A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images
The detection of multiple changes (i.e., different kinds of change) in multitemporal remote sensing images is a complex problem. When multispectral images having B spectral bands are considered, an effective solution to this problem is to exploit all available spectral channels in the framework of s...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 50; no. 6; pp. 2196 - 2212 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.06.2012
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The detection of multiple changes (i.e., different kinds of change) in multitemporal remote sensing images is a complex problem. When multispectral images having B spectral bands are considered, an effective solution to this problem is to exploit all available spectral channels in the framework of supervised or partially supervised approaches. However, in many real applications, it is difficult/impossible to collect ground truth information for either multitemporal or single-date images. On the opposite, unsupervised methods available in the literature are not effective in handling the full information present in multispectral and multitemporal images. They usually consider a simplified subspace of the original feature space having small dimensionality and, thus, characterized by a possible loss of change information. In this paper, we present a framework for the detection of multiple changes in bitemporal and multispectral remote sensing images that allows one to overcome the limits of standard unsupervised methods. The framework is based on the following: 1) a compressed yet efficient 2-D representation of the change information and 2) a two-step automatic decision strategy. The effectiveness of the proposed approach has been tested on two bitemporal and multispectral data sets having different properties. Results obtained on both data sets confirm the effectiveness of the proposed approach. |
---|---|
AbstractList | The detection of multiple changes (i.e., different kinds of change) in multitemporal remote sensing images is a complex problem. When multispectral images having B spectral bands are considered, an effective solution to this problem is to exploit all available spectral channels in the framework of supervised or partially supervised approaches. However, in many real applications, it is difficult/impossible to collect ground truth information for either multitemporal or single-date images. On the opposite, unsupervised methods available in the literature are not effective in handling the full information present in multispectral and multitemporal images. They usually consider a simplified subspace of the original feature space having small dimensionality and, thus, characterized by a possible loss of change information. In this paper, we present a framework for the detection of multiple changes in bitemporal and multispectral remote sensing images that allows one to overcome the limits of standard unsupervised methods. The framework is based on the following: 1) a compressed yet efficient 2-D representation of the change information and 2) a two-step automatic decision strategy. The effectiveness of the proposed approach has been tested on two bitemporal and multispectral data sets having different properties. Results obtained on both data sets confirm the effectiveness of the proposed approach. |
Author | Marchesi, S. Bruzzone, L. Bovolo, Francesca |
Author_xml | – sequence: 1 givenname: Francesca surname: Bovolo fullname: Bovolo, Francesca email: francesca.bovolo@disi.unitn.it organization: Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy – sequence: 2 givenname: S. surname: Marchesi fullname: Marchesi, S. email: silvia.marchesi@disi.unitn.it organization: Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy – sequence: 3 givenname: L. surname: Bruzzone fullname: Bruzzone, L. email: lorenzo.bruzzone@ing.unitn.it organization: Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25982704$$DView record in Pascal Francis |
BookMark | eNp9kEtLAzEUhYMoWB8_QNxk43JqbmYmkyxLtVVQBK3r8TZzR6PzIkkV_70tVRcuXF04nO_A_Q7Ybtd3xNgJiDGAMOeL-f3DWAqAsYQCMpPusBHkuU6EyrJdNhJgVCK1kfvsIIRXISDLoRixpwmfeWzpo_dvvO49n6xi32J0lmNX8ccurAby7y5QxS8oko2u73hf89tVE93QEJ--YPdMgbtum0Vqh95jw69bXOdHbK_GJtDx9z1kj7PLxfQqubmbX08nN4lNFcTEIoGxRKC1oApIykwprVKRL80yBZsJTYVRqDNdWAsoxVID2apIKwSoRXrIzra7AwaLTe2xsy6Ug3ct-s9S5kbLQmTrXrHtWd-H4KkurYu4-Sp6dE0JotwILTdCy43Q8lvomoQ_5M_4f8zplnFE9NtXQudKmPQLFqeD4Q |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_3390_rs9030252 crossref_primary_10_1117_1_JRS_12_016025 crossref_primary_10_1080_2150704X_2015_1054045 crossref_primary_10_1109_TNNLS_2022_3184414 crossref_primary_10_1364_OE_460417 crossref_primary_10_1109_JSTARS_2023_3260112 crossref_primary_10_1016_j_rse_2013_01_018 crossref_primary_10_3390_rs12071099 crossref_primary_10_1109_TGRS_2024_3354118 crossref_primary_10_1117_1_JRS_10_016021 crossref_primary_10_1016_j_isprsjprs_2017_05_001 crossref_primary_10_1080_01431161_2017_1421794 crossref_primary_10_1016_j_isprsjprs_2022_01_004 crossref_primary_10_1109_MGRS_2019_2898520 crossref_primary_10_1109_TGRS_2024_3413542 crossref_primary_10_1016_j_ecolind_2023_110997 crossref_primary_10_1016_j_ejrs_2018_01_006 crossref_primary_10_1109_TGRS_2017_2759663 crossref_primary_10_1080_01431161_2019_1582111 crossref_primary_10_1080_22797254_2018_1465360 crossref_primary_10_3390_rs15102526 crossref_primary_10_1109_TGRS_2017_2655115 crossref_primary_10_1016_j_neucom_2022_10_074 crossref_primary_10_1109_TGRS_2014_2321277 crossref_primary_10_3390_rs14122838 crossref_primary_10_1109_JSTARS_2017_2712119 crossref_primary_10_1007_s11760_020_01738_9 crossref_primary_10_1109_TGRS_2019_2909781 crossref_primary_10_1109_TGRS_2020_3026099 crossref_primary_10_3390_app13116748 crossref_primary_10_1109_TGRS_2022_3181583 crossref_primary_10_1016_j_isprsjprs_2016_07_003 crossref_primary_10_1007_s11042_017_5120_0 crossref_primary_10_1109_JPROC_2012_2197169 crossref_primary_10_1109_JSTARS_2020_2990481 crossref_primary_10_1109_ACCESS_2024_3520428 crossref_primary_10_3390_rs16224223 crossref_primary_10_1109_TGRS_2024_3374421 crossref_primary_10_1016_j_geoderma_2013_10_017 crossref_primary_10_1109_JSTARS_2025_3525595 crossref_primary_10_1109_LGRS_2019_2941318 crossref_primary_10_3390_rs13152969 crossref_primary_10_1016_j_isprsjprs_2017_08_007 crossref_primary_10_1109_TGRS_2015_2396686 crossref_primary_10_1109_TGRS_2021_3130842 crossref_primary_10_1109_TGRS_2017_2765348 crossref_primary_10_1117_1_JRS_10_046028 crossref_primary_10_3390_rs14184646 crossref_primary_10_1080_01431161_2017_1371861 crossref_primary_10_1109_TGRS_2016_2593982 crossref_primary_10_1109_TGRS_2021_3053571 crossref_primary_10_1007_s11220_019_0252_0 crossref_primary_10_1080_23754931_2022_2062574 crossref_primary_10_1016_j_jag_2014_10_011 crossref_primary_10_1080_01431161_2018_1466079 crossref_primary_10_1109_TGRS_2024_3438290 crossref_primary_10_1109_TGRS_2012_2195727 crossref_primary_10_1016_j_patcog_2020_107598 crossref_primary_10_1109_JSTARS_2019_2892951 crossref_primary_10_3390_electronics11091486 crossref_primary_10_1109_TGRS_2022_3221489 crossref_primary_10_11834_jig_240031 crossref_primary_10_1109_TGRS_2023_3294300 crossref_primary_10_1109_TGRS_2024_3378526 crossref_primary_10_1016_j_inffus_2020_08_008 crossref_primary_10_1109_MGRS_2015_2443494 crossref_primary_10_15446_dyna_v85n204_68355 crossref_primary_10_1109_TIP_2022_3233187 crossref_primary_10_3390_rs13071381 crossref_primary_10_1109_TGRS_2023_3336791 crossref_primary_10_1109_LGRS_2021_3074423 crossref_primary_10_1109_TCYB_2016_2531179 crossref_primary_10_1109_JSTARS_2024_3522910 crossref_primary_10_29252_jgit_6_4_97 crossref_primary_10_1109_TGRS_2022_3161386 crossref_primary_10_3390_rs12111781 crossref_primary_10_1016_j_neucom_2014_06_024 crossref_primary_10_3390_rs14040841 crossref_primary_10_1117_1_JRS_12_035014 crossref_primary_10_1016_j_measurement_2018_05_097 crossref_primary_10_1016_j_asoc_2019_106015 crossref_primary_10_3390_rs9101044 crossref_primary_10_1016_j_patcog_2017_01_002 crossref_primary_10_1080_10095020_2022_2128902 crossref_primary_10_1109_TGRS_2015_2453955 crossref_primary_10_1016_j_isprsjprs_2020_02_005 crossref_primary_10_1109_JSTARS_2021_3119358 crossref_primary_10_1109_TGRS_2018_2886643 crossref_primary_10_1109_TGRS_2022_3189188 crossref_primary_10_3390_rs10081295 crossref_primary_10_1109_TGRS_2020_2966865 crossref_primary_10_1109_TGRS_2025_3534881 crossref_primary_10_1109_TGRS_2024_3403237 crossref_primary_10_1109_JSTARS_2017_2657607 crossref_primary_10_1109_TGRS_2015_2505183 crossref_primary_10_1109_TGRS_2022_3174009 crossref_primary_10_1016_j_scitotenv_2021_150318 crossref_primary_10_1016_j_isprsjprs_2018_09_002 crossref_primary_10_1016_j_jksuci_2021_12_023 crossref_primary_10_1109_JPROC_2015_2462751 crossref_primary_10_1109_JSTARS_2020_3037070 crossref_primary_10_3390_sym14061138 crossref_primary_10_1080_01431161_2019_1591647 crossref_primary_10_1109_JSTARS_2019_2929514 crossref_primary_10_1109_LGRS_2016_2601930 crossref_primary_10_1016_j_asr_2017_01_027 crossref_primary_10_1109_TGRS_2023_3317701 crossref_primary_10_1109_TGRS_2024_3469930 crossref_primary_10_1109_TETCI_2024_3360331 crossref_primary_10_1109_TGRS_2023_3325316 crossref_primary_10_1016_j_ejrs_2018_03_005 crossref_primary_10_1109_JSTARS_2021_3088438 crossref_primary_10_1109_TGRS_2024_3352050 crossref_primary_10_1109_TGRS_2019_2948659 crossref_primary_10_3390_rs14215622 crossref_primary_10_1109_TGRS_2012_2210228 crossref_primary_10_1109_TGRS_2023_3286440 crossref_primary_10_1155_2018_8130470 crossref_primary_10_1007_s12145_021_00757_5 crossref_primary_10_1109_TGRS_2022_3158741 crossref_primary_10_1016_j_rse_2017_03_037 crossref_primary_10_1109_LGRS_2016_2619163 crossref_primary_10_1109_TGRS_2021_3131993 crossref_primary_10_29252_jgit_6_1_101 crossref_primary_10_1109_TGRS_2023_3260969 crossref_primary_10_1109_MGRS_2017_2762087 crossref_primary_10_3390_rs15071770 crossref_primary_10_1109_TGRS_2023_3325220 crossref_primary_10_3390_rs13050895 crossref_primary_10_1109_TIP_2015_2474710 crossref_primary_10_1109_TGRS_2021_3083364 crossref_primary_10_1109_TGRS_2014_2381645 crossref_primary_10_3390_rs15010246 crossref_primary_10_3390_rs13040725 crossref_primary_10_1109_ACCESS_2020_3047915 crossref_primary_10_1109_TGRS_2022_3154390 crossref_primary_10_1109_JSTARS_2021_3074538 crossref_primary_10_1109_TGRS_2024_3392696 crossref_primary_10_1109_JSTARS_2024_3389641 crossref_primary_10_3390_rs9101008 crossref_primary_10_1016_j_asoc_2022_109200 crossref_primary_10_1360_SSI_2022_0388 crossref_primary_10_1016_j_jag_2021_102492 crossref_primary_10_1109_TGRS_2018_2863224 crossref_primary_10_3390_rs15071868 crossref_primary_10_3390_rs8100850 crossref_primary_10_1016_j_asoc_2024_112160 crossref_primary_10_1016_j_isprsjprs_2016_02_013 crossref_primary_10_1109_TGRS_2023_3262928 crossref_primary_10_1080_22797254_2018_1482523 crossref_primary_10_1016_j_jag_2024_103663 crossref_primary_10_1016_j_rse_2016_01_003 crossref_primary_10_1080_01431161_2018_1452064 crossref_primary_10_3390_rs16214020 crossref_primary_10_1109_JSTARS_2024_3349775 crossref_primary_10_1109_LGRS_2022_3154745 crossref_primary_10_3390_rs13173394 crossref_primary_10_3390_s22030888 crossref_primary_10_3390_app12168297 crossref_primary_10_1080_2150704X_2014_912766 crossref_primary_10_1109_TGRS_2018_2872509 crossref_primary_10_1109_TNNLS_2023_3242075 crossref_primary_10_1109_JSTARS_2021_3108777 crossref_primary_10_1109_TGRS_2019_2894339 crossref_primary_10_3390_rs8070549 crossref_primary_10_1109_JSTARS_2024_3522135 crossref_primary_10_1109_TGRS_2019_2933251 crossref_primary_10_1109_TGRS_2021_3135567 crossref_primary_10_1109_TGRS_2012_2215332 crossref_primary_10_1109_TCYB_2021_3086884 crossref_primary_10_1080_17538947_2024_2398070 crossref_primary_10_1109_TCI_2017_2692645 crossref_primary_10_1016_j_jag_2021_102591 crossref_primary_10_1177_1094342013476120 crossref_primary_10_1109_TGRS_2018_2819367 crossref_primary_10_3390_rs11030258 crossref_primary_10_1109_JSTARS_2014_2363473 crossref_primary_10_1109_TGRS_2019_2951441 crossref_primary_10_1109_JSTARS_2024_3370151 crossref_primary_10_1016_j_rse_2015_12_031 crossref_primary_10_32604_jai_2022_034931 crossref_primary_10_1109_JSTARS_2020_3009116 crossref_primary_10_3390_rs13030440 crossref_primary_10_3390_rs15153739 crossref_primary_10_1016_j_isprsjprs_2015_02_005 crossref_primary_10_1109_LGRS_2021_3085022 crossref_primary_10_1109_TGRS_2023_3332338 crossref_primary_10_1016_j_rse_2017_09_022 crossref_primary_10_1109_JSTARS_2021_3064311 crossref_primary_10_1109_ACCESS_2019_2902613 crossref_primary_10_1016_j_scs_2021_102760 crossref_primary_10_1016_j_jag_2021_102348 crossref_primary_10_3390_rs10101578 crossref_primary_10_1080_2150704X_2023_2217527 crossref_primary_10_1109_TGRS_2018_2849692 crossref_primary_10_1080_01431161_2013_878062 crossref_primary_10_1080_01431161_2022_2123721 crossref_primary_10_1109_TGRS_2017_2650198 crossref_primary_10_1109_TGRS_2022_3200985 crossref_primary_10_1007_s12145_021_00734_y crossref_primary_10_1109_JSTARS_2014_2330808 crossref_primary_10_1109_TGRS_2020_3001584 crossref_primary_10_1155_2018_7274141 crossref_primary_10_1109_TGRS_2021_3067096 crossref_primary_10_1016_j_isprsjprs_2023_06_017 crossref_primary_10_1109_JSTARS_2019_2939133 crossref_primary_10_1109_TGRS_2024_3362914 crossref_primary_10_3390_rs13122241 crossref_primary_10_3390_rs13214269 crossref_primary_10_1016_j_jfranklin_2024_107424 crossref_primary_10_1109_TGRS_2024_3410131 crossref_primary_10_1109_TGRS_2023_3269892 crossref_primary_10_1109_LGRS_2019_2922198 crossref_primary_10_1109_JSTARS_2022_3159528 crossref_primary_10_1109_JSTARS_2024_3394571 crossref_primary_10_1016_j_rse_2015_01_006 |
Cites_doi | 10.1109/TGRS.2010.2045506 10.1109/79.543975 10.1016/0034-4257(93)90013-N 10.1109/TPAMI.2009.57 10.1109/TIP.2006.888195 10.1080/01431160500222608 10.14358/PERS.69.4.369 10.1080/0143116031000101675 10.1109/IGARSS.2008.4779815 10.1111/j.2517-6161.1977.tb01600.x 10.1117/12.510835 10.1109/ICDM.2001.989517 10.1109/TGRS.2008.916201 10.1080/0143116031000139863 10.1109/LGRS.2009.2025059 10.1109/IWSSIP.2008.4604384 10.1109/TIP.2004.838698 10.1109/LGRS.2009.2029248 10.1109/TGRS.2006.885408 10.1109/TGRS.2007.907604 10.1109/TGRS.2008.2001035 10.1016/j.patrec.2004.06.002 10.1109/LGRS.2008.2007429 10.1145/565117.565124 10.1080/01431160801950162 10.1109/TIP.2010.2045070 10.1109/36.843009 10.1109/LGRS.2008.915600 10.1145/601858.601862 10.1109/36.602528 10.1080/01431169508954622 10.1016/j.rse.2004.07.013 10.1109/TGRS.2004.830549 10.1109/TGRS.2009.2017014 10.1109/LGRS.2009.2021780 10.1080/014311697216702 10.1109/36.905255 10.1109/TGRS.2008.916476 10.1109/TGRS.2009.2029095 10.1080/01431168908903939 10.1080/014311600750037552 10.1111/1467-9868.00293 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | 97E RIA RIE AAYXX CITATION IQODW |
DOI | 10.1109/TGRS.2011.2171493 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 2212 |
ExternalDocumentID | 25982704 10_1109_TGRS_2011_2171493 6085609 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG IQODW |
ID | FETCH-LOGICAL-c361t-cae19cee1880ed1e2246686305b9b31c408e796a8487cc1a20b81ecd73da11f03 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Wed Apr 02 08:12:31 EDT 2025 Tue Jul 01 05:25:00 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Tue Aug 26 17:18:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | ground truth detection multispectral remote sensing multitemporal images remote sensing thresholding procedure Bayes decision rule change detection (CD) low-dimensional representation channels solution standard samples change vector analysis (CVA) multiple changes strategy frame structure |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-cae19cee1880ed1e2246686305b9b31c408e796a8487cc1a20b81ecd73da11f03 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2011_2171493 pascalfrancis_primary_25982704 ieee_primary_6085609 crossref_primary_10_1109_TGRS_2011_2171493 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-01 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2012 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref15 ref14 ref52 ref11 ref10 ref17 ref16 ref19 ref18 dempster (ref38) 1977; 39 malila (ref22) 1980 ref51 ref50 sohn (ref30) 2002; 68 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 pelleg (ref40) 2000 ref8 ref7 ref9 ref4 ref3 ref6 ref5 gueguen (ref12) 2009 ref35 ref34 ref37 ref31 ref33 ref2 ref1 ref24 ref23 jain (ref43) 1986 ref26 ref25 ref20 ref21 girouard (ref27) 2004 ref28 ref29 macqueen (ref39) 1967 bash (ref32) 2002 schowengerdt (ref36) 1997 |
References_xml | – ident: ref11 doi: 10.1109/TGRS.2010.2045506 – year: 2002 ident: ref32 article-title: Assessing land cover changes using standardized principal component and spectral angle mapping techniques publication-title: Proc Pecora 15/Land Satell Inf IV/ISPRS Comm I/FIEOS – ident: ref37 doi: 10.1109/79.543975 – ident: ref26 doi: 10.1016/0034-4257(93)90013-N – ident: ref5 doi: 10.1109/TPAMI.2009.57 – ident: ref15 doi: 10.1109/TIP.2006.888195 – ident: ref16 doi: 10.1080/01431160500222608 – ident: ref23 doi: 10.14358/PERS.69.4.369 – ident: ref7 doi: 10.1080/0143116031000101675 – start-page: 599 year: 2004 ident: ref27 article-title: Validated spectral angle mapper algorithm for geological mapping: Comparative study between Quickbird and Landsat-TM publication-title: Proc 20th Int Soc Photogramm Remote Sens Congr – ident: ref29 doi: 10.1109/IGARSS.2008.4779815 – volume: 39 start-page: 1 year: 1977 ident: ref38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Statist Soc doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref35 doi: 10.1117/12.510835 – ident: ref42 doi: 10.1109/ICDM.2001.989517 – year: 1997 ident: ref36 publication-title: Remote Sensing Models and Methods for Image Processing – ident: ref1 doi: 10.1109/TGRS.2008.916201 – ident: ref8 doi: 10.1080/0143116031000139863 – start-page: 281 year: 1967 ident: ref39 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proc 5th Berkeley Symp Math Stat Probab – ident: ref21 doi: 10.1109/LGRS.2009.2025059 – ident: ref14 doi: 10.1109/IWSSIP.2008.4604384 – ident: ref9 doi: 10.1109/TIP.2004.838698 – ident: ref44 doi: 10.1109/LGRS.2009.2029248 – ident: ref17 doi: 10.1109/TGRS.2006.885408 – ident: ref45 doi: 10.1109/TGRS.2007.907604 – ident: ref28 doi: 10.1109/TGRS.2008.2001035 – ident: ref6 doi: 10.1016/j.patrec.2004.06.002 – ident: ref48 doi: 10.1109/LGRS.2008.2007429 – ident: ref51 doi: 10.1145/565117.565124 – start-page: 727 year: 2000 ident: ref40 article-title: X-means: Extending K-means with efficient estimation of the number of clusters publication-title: Proc 17th Int Conf Mach Learn – ident: ref24 doi: 10.1080/01431160801950162 – ident: ref47 doi: 10.1109/TIP.2010.2045070 – ident: ref19 doi: 10.1109/36.843009 – start-page: 326 year: 1980 ident: ref22 article-title: Change vector analysis: An approach for detecting forest publication-title: Proc LARS Mach Process Remotely Sensed – year: 1986 ident: ref43 publication-title: Handbook of Pattern Recognition and Image Processing – volume: 68 start-page: 1271 year: 2002 ident: ref30 article-title: Supervised and unsupervised spectral angle classifiers publication-title: Photogram Eng Remote Sens – ident: ref2 doi: 10.1109/LGRS.2008.915600 – ident: ref52 doi: 10.1145/601858.601862 – ident: ref4 doi: 10.1109/36.602528 – year: 2009 ident: ref12 article-title: Mixed information measure: Application to change detection in earth observation publication-title: Proc Int Workshop on the Analysis of Multi-Temporal Remote Sensing Images – ident: ref33 doi: 10.1080/01431169508954622 – ident: ref34 doi: 10.1016/j.rse.2004.07.013 – ident: ref31 doi: 10.1109/TGRS.2004.830549 – ident: ref46 doi: 10.1109/TGRS.2009.2017014 – ident: ref10 doi: 10.1109/LGRS.2009.2021780 – ident: ref25 doi: 10.1080/014311697216702 – ident: ref50 doi: 10.1109/36.905255 – ident: ref13 doi: 10.1109/TGRS.2008.916476 – ident: ref20 doi: 10.1109/TGRS.2009.2029095 – ident: ref49 doi: 10.1109/36.602528 – ident: ref3 doi: 10.1080/01431168908903939 – ident: ref18 doi: 10.1080/014311600750037552 – ident: ref41 doi: 10.1111/1467-9868.00293 |
SSID | ssj0014517 |
Score | 2.5198038 |
Snippet | The detection of multiple changes (i.e., different kinds of change) in multitemporal remote sensing images is a complex problem. When multispectral images... |
SourceID | pascalfrancis crossref ieee |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 2196 |
SubjectTerms | Accuracy Applied geophysics Bayes decision rule change detection (CD) change vector analysis (CVA) Data mining Earth sciences Earth, ocean, space Exact sciences and technology Feature extraction Geologic measurements Image coding Internal geophysics low-dimensional representation multiple changes multitemporal images Remote sensing thresholding procedure Vectors |
Title | A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images |
URI | https://ieeexplore.ieee.org/document/6085609 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH4CpElwYBsFUcYqH3aaSGsnqRMfq7Gum1QOrJV6C47tSIiSIpJc-PV7jt0IEEK7RYkdWfksv_fyvvc9gG9cUfTZVBKg9dcYoBQ8EGiWgiLVVKKFGuexrUaeX_HZMv6zGq924KKrhTHGtOQzM7SXbS5fb1Rjf5WNOPoH3Fbr7WLg5mq1uoxBPGa-NJoHGESEPoPJqBgtfl3_dWKdoW33LaIXNqhtqmIpkbLCr1K4dhbPbMz0I8y3q3PUkrthU-dD9fRKuPF_l_8JDr2zSSZud3yGHVMewcEzCcIj-NBSQFXVg5sJmW6ZWgRdWTJp6k0r6EpkqcmyrJoHe7BURpNLU7cUrpJsCjL3nETiKhUqclu6e172ak1-3-OpVR3Dcvpz8WMW-P4LgYo4qwMlDRNoRK1km9HMWO05nnI8IXKRR0zFNDWJ4DLFoEcpJkOap8wonURaMlbQ6AT2yk1pToFIjr5CznmimI6FDvMwGqMrZFiUSi1S3ge6RSRTXpzc9shYZ22QQkVmQcwsiJkHsQ_fuykPTpnjvcE9i0c30EPRh8EL2LvnodU1TGh89va8L7CPbw8dZewc9urHxnxF56TOB-2u_AcL8t9v |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VIgQc-GhBLB_FB7ggZWs7iRMfOKwoyy7t9gC7Um-pYzsSomQrkgjBb-Gv8N8Yx96oRYhbJW5RYieKPfG8id-8AXghNEXMprMIvb_BAKUSkUS3FFW5oQo9VFomLht5cSxmq-T9SXqyBT-HXBhrbU8-s2N32O_lm7Xu3K-yfYH4QFAZKJSH9vs3DNCa1_MDnM2XnE_fLt_MolBDINKxYG2klWUSHYGTHbOGWaefJnKBVl7KMmY6obnNpFA5AnetmeK0zJnVJouNYqyiMd73GlxHnJFynx027FEkKQvJ2CLCsIWHPVNG5f7y3YePXh6UuwLjMr7k9foyLo6EqRqch8oX0Ljg1aZ34ddmPDyZ5fO4a8ux_vGHVOT_OmD34E6A02Ti7f8-bNl6B25fEFncgRs9yVU3u3A6IdMNF40gWCeTrl33krVE1Yas6qY7d0tnYw05sG1PUqvJuiKLwLokPhejIZ9qfy4Ie52R-Rdcl5sHsLqSl30I2_W6to-AKIFoqBQi08wk0vCSxymCPcviXBmZixHQjQUUOsivuyogZ0UfhlFZOKMpnNEUwWhG8Grocu61R_7VeNfN_9AwTP0I9i6Z2XCdO-XGjCaP_97vOdycLRdHxdH8-PAJ3MIncU-Qewrb7dfOPkMo1pZ7_RdB4PSqLeo36zI8fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Automatic+and+Unsupervised+Detection+of+Multiple+Changes+in+Multitemporal+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=BOVOLO%2C+Francesca&rft.au=MARCHESI%2C+Silvia&rft.au=BRUZZONE%2C+Lorenzo&rft.date=2012-06-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0196-2892&rft.volume=50&rft.issue=6&rft.spage=2196&rft.epage=2212&rft_id=info:doi/10.1109%2FTGRS.2011.2171493&rft.externalDBID=n%2Fa&rft.externalDocID=25982704 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |