Well-defined cyclic polymer synthesis via an efficient etherification-based bimolecular ring-closure strategy

The synthesis of cyclic polymers on a large scale is a challenging task for polymer scientists due to the requirement of ultra-high dilution conditions. In this paper, we demonstrate an alternative method to prepare cyclic polymers with moderate dilution and up to 1 gram scale. We employed a simple...

Full description

Saved in:
Bibliographic Details
Published inPolymer chemistry Vol. 12; no. 45; pp. 6616 - 6625
Main Authors Sharma, Sandeep, Ntetsikas, Konstantinos, Ladelta, Viko, Bhaumik, Saibal, Hadjichristidis, Nikos
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 23.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The synthesis of cyclic polymers on a large scale is a challenging task for polymer scientists due to the requirement of ultra-high dilution conditions. In this paper, we demonstrate an alternative method to prepare cyclic polymers with moderate dilution and up to 1 gram scale. We employed a simple Williamson etherification reaction to prepare cyclic polymers with a good solvent/non-solvent combination. In this way, various polystyrene (PS) and polyethylene glycol (PEG) cyclic homopolymers were synthesized. Anionic polymerization using high vacuum techniques combined with the postpolymerization reaction was used to generate linear dihydroxy PS precursors. The synthesized linear and cyclic homopolymers were fully characterized using various spectroscopic and analytical techniques, such as size exclusion chromatography (SEC), matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS), and differential scanning calorimetry (DSC). Detailed nuclear magnetic resonance (NMR) spectroscopic studies were also performed to obtain the complete structural information of the synthesized polymers.
AbstractList The synthesis of cyclic polymers on a large scale is a challenging task for polymer scientists due to the requirement of ultra-high dilution conditions. In this paper, we demonstrate an alternative method to prepare cyclic polymers with moderate dilution and up to 1 gram scale. We employed a simple Williamson etherification reaction to prepare cyclic polymers with a good solvent/non-solvent combination. In this way, various polystyrene (PS) and polyethylene glycol (PEG) cyclic homopolymers were synthesized. Anionic polymerization using high vacuum techniques combined with the postpolymerization reaction was used to generate linear dihydroxy PS precursors. The synthesized linear and cyclic homopolymers were fully characterized using various spectroscopic and analytical techniques, such as size exclusion chromatography (SEC), matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS), and differential scanning calorimetry (DSC). Detailed nuclear magnetic resonance (NMR) spectroscopic studies were also performed to obtain the complete structural information of the synthesized polymers.
Author Hadjichristidis, Nikos
Bhaumik, Saibal
Ntetsikas, Konstantinos
Sharma, Sandeep
Ladelta, Viko
Author_xml – sequence: 1
  givenname: Sandeep
  orcidid: 0000-0003-3766-812X
  surname: Sharma
  fullname: Sharma, Sandeep
  organization: Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
– sequence: 2
  givenname: Konstantinos
  orcidid: 0000-0002-9236-931X
  surname: Ntetsikas
  fullname: Ntetsikas, Konstantinos
  organization: Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
– sequence: 3
  givenname: Viko
  orcidid: 0000-0003-0596-7571
  surname: Ladelta
  fullname: Ladelta, Viko
  organization: Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
– sequence: 4
  givenname: Saibal
  surname: Bhaumik
  fullname: Bhaumik, Saibal
  organization: Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
– sequence: 5
  givenname: Nikos
  orcidid: 0000-0003-1442-1714
  surname: Hadjichristidis
  fullname: Hadjichristidis, Nikos
  organization: Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
BookMark eNptUE1LAzEQDVLBWnvxFwS8Cav52GSbo9SPCgU9KOJpyWYnNSWbrclW2H_v1oqCOJeZYd6bmfeO0Si0ARA6peSCEq4ur-njK6GcF4sDNKaFUJlSko1-apEfoWlKazIEpznjcoyaF_A-q8G6ADU2vfHO4E3r-wYiTn3o3iC5hD-cxjpgsNYZB6HDMAyiGzrduTZklU4DvXJN68FsvY44urDKjG_TNgJOXdQdrPoTdGi1TzD9zhP0fHvzNF9ky4e7-_nVMjNc0i6rST7jjM2MZLXgItdMkUqA5sLUurAcZEW4pTYnwgKnykoJM2W5VQLsTtgEne33bmL7voXUlet2G8NwsmSSUFZISdSAInuUiW1KEWxpXPelZ3jX-ZKScudr-evrQDn_Q9lE1-jY_wf-BK4ve8k
CitedBy_id crossref_primary_10_1016_j_saa_2024_124554
crossref_primary_10_1021_acsmacrolett_4c00772
crossref_primary_10_1021_acs_bioconjchem_4c00202
crossref_primary_10_1021_acs_macromol_3c00560
crossref_primary_10_1039_D2PY01457B
crossref_primary_10_1021_acspolymersau_2c00058
crossref_primary_10_1039_D4PY01269K
crossref_primary_10_1016_j_progpolymsci_2022_101606
crossref_primary_10_1021_acs_macromol_4c01857
Cites_doi 10.1021/ja108821p
10.1002/marc.201000353
10.1021/jacs.6b00800
10.1002/1099-0518(20000915)38:18<3211::AID-POLA10>3.0.CO;2-L
10.1021/ja0585836
10.1039/b809916m
10.1039/C6PY01149G
10.1016/S0032-3861(96)00485-5
10.1002/pi.4990270411
10.1002/pola.21016
10.1002/pola.25999
10.1039/D0PY01277G
10.1002/pola.28635
10.1021/ma60075a032
10.1021/ma00077a037
10.1002/marc.1993.030141107
10.1021/ma00240a002
10.1016/S0014-3057(01)00143-4
10.1002/pola.29253
10.1002/pol.20200309
10.1039/D1PY00209K
10.1038/s41557-020-0440-5
10.1016/0014-3057(80)90136-6
10.1021/acs.accounts.7b00338
10.1021/mz3002319
10.1021/acs.macromol.7b00361
10.1039/C5PY01861G
10.1002/anie.201601677
10.1007/12_2013_238
10.1021/acs.macromol.6b02614
10.1002/marc.201100094
10.1021/ma0121565
10.1039/C6PY00165C
10.1016/j.polymer.2006.10.008
10.1021/ma0623338
10.1002/pola.1988.080260804
10.1021/ma0100955
10.1021/ja9070317
10.1002/masy.19981320127
10.1021/ja073513f
10.1021/acs.macromol.6b02569
10.1021/acs.macromol.0c01511
10.1039/C6PY01983H
10.1021/acs.macromol.9b02326
10.1021/acs.macromol.6b01794
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1039/D1PY01337H
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-9962
EndPage 6625
ExternalDocumentID 10_1039_D1PY01337H
GroupedDBID 0-7
0R~
29O
4.4
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADNWM
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
7SR
8FD
JG9
ID FETCH-LOGICAL-c361t-d0483228c62d5354a290b5ea35cda7f3e6b03f1f405fe319f66e89f3f95ef1423
ISSN 1759-9954
IngestDate Sun Jun 29 15:42:18 EDT 2025
Tue Jul 01 03:34:18 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c361t-d0483228c62d5354a290b5ea35cda7f3e6b03f1f405fe319f66e89f3f95ef1423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9236-931X
0000-0003-0596-7571
0000-0003-1442-1714
0000-0003-3766-812X
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2021/py/d1py01337h
PQID 2601276609
PQPubID 2047483
PageCount 10
ParticipantIDs proquest_journals_2601276609
crossref_citationtrail_10_1039_D1PY01337H
crossref_primary_10_1039_D1PY01337H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-23
PublicationDateYYYYMMDD 2021-11-23
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-23
  day: 23
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Polymer chemistry
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yin (D1PY01337H/cit18) 1993; 26
Aucagne (D1PY01337H/cit44) 2007; 129
Edwards (D1PY01337H/cit5) 2019; 57
Yan (D1PY01337H/cit26) 1993; 14
Haque (D1PY01337H/cit1) 2020; 12
Hild (D1PY01337H/cit14) 1980; 16
Madani (D1PY01337H/cit20) 1992; 27
Watanabe (D1PY01337H/cit43) 2020; 58
Ga-Er (D1PY01337H/cit42) 1997; 38
Maya (D1PY01337H/cit28) 2016; 49
Quirk (D1PY01337H/cit35) 1998; 132
Touris (D1PY01337H/cit34) 2012; 1
Polymeropoulos (D1PY01337H/cit21) 2017; 50
Josse (D1PY01337H/cit3) 2016; 55
Geiser (D1PY01337H/cit15) 1980; 13
Laurent (D1PY01337H/cit29) 2006; 128
Shi (D1PY01337H/cit39) 2020; 11
Jia (D1PY01337H/cit2) 2012; 50
He (D1PY01337H/cit10) 2016; 7
Glassner (D1PY01337H/cit11) 2011; 32
Zhao (D1PY01337H/cit30) 2016; 7
Bhaumik (D1PY01337H/cit33) 2020; 53
Haiying (D1PY01337H/cit41) 2006; 47
Yamamoto (D1PY01337H/cit12) 2016; 138
Chang (D1PY01337H/cit6) 2017; 55
Roovers (D1PY01337H/cit16) 1983; 16
Hövelmann (D1PY01337H/cit27) 2017; 50
Uhrig (D1PY01337H/cit32) 2005; 43
Ladelta (D1PY01337H/cit40) 2017; 8
Sun (D1PY01337H/cit24) 2016; 7
Meuler (D1PY01337H/cit36) 2007; 40
Iatrou (D1PY01337H/cit19) 2002; 35
Schappacher (D1PY01337H/cit9) 2011; 133
Schappacher (D1PY01337H/cit13) 2001; 34
Tonhauser (D1PY01337H/cit38) 2010; 31
Boutillier (D1PY01337H/cit17) 2002; 38
Kusuyama (D1PY01337H/cit7) 2021; 12
Goldup (D1PY01337H/cit45) 2009; 131
Tezuka (D1PY01337H/cit23) 2017; 50
Laurent (D1PY01337H/cit4) 2009; 38
Zhang (D1PY01337H/cit25) 2020; 53
Sun (D1PY01337H/cit22) 2017; 50
Quirk (D1PY01337H/cit37) 1988; 26
Jia (D1PY01337H/cit8) 2013; 238
Hadjichristidis (D1PY01337H/cit31) 2000; 38
References_xml – volume: 133
  start-page: 1630
  year: 2011
  ident: D1PY01337H/cit9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja108821p
– volume: 31
  start-page: 1938
  year: 2010
  ident: D1PY01337H/cit38
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201000353
– volume: 138
  start-page: 3904
  year: 2016
  ident: D1PY01337H/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00800
– volume: 38
  start-page: 3211
  year: 2000
  ident: D1PY01337H/cit31
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/1099-0518(20000915)38:18<3211::AID-POLA10>3.0.CO;2-L
– volume: 128
  start-page: 4238
  year: 2006
  ident: D1PY01337H/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0585836
– volume: 38
  start-page: 2202
  year: 2009
  ident: D1PY01337H/cit4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b809916m
– volume: 7
  start-page: 5840
  year: 2016
  ident: D1PY01337H/cit10
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY01149G
– volume: 38
  start-page: 35
  year: 1997
  ident: D1PY01337H/cit42
  publication-title: Polymer
  doi: 10.1016/S0032-3861(96)00485-5
– volume: 27
  start-page: 353
  year: 1992
  ident: D1PY01337H/cit20
  publication-title: Polym. Int.
  doi: 10.1002/pi.4990270411
– volume: 43
  start-page: 6179
  year: 2005
  ident: D1PY01337H/cit32
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.21016
– volume: 50
  start-page: 2085
  year: 2012
  ident: D1PY01337H/cit2
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.25999
– volume: 11
  start-page: 7354
  year: 2020
  ident: D1PY01337H/cit39
  publication-title: Polym. Chem.
  doi: 10.1039/D0PY01277G
– volume: 55
  start-page: 2892
  year: 2017
  ident: D1PY01337H/cit6
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.28635
– volume: 13
  start-page: 653
  year: 1980
  ident: D1PY01337H/cit15
  publication-title: Macromolecules
  doi: 10.1021/ma60075a032
– volume: 26
  start-page: 6952
  year: 1993
  ident: D1PY01337H/cit18
  publication-title: Macromolecules
  doi: 10.1021/ma00077a037
– volume: 14
  start-page: 725
  year: 1993
  ident: D1PY01337H/cit26
  publication-title: Makromol. Chem., Rapid Commun.
  doi: 10.1002/marc.1993.030141107
– volume: 16
  start-page: 843
  year: 1983
  ident: D1PY01337H/cit16
  publication-title: Macromolecules
  doi: 10.1021/ma00240a002
– volume: 38
  start-page: 243
  year: 2002
  ident: D1PY01337H/cit17
  publication-title: Eur. Polym. J.
  doi: 10.1016/S0014-3057(01)00143-4
– volume: 57
  start-page: 228
  year: 2019
  ident: D1PY01337H/cit5
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.29253
– volume: 58
  start-page: 1982
  year: 2020
  ident: D1PY01337H/cit43
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.20200309
– volume: 12
  start-page: 2532
  year: 2021
  ident: D1PY01337H/cit7
  publication-title: Polym. Chem.
  doi: 10.1039/D1PY00209K
– volume: 12
  start-page: 433
  year: 2020
  ident: D1PY01337H/cit1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0440-5
– volume: 16
  start-page: 525
  year: 1980
  ident: D1PY01337H/cit14
  publication-title: Eur. Polym. J.
  doi: 10.1016/0014-3057(80)90136-6
– volume: 50
  start-page: 2661
  year: 2017
  ident: D1PY01337H/cit23
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00338
– volume: 1
  start-page: 768
  year: 2012
  ident: D1PY01337H/cit34
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz3002319
– volume: 50
  start-page: 4169
  year: 2017
  ident: D1PY01337H/cit27
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b00361
– volume: 7
  start-page: 1782
  year: 2016
  ident: D1PY01337H/cit30
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY01861G
– volume: 55
  start-page: 13944
  year: 2016
  ident: D1PY01337H/cit3
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201601677
– volume: 238
  start-page: 295
  volume-title: Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II
  year: 2013
  ident: D1PY01337H/cit8
  doi: 10.1007/12_2013_238
– volume: 50
  start-page: 1463
  year: 2017
  ident: D1PY01337H/cit22
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b02614
– volume: 32
  start-page: 724
  year: 2011
  ident: D1PY01337H/cit11
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201100094
– volume: 35
  start-page: 5426
  year: 2002
  ident: D1PY01337H/cit19
  publication-title: Macromolecules
  doi: 10.1021/ma0121565
– volume: 7
  start-page: 2239
  year: 2016
  ident: D1PY01337H/cit24
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY00165C
– volume: 47
  start-page: 8406
  year: 2006
  ident: D1PY01337H/cit41
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.10.008
– volume: 40
  start-page: 760
  year: 2007
  ident: D1PY01337H/cit36
  publication-title: Macromolecules
  doi: 10.1021/ma0623338
– volume: 26
  start-page: 2031
  year: 1988
  ident: D1PY01337H/cit37
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.1988.080260804
– volume: 34
  start-page: 5827
  year: 2001
  ident: D1PY01337H/cit13
  publication-title: Macromolecules
  doi: 10.1021/ma0100955
– volume: 131
  start-page: 15924
  year: 2009
  ident: D1PY01337H/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9070317
– volume: 132
  start-page: 281
  year: 1998
  ident: D1PY01337H/cit35
  publication-title: Macromol. Symp.
  doi: 10.1002/masy.19981320127
– volume: 129
  start-page: 11950
  year: 2007
  ident: D1PY01337H/cit44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja073513f
– volume: 50
  start-page: 1253
  year: 2017
  ident: D1PY01337H/cit21
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b02569
– volume: 53
  start-page: 8621
  year: 2020
  ident: D1PY01337H/cit25
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c01511
– volume: 8
  start-page: 511
  year: 2017
  ident: D1PY01337H/cit40
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY01983H
– volume: 53
  start-page: 6682
  year: 2020
  ident: D1PY01337H/cit33
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b02326
– volume: 49
  start-page: 7804
  year: 2016
  ident: D1PY01337H/cit28
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b01794
SSID ssj0000314236
Score 2.3742108
Snippet The synthesis of cyclic polymers on a large scale is a challenging task for polymer scientists due to the requirement of ultra-high dilution conditions. In...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 6616
SubjectTerms Anionic polymerization
Chemical synthesis
Dilution
High vacuum
Ions
NMR
Nuclear magnetic resonance
Polyethylene glycol
Polymer chemistry
Polymers
Polystyrene resins
Size exclusion chromatography
Solvents
Title Well-defined cyclic polymer synthesis via an efficient etherification-based bimolecular ring-closure strategy
URI https://www.proquest.com/docview/2601276609
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbK9gAvaPwSg4EswQuqAk3cOMvjgI2KlbGHlpWnKHFsLWqaVjSdVP4X_lfubMdNoULAS1q5URrdffGdL_d9JuQlV5HqBWnowXOElJxIeGmWxx5LsywH_MSRwje6ny74YNz_OAknnc6PVtfSqs5ei-87eSX_41UYA78iS_YfPOsuCgPwHfwLR_AwHP_Kx1eyLL1cKsgU865YCxSsXszL9UxLNFeQ26HcyI3mXWHnRqHZj13N8cUWIe0VDwMZpKHgNLtTbhdrfZ4o51g97C6Nfu3W699L-yei2S7OFWq0ErYpNSM7beGKzbWsl8XU0MfOTVJaF9XcpfRD1Ks0qeyXYjp3ZYLrdDUrpuaKRWYtYssUgY98PcMktv1NWAxpOlF1p0n7Bs3kG4Wxh_p0Jja1x36ZsYMWMvtha_6FbIO3YjnnhlX9W5zoMZRZzf3FGlJgFl1vomHTAXDxOTkbD4fJ6HQyukX2A1iFwDS6f3L-9sOVK-Kh9n-gt6F0995I4LL4zeby20nPdszXiczogNy1KxB6YuB0j3RkdZ_cdoZ6QGZtWFEDK2phRR2sKMCKphV1sKK7YEVbsKJtWNEGVg_J-Ox09G7g2V05PMG4X3s5bkIQBMeCB3nIwn4axL0slCkLRZ5Gikme9ZjyFawElIQJXnEuj2PFVBxKheZ6RPaqeSUfE5oj9RnW_ALWDSiSmfbDnPEIQobPJXwckleN2RJhJetx55Qy0a0TLE7e-5dftYkHh-SFO3dhhFp2nnXUWD-xD_IyQVW9IOK8Fz_5889PyZ0NtI_IXv1tJZ9BTlpnzy0yfgILtJSa
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well-defined+cyclic+polymer+synthesis+via+an+efficient+etherification-based+bimolecular+ring-closure+strategy&rft.jtitle=Polymer+chemistry&rft.au=Sharma%2C+Sandeep&rft.au=Ntetsikas%2C+Konstantinos&rft.au=Ladelta%2C+Viko&rft.au=Bhaumik%2C+Saibal&rft.date=2021-11-23&rft.pub=Royal+Society+of+Chemistry&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=12&rft.issue=45&rft.spage=6616&rft.epage=6625&rft_id=info:doi/10.1039%2Fd1py01337h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon