year: 2019 ident: ref_152 article-title: Using active tuned mass dampers with constrained stroke to simultaneously control vibrations in wind turbine blades and tower publication-title: Adv. Struct. Eng. doi: 10.1177/1369433218817892 – volume: 14 start-page: 52 year: 2009 ident: ref_47 article-title: Life-cycle assessment of a 2-MW rated power wind turbine: CML method publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-008-0033-9 – volume: 419 start-page: 103 year: 2018 ident: ref_147 article-title: Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs) publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.12.026 – volume: 26 start-page: 211 year: 2002 ident: ref_106 article-title: Wind turbine structural dynamics—A review of the principles for modern power generation, onshore and offshore publication-title: Wind Eng. doi: 10.1260/030952402321039412 – ident: ref_101 – volume: 116 start-page: 157 year: 2016 ident: ref_129 article-title: Pitch motion mitigation of spar-type floating substructure for offshore wind turbine using multilayer tuned liquid damper publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2016.02.036 – volume: 99 start-page: 285 year: 2018 ident: ref_153 article-title: Semi-active control of monopile offshore wind turbines under multi-hazards publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2017.06.016 – volume: 104 start-page: 932 year: 2019 ident: ref_63 article-title: Wind turbine tower collapse due to flange failure: FEM and DOE analyses publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2019.06.045 – volume: 169 start-page: 183 year: 2016 ident: ref_72 article-title: Grouted connections on offshore wind turbines: A review publication-title: Proc. Inst. Civ. Eng. Eng. Comput. Mech. – volume: 126 start-page: 417 year: 2016 ident: ref_130 article-title: Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2016.07.008 – volume: 8 start-page: 15 year: 2013 ident: ref_18 article-title: A Study on Optimal Design of Filament Winding Composite Tower for 2 MW Class Horizontal Axis Wind Turbine Systems publication-title: Proc. ASME Turbo. Expo. – volume: 137 start-page: 1 year: 2021 ident: ref_16 article-title: Considerations for the structural analysis and design of wind turbine towers: A review publication-title: Renew. Sustain. Energy Rev. – ident: ref_42 doi: 10.3390/en13153950 – volume: 20 start-page: 783 year: 2017 ident: ref_148 article-title: Active tuned mass damper for damping of offshore wind turbine vibrations publication-title: Wind Energy doi: 10.1002/we.2063 – volume: 51 start-page: 433 year: 2021 ident: ref_13 article-title: Offshore floating wind parks in the deep waters of Mediterranean Sea publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.06.027 – volume: 160 start-page: 449 year: 2018 ident: ref_121 article-title: Multiple tuned mass damper for multi-mode vibration reduction of offshore wind turbine under seismic excitation publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2018.04.041 – ident: ref_5 – volume: 147 start-page: 132 year: 2015 ident: ref_83 article-title: Failure investigation on a coastal wind farm damaged by super typhoon: A forensic engineering study publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2015.10.007 – volume: 184 start-page: 1 year: 2020 ident: ref_48 article-title: Foundation Types for Land and Offshore Sustainable Wind Energy Turbine Towers publication-title: E3S Web Conf. doi: 10.1051/e3sconf/202018401094 – volume: 54 start-page: 797 year: 2016 ident: ref_52 article-title: Downwind offshore wind turbines: Opportunities, trends and technical challenges publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.10.096 – ident: ref_127 doi: 10.3390/en11123319 – volume: 98 start-page: 151 year: 2015 ident: ref_74 article-title: Friction connection vs. ring flange connection in steel towers for wind converters publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.04.026 – volume: 14 start-page: 55 year: 2015 ident: ref_139 article-title: Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD publication-title: Earthq. Eng. Eng. Vib. doi: 10.1007/s11803-015-0006-5 – volume: 18 start-page: 1318 year: 2018 ident: ref_24 article-title: Ultimate Strength of 10 MW Wind Turbine Tower Considering Opening, Stiffener, and Initial Imperfection publication-title: Int. J. Steel Struct. doi: 10.1007/s13296-018-0124-9 – volume: 79 start-page: 58 year: 2014 ident: ref_93 article-title: Incremental wind-wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2014.08.010 – volume: 36 start-page: 270 year: 2012 ident: ref_31 article-title: Fragility analysis of steel and concrete wind turbine towers publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2011.12.013 – volume: 11 start-page: 305 year: 2008 ident: ref_114 article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence publication-title: Wind Energy doi: 10.1002/we.249 – volume: 199 start-page: 3236 year: 2017 ident: ref_40 article-title: New Lattice-Tubular Tower for Onshore WEC—Part 1: Structural Optimization publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.09.336 – volume: 158 start-page: 103 year: 2018 ident: ref_51 article-title: A review on recent advancements of substructures for offshore wind turbines publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.12.061 – ident: ref_104 – volume: 47 start-page: 78 year: 2014 ident: ref_137 article-title: Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs) publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2013.08.004 – volume: 216 start-page: 108084 year: 2020 ident: ref_92 article-title: Dynamic analysis of offshore steel wind turbine towers subjected to wind, wave and current loading during construction publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2020.108084 – volume: 24 start-page: 085010 year: 2015 ident: ref_150 article-title: On the optimization of a hybrid tuned mass damper for impulse loading publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/8/085010 – volume: 172 start-page: 547 year: 2019 ident: ref_77 article-title: Wind turbine tower collapse cases: A historical overview publication-title: Proc. Inst. Civ. Eng. Struct. Build. doi: 10.1680/jstbu.17.00167 – volume: 120 start-page: 57 year: 2016 ident: ref_90 article-title: Fragility analysis of a 5-MW NREL wind turbine considering aero-elastic and seismic interaction using finite element method publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2016.06.006 – volume: 120 start-page: 92 year: 2016 ident: ref_91 article-title: Structural performance of a parked wind turbine tower subjected to strong ground motions publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2016.04.020 – volume: 4 start-page: 48 year: 2020 ident: ref_27 article-title: A comparative life-cycle analysis of tall onshore steel wind-turbine towers publication-title: Clean Energy doi: 10.1093/ce/zkz028 – ident: ref_69 – volume: 38 start-page: 293 year: 2011 ident: ref_79 article-title: Methodology for seismic risk assessment for tubular steel wind turbine towers: Application to canadian seismic environment publication-title: Can. J. Civ. Eng. doi: 10.1139/L11-002 – volume: 25 start-page: 1097 year: 2003 ident: ref_20 article-title: Analysis and design of the prototype of a steel 1-MW wind turbine tower publication-title: Eng. Struct. doi: 10.1016/S0141-0296(03)00059-2 – volume: 172 start-page: 106228 year: 2020 ident: ref_25 article-title: Imperfection insensitive thin cylindrical shells for next generation wind turbine towers publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2020.106228 – volume: 156 start-page: 777 year: 2020 ident: ref_102 article-title: A simplified structural model for monopile-supported offshore wind turbines with tapered towers publication-title: Renew. Energy doi: 10.1016/j.renene.2020.03.149 – volume: 24 start-page: 371 year: 2012 ident: ref_26 article-title: The full-height lattice tower concept publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.06.120 – volume: 3 start-page: 90 year: 2015 ident: ref_65 article-title: Experimental testing of grouted connections for offshore substructures: A critical review publication-title: Structures doi: 10.1016/j.istruc.2015.03.005 – volume: 165 start-page: 277 year: 2018 ident: ref_143 article-title: Modelling of a tuned liquid multi-column damper. Application to floating wind turbine for improved robustness against wave incidence publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2018.03.033 – ident: ref_15 doi: 10.2172/990101 – volume: 65 start-page: 250 year: 2014 ident: ref_96 article-title: Seismic fragility analysis of 5MW offshore wind turbine publication-title: Renew. Energy doi: 10.1016/j.renene.2013.09.023 – volume: 90 start-page: 34 year: 2009 ident: ref_38 article-title: Static and dynamic characteristics of multi-cell jointed GFRP wind turbine towers publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2009.01.005 – volume: 46 start-page: 201 year: 2016 ident: ref_88 article-title: Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections publication-title: J. Int. Assoc. Earthq. Eng. – volume: 206 start-page: 107196 year: 2020 ident: ref_119 article-title: Three-dimensional vibration control of offshore floating wind turbines using multiple tuned mass dampers publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2020.107196 – volume: 22 start-page: 1451 year: 2019 ident: ref_154 article-title: An investigation on the impacts of passive and semiactive structural control on a fixed bottom and a floating offshore wind turbine publication-title: Wind Energy doi: 10.1002/we.2381 – volume: 42 start-page: 353 year: 2018 ident: ref_28 article-title: Stability analysis of newly developed polygonal cross-sections for lattice wind towers publication-title: Wind Eng. doi: 10.1177/0309524X18777366 – volume: 28 start-page: 241 year: 2015 ident: ref_142 article-title: Passive and semi-active control of an offshore floating wind turbine using a tuned liquid column damper publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.10.287 – ident: ref_8 doi: 10.1533/9780857090638.2.274 – volume: 143 start-page: 252 year: 2017 ident: ref_9 article-title: A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.04.019 – volume: 96 start-page: 87 year: 2018 ident: ref_33 article-title: Development of lightweight engineered cementitious composite for durability enhancement of tall concrete wind towers publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2018.11.016 – volume: 24 start-page: 1015 year: 2002 ident: ref_21 article-title: Static, seismic and stability analyses of a prototype wind turbine steel tower publication-title: Eng. Struct. doi: 10.1016/S0141-0296(02)00021-4 – volume: 121 start-page: 109710 year: 2020 ident: ref_116 article-title: A state-of-the-art review on the vibration mitigation of wind turbines publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109710 – volume: 93 start-page: 1647 year: 2018 ident: ref_53 article-title: A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4282-2 – volume: 332 start-page: 5271 year: 2013 ident: ref_126 article-title: Tuned rolling-ball dampers for vibration control in wind turbines publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2013.05.019 – volume: 146 start-page: 106984 year: 2021 ident: ref_54 article-title: A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2020.106984 – ident: ref_145 doi: 10.3390/en13153991 – ident: ref_17 doi: 10.3390/en13236325 – volume: 12 start-page: 1038 year: 2016 ident: ref_46 article-title: Improved design of tubular wind tower foundations using steel micropiles publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2015.1076853 – volume: 120 start-page: 322 year: 2018 ident: ref_99 article-title: Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction publication-title: Renew. Energy doi: 10.1016/j.renene.2017.12.090 – volume: 115 start-page: 445 year: 2015 ident: ref_75 article-title: Connections in towers for wind converters, part I: Evaluation of down-scaled experiments publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2015.09.002 – volume: 77 start-page: 1 year: 2021 ident: ref_124 article-title: Passive control of jacket–type offshore wind turbine vibrations by single and multiple tuned mass dampers publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2021.102938 – volume: 37 start-page: 3348 year: 2009 ident: ref_11 article-title: Public perceptions of wind energy developments: Case studies from New Zealand publication-title: Energy Policy doi: 10.1016/j.enpol.2008.12.035 – volume: 54 start-page: 140 year: 2012 ident: ref_22 article-title: Experimental investigation of buckling of wind turbine tower cylindrical shells with opening and stiffening under bending publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2012.02.011 – ident: ref_12 doi: 10.3390/en13071538 – ident: ref_2 – ident: ref_85 – volume: 27 start-page: 165 year: 2013 ident: ref_82 article-title: Design defect of wind turbine operating in typhoon activity zone publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2012.08.013 – volume: 410 start-page: 447 year: 2017 ident: ref_151 article-title: Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.08.050 – volume: 137 start-page: 401 year: 2017 ident: ref_37 article-title: The C-Tower project-A composite tower for offshore wind turbines publication-title: Energy Proc. doi: 10.1016/j.egypro.2017.10.364 – volume: 105 start-page: 338 year: 2018 ident: ref_120 article-title: Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2017.12.011 – volume: 345 start-page: 1 year: 2015 ident: ref_155 article-title: Semi-active control of a wind turbine via magnetorheological dampers publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.01.022 – volume: 83 start-page: 221 year: 2017 ident: ref_107 article-title: Transient response of offshore wind turbines on monopiles in sand: Role of cyclic hydro–mechanical soil behaviour publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2016.11.010 – volume: 410 start-page: 012046 year: 2020 ident: ref_7 article-title: Small wind turbines: Sustainability criteria related to the local built environment publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/410/1/012046 – volume: 69 start-page: 168 year: 2014 ident: ref_117 article-title: Modelling and optimization of a passive structural control design for a spar-type floating wind turbine publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2014.03.011 – volume: 8 start-page: 489 year: 2015 ident: ref_62 article-title: Welded connections of wind turbine towers under fatigue loading: Finite element analysis and comparative study publication-title: Am. J. Eng. Appl. Sci. doi: 10.3844/ajeassp.2015.489.503 – volume: 8 start-page: 422 year: 2014 ident: ref_76 article-title: Investigation of a slip joint connection between the monopile and the tower of an offshore wind turbine publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2013.0163 – volume: 44 start-page: 4 year: 2020 ident: ref_98 article-title: Resonance Investigation and its Effects on Weight Optimization of Tubular Steel Wind Turbine Towers publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2020.02.198 |
SSID | ssj0000331333 |
Score | 2.420599 |
SecondaryResourceType | review_article |
Snippet | Wind power is a substantial resource to assist global efforts on the decarbonization of energy. The drive to increase capacity has led to ever-increasing blade... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 7536 |
SubjectTerms | Alternative energy sources Climate change Design Electricity Emissions Energy resources Fossil fuels Load multi-hazard Renewable resources review Trends tuned liquid column damper tuned mass damper Turbines vibration control Wind farms Wind power wind turbine tower |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaJaAXD4tJs9lNTtKqpQgtIvVxW_IUQbba1v_vZDetiiJ7y-aSyWRmvpnkG4ROHaiRdDwUWZlOUkVIoplSiWLSWsNpzmx4OzwcZYP79OaJP8WE2yxeq1zYxMpQ24kJOfJziLs7oHDggC7e3pPQNSpUV2MLjVXUBBMsRAM1e9ej27tlloUwBiCM1bykDPD9uStD1gOC9OyHJ6oI-3_Z48rJ9DfRRowOcbfezi204spttP6NM3AHXUGgB44Cd-vi_Qy_lPghYN4gYXxZ3zzHw6ox9AxDSIofAXbj8ccUMLDD46or2i6671-PLwdJbIWQGJbReWI5IYrClxPqrfQiF14SzaxzsBQJi6SKS-a55kYRr3MbWG4EMUJSJWzO9lCjnJRuH2HXyYTXlqTUu1RRqXOvjPaZSqXQGVEtdLYQS2EiT3hoV_FaAF4IIiy-RNhCJ8u5bzU7xp-zekG6yxmB0boamEyfi3hACs8NIUaGOiFA9gyWw6WjndwHvhjtZAu1F3tTxGM2K76U4uD_34dorRMuo1SPCNuoMZ9-uCOIJub6OKrMJ8iTyNI priority: 102 providerName: ProQuest |
Title | Recent Advances in Vibration Control Methods for Wind Turbine Towers |
URI | https://www.proquest.com/docview/2602040240 https://doaj.org/article/f5c00c9760004661a559e127f6016be9 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwGA06X_RBvOJ0joC--FCWNL0kj9vcBWFDZNO9laRJQJAqu_x_v6TdnCj4IoU-lEDb86X5zmmS8yF0a6AbCRO7SVamgkgSEigmZSCZ0DqPacq02zs8GifDafQwi2dbpb7cmrDSHrgErmXjnJBcuPkjkHIJlUCBDQ1T63xElPFb9yDnbYkpPwYzBuKLlX6kDHR9yxTubweQ8-RbBvJG_T_GYZ9c-kfosGKFuF0-zTHaMcUJOtjyCjxF90DwIEHgdjlpv8CvBX52Wtchi7vlinM88gWhFxioKH4BuY0nqzloX4MnvhraGZr2e5PuMKhKIAQ5S-gy0DEhksKREmq1sDzlVhDFtDHwKgJeEgARzMYqziWxKtXO3YaTnAsquU7ZOaoV74W5QNiECbdKk4haE0kqVGplrmwiI8FVQmQd3a1hyfLKH9yVqXjLQCc4CLMvCOvoZtP2o3TF-LVVx6G7aeGcrP0FiG9WxTf7K7511FjHJqs-r0UGIiyE0QfYyOV_3OMK7YduqYrfYthAteV8Za6BayxVE-3y_qCJ9jq98eNT03cyOA9m9BOkptIZ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07TxwxEB4BKQJFlBfKEUIskRQpVtjrfblAEYEcR-CojkC3-BkhoT1ydyjiT_EbmdnHQRSUDm23fhTjz54Ze2Y-gE8eYaR8So-s0kSJ5jwyUutIS-WcTUUuHeUOD4-zwUny4yw9W4DbLheGwiq7M7E-qN3Y0h35FtrdMQIOFdDXq98RsUbR62pHodHA4tDf_EGXbbp9sIfr-zmO-99Hu4OoZRWIrMzELHIp51rgl3MRnApFXgTFjXTeo-mupJBCp0qG1KRW82ByRwVjCm4LJXThconzLsKzRKImp8z0_v78TodLHC1lUwUV2_mWr-iOBefN_tJ7NT3AP6d_rdL6L-FFa4uynQY8r2DBV69h5UGFwjewh2YlqiW204QKTNlFxX6Sh03ryXabOHc2rGmopwwNYHaKTj4bXU_Q4_ZsVHOwvYWTJxHRKixV48q_A-bjrAjG8UQEn2ihTB60NSHTiSpMxnUPvnRiKW1blZzIMS5L9E5IhOW9CHuwOe971dTieLTXN5LuvAfVz65_jCe_ynY7liG1nFtFr5I8QRNFo2PlRZwHqk5jvOrBerc2Zbupp-U9BNf-3_wRng9Gw6Py6OD48D0sxxQGU6cvrsPSbHLtP6AdMzMbNXgYnD81Wu8ACwoDww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gkhg5GJ9xEbUT9eBhst3T8-qDIcCyAZENMYtyG_tJSMgs7C4h_DV_HVXzWDQab2RuMz19qP66q6q7-vsAPniEkfIpHbJKEyWa88hIrSMtlXM2Fbl0dHf4cJztHSdfTtKTFfjV3YWhsspuTawXaje1tEc-wLg7RsChAxqEtiziaDjavLiMSEGKTlo7OY0GIgf-5hrTt_nn_SGO9cc4Hu1OdvaiVmEgsjITi8ilnGuBT85FcCoUeREUN9J5j2G8kkIKnSoZUpNazYPJHZHHFNwWSujC5RL7fQCrOWVFPVjd3h0ffVvu8HCJ_0vZcKJKqfjAV7Tjgj1nf3jBWizgL19QO7jRE3jcRqZsq4HSU1jx1TNY-42v8DkMMchEJ8W2msKBOTur2HfKt2l02U5T9c4Oa1HqOcNwmP3AlJ9NrmaYf3s2qRXZXsDxvRjpJfSqaeVfAfNxVgTjeCKCT7RQJg_ampDpRBUm47oPnzqzlLblKCepjPMScxUyYXlnwj68X7a9aJg5_tlqm6y7bEFs2vWL6ey0bCdnGVLLuVV0RskTDFg0pllexHkgrhrjVR82urEp2yk-L-8Auf7_z-_gISK1_Lo_PngNj2KqianvMm5AbzG78m8wqFmYty16GPy8b8DeAmV5CVU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Vibration+Control+Methods+for+Wind+Turbine+Towers&rft.jtitle=Energies+%28Basel%29&rft.au=Georgios+Malliotakis&rft.au=Panagiotis+Alevras&rft.au=Charalampos+Baniotopoulos&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=22&rft.spage=7536&rft_id=info:doi/10.3390%2Fen14227536&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f5c00c9760004661a559e127f6016be9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |