A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images

The detection of multiple changes (i.e., different kinds of change) in multitemporal remote sensing images is a complex problem. When multispectral images having B spectral bands are considered, an effective solution to this problem is to exploit all available spectral channels in the framework of s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 50; no. 6; pp. 2196 - 2212
Main Authors Bovolo, Francesca, Marchesi, S., Bruzzone, L.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2012
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detection of multiple changes (i.e., different kinds of change) in multitemporal remote sensing images is a complex problem. When multispectral images having B spectral bands are considered, an effective solution to this problem is to exploit all available spectral channels in the framework of supervised or partially supervised approaches. However, in many real applications, it is difficult/impossible to collect ground truth information for either multitemporal or single-date images. On the opposite, unsupervised methods available in the literature are not effective in handling the full information present in multispectral and multitemporal images. They usually consider a simplified subspace of the original feature space having small dimensionality and, thus, characterized by a possible loss of change information. In this paper, we present a framework for the detection of multiple changes in bitemporal and multispectral remote sensing images that allows one to overcome the limits of standard unsupervised methods. The framework is based on the following: 1) a compressed yet efficient 2-D representation of the change information and 2) a two-step automatic decision strategy. The effectiveness of the proposed approach has been tested on two bitemporal and multispectral data sets having different properties. Results obtained on both data sets confirm the effectiveness of the proposed approach.
AbstractList The detection of multiple changes (i.e., different kinds of change) in multitemporal remote sensing images is a complex problem. When multispectral images having B spectral bands are considered, an effective solution to this problem is to exploit all available spectral channels in the framework of supervised or partially supervised approaches. However, in many real applications, it is difficult/impossible to collect ground truth information for either multitemporal or single-date images. On the opposite, unsupervised methods available in the literature are not effective in handling the full information present in multispectral and multitemporal images. They usually consider a simplified subspace of the original feature space having small dimensionality and, thus, characterized by a possible loss of change information. In this paper, we present a framework for the detection of multiple changes in bitemporal and multispectral remote sensing images that allows one to overcome the limits of standard unsupervised methods. The framework is based on the following: 1) a compressed yet efficient 2-D representation of the change information and 2) a two-step automatic decision strategy. The effectiveness of the proposed approach has been tested on two bitemporal and multispectral data sets having different properties. Results obtained on both data sets confirm the effectiveness of the proposed approach.
Author Marchesi, S.
Bruzzone, L.
Bovolo, Francesca
Author_xml – sequence: 1
  givenname: Francesca
  surname: Bovolo
  fullname: Bovolo, Francesca
  email: francesca.bovolo@disi.unitn.it
  organization: Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy
– sequence: 2
  givenname: S.
  surname: Marchesi
  fullname: Marchesi, S.
  email: silvia.marchesi@disi.unitn.it
  organization: Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy
– sequence: 3
  givenname: L.
  surname: Bruzzone
  fullname: Bruzzone, L.
  email: lorenzo.bruzzone@ing.unitn.it
  organization: Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25982704$$DView record in Pascal Francis
BookMark eNp9kEtLAzEUhYMoWB8_QNxk43JqbmYmkyxLtVVQBK3r8TZzR6PzIkkV_70tVRcuXF04nO_A_Q7Ybtd3xNgJiDGAMOeL-f3DWAqAsYQCMpPusBHkuU6EyrJdNhJgVCK1kfvsIIRXISDLoRixpwmfeWzpo_dvvO49n6xi32J0lmNX8ccurAby7y5QxS8oko2u73hf89tVE93QEJ--YPdMgbtum0Vqh95jw69bXOdHbK_GJtDx9z1kj7PLxfQqubmbX08nN4lNFcTEIoGxRKC1oApIykwprVKRL80yBZsJTYVRqDNdWAsoxVID2apIKwSoRXrIzra7AwaLTe2xsy6Ug3ct-s9S5kbLQmTrXrHtWd-H4KkurYu4-Sp6dE0JotwILTdCy43Q8lvomoQ_5M_4f8zplnFE9NtXQudKmPQLFqeD4Q
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_rs9030252
crossref_primary_10_1117_1_JRS_12_016025
crossref_primary_10_1080_2150704X_2015_1054045
crossref_primary_10_1109_TNNLS_2022_3184414
crossref_primary_10_1364_OE_460417
crossref_primary_10_1109_JSTARS_2023_3260112
crossref_primary_10_1016_j_rse_2013_01_018
crossref_primary_10_3390_rs12071099
crossref_primary_10_1109_TGRS_2024_3354118
crossref_primary_10_1117_1_JRS_10_016021
crossref_primary_10_1016_j_isprsjprs_2017_05_001
crossref_primary_10_1080_01431161_2017_1421794
crossref_primary_10_1016_j_isprsjprs_2022_01_004
crossref_primary_10_1109_MGRS_2019_2898520
crossref_primary_10_1109_TGRS_2024_3413542
crossref_primary_10_1016_j_ecolind_2023_110997
crossref_primary_10_1016_j_ejrs_2018_01_006
crossref_primary_10_1109_TGRS_2017_2759663
crossref_primary_10_1080_01431161_2019_1582111
crossref_primary_10_1080_22797254_2018_1465360
crossref_primary_10_3390_rs15102526
crossref_primary_10_1109_TGRS_2017_2655115
crossref_primary_10_1016_j_neucom_2022_10_074
crossref_primary_10_1109_TGRS_2014_2321277
crossref_primary_10_3390_rs14122838
crossref_primary_10_1109_JSTARS_2017_2712119
crossref_primary_10_1007_s11760_020_01738_9
crossref_primary_10_1109_TGRS_2019_2909781
crossref_primary_10_1109_TGRS_2020_3026099
crossref_primary_10_3390_app13116748
crossref_primary_10_1109_TGRS_2022_3181583
crossref_primary_10_1016_j_isprsjprs_2016_07_003
crossref_primary_10_1007_s11042_017_5120_0
crossref_primary_10_1109_JPROC_2012_2197169
crossref_primary_10_1109_JSTARS_2020_2990481
crossref_primary_10_1109_ACCESS_2024_3520428
crossref_primary_10_3390_rs16224223
crossref_primary_10_1109_TGRS_2024_3374421
crossref_primary_10_1016_j_geoderma_2013_10_017
crossref_primary_10_1109_JSTARS_2025_3525595
crossref_primary_10_1109_LGRS_2019_2941318
crossref_primary_10_3390_rs13152969
crossref_primary_10_1016_j_isprsjprs_2017_08_007
crossref_primary_10_1109_TGRS_2015_2396686
crossref_primary_10_1109_TGRS_2021_3130842
crossref_primary_10_1109_TGRS_2017_2765348
crossref_primary_10_1117_1_JRS_10_046028
crossref_primary_10_3390_rs14184646
crossref_primary_10_1080_01431161_2017_1371861
crossref_primary_10_1109_TGRS_2016_2593982
crossref_primary_10_1109_TGRS_2021_3053571
crossref_primary_10_1007_s11220_019_0252_0
crossref_primary_10_1080_23754931_2022_2062574
crossref_primary_10_1016_j_jag_2014_10_011
crossref_primary_10_1080_01431161_2018_1466079
crossref_primary_10_1109_TGRS_2024_3438290
crossref_primary_10_1109_TGRS_2012_2195727
crossref_primary_10_1016_j_patcog_2020_107598
crossref_primary_10_1109_JSTARS_2019_2892951
crossref_primary_10_3390_electronics11091486
crossref_primary_10_1109_TGRS_2022_3221489
crossref_primary_10_11834_jig_240031
crossref_primary_10_1109_TGRS_2023_3294300
crossref_primary_10_1109_TGRS_2024_3378526
crossref_primary_10_1016_j_inffus_2020_08_008
crossref_primary_10_1109_MGRS_2015_2443494
crossref_primary_10_15446_dyna_v85n204_68355
crossref_primary_10_1109_TIP_2022_3233187
crossref_primary_10_3390_rs13071381
crossref_primary_10_1109_TGRS_2023_3336791
crossref_primary_10_1109_LGRS_2021_3074423
crossref_primary_10_1109_TCYB_2016_2531179
crossref_primary_10_1109_JSTARS_2024_3522910
crossref_primary_10_29252_jgit_6_4_97
crossref_primary_10_1109_TGRS_2022_3161386
crossref_primary_10_3390_rs12111781
crossref_primary_10_1016_j_neucom_2014_06_024
crossref_primary_10_3390_rs14040841
crossref_primary_10_1117_1_JRS_12_035014
crossref_primary_10_1016_j_measurement_2018_05_097
crossref_primary_10_1016_j_asoc_2019_106015
crossref_primary_10_3390_rs9101044
crossref_primary_10_1016_j_patcog_2017_01_002
crossref_primary_10_1080_10095020_2022_2128902
crossref_primary_10_1109_TGRS_2015_2453955
crossref_primary_10_1016_j_isprsjprs_2020_02_005
crossref_primary_10_1109_JSTARS_2021_3119358
crossref_primary_10_1109_TGRS_2018_2886643
crossref_primary_10_1109_TGRS_2022_3189188
crossref_primary_10_3390_rs10081295
crossref_primary_10_1109_TGRS_2020_2966865
crossref_primary_10_1109_TGRS_2025_3534881
crossref_primary_10_1109_TGRS_2024_3403237
crossref_primary_10_1109_JSTARS_2017_2657607
crossref_primary_10_1109_TGRS_2015_2505183
crossref_primary_10_1109_TGRS_2022_3174009
crossref_primary_10_1016_j_scitotenv_2021_150318
crossref_primary_10_1016_j_isprsjprs_2018_09_002
crossref_primary_10_1016_j_jksuci_2021_12_023
crossref_primary_10_1109_JPROC_2015_2462751
crossref_primary_10_1109_JSTARS_2020_3037070
crossref_primary_10_3390_sym14061138
crossref_primary_10_1080_01431161_2019_1591647
crossref_primary_10_1109_JSTARS_2019_2929514
crossref_primary_10_1109_LGRS_2016_2601930
crossref_primary_10_1016_j_asr_2017_01_027
crossref_primary_10_1109_TGRS_2023_3317701
crossref_primary_10_1109_TGRS_2024_3469930
crossref_primary_10_1109_TETCI_2024_3360331
crossref_primary_10_1109_TGRS_2023_3325316
crossref_primary_10_1016_j_ejrs_2018_03_005
crossref_primary_10_1109_JSTARS_2021_3088438
crossref_primary_10_1109_TGRS_2024_3352050
crossref_primary_10_1109_TGRS_2019_2948659
crossref_primary_10_3390_rs14215622
crossref_primary_10_1109_TGRS_2012_2210228
crossref_primary_10_1109_TGRS_2023_3286440
crossref_primary_10_1155_2018_8130470
crossref_primary_10_1007_s12145_021_00757_5
crossref_primary_10_1109_TGRS_2022_3158741
crossref_primary_10_1016_j_rse_2017_03_037
crossref_primary_10_1109_LGRS_2016_2619163
crossref_primary_10_1109_TGRS_2021_3131993
crossref_primary_10_29252_jgit_6_1_101
crossref_primary_10_1109_TGRS_2023_3260969
crossref_primary_10_1109_MGRS_2017_2762087
crossref_primary_10_3390_rs15071770
crossref_primary_10_1109_TGRS_2023_3325220
crossref_primary_10_3390_rs13050895
crossref_primary_10_1109_TIP_2015_2474710
crossref_primary_10_1109_TGRS_2021_3083364
crossref_primary_10_1109_TGRS_2014_2381645
crossref_primary_10_3390_rs15010246
crossref_primary_10_3390_rs13040725
crossref_primary_10_1109_ACCESS_2020_3047915
crossref_primary_10_1109_TGRS_2022_3154390
crossref_primary_10_1109_JSTARS_2021_3074538
crossref_primary_10_1109_TGRS_2024_3392696
crossref_primary_10_1109_JSTARS_2024_3389641
crossref_primary_10_3390_rs9101008
crossref_primary_10_1016_j_asoc_2022_109200
crossref_primary_10_1360_SSI_2022_0388
crossref_primary_10_1016_j_jag_2021_102492
crossref_primary_10_1109_TGRS_2018_2863224
crossref_primary_10_3390_rs15071868
crossref_primary_10_3390_rs8100850
crossref_primary_10_1016_j_asoc_2024_112160
crossref_primary_10_1016_j_isprsjprs_2016_02_013
crossref_primary_10_1109_TGRS_2023_3262928
crossref_primary_10_1080_22797254_2018_1482523
crossref_primary_10_1016_j_jag_2024_103663
crossref_primary_10_1016_j_rse_2016_01_003
crossref_primary_10_1080_01431161_2018_1452064
crossref_primary_10_3390_rs16214020
crossref_primary_10_1109_JSTARS_2024_3349775
crossref_primary_10_1109_LGRS_2022_3154745
crossref_primary_10_3390_rs13173394
crossref_primary_10_3390_s22030888
crossref_primary_10_3390_app12168297
crossref_primary_10_1080_2150704X_2014_912766
crossref_primary_10_1109_TGRS_2018_2872509
crossref_primary_10_1109_TNNLS_2023_3242075
crossref_primary_10_1109_JSTARS_2021_3108777
crossref_primary_10_1109_TGRS_2019_2894339
crossref_primary_10_3390_rs8070549
crossref_primary_10_1109_JSTARS_2024_3522135
crossref_primary_10_1109_TGRS_2019_2933251
crossref_primary_10_1109_TGRS_2021_3135567
crossref_primary_10_1109_TGRS_2012_2215332
crossref_primary_10_1109_TCYB_2021_3086884
crossref_primary_10_1080_17538947_2024_2398070
crossref_primary_10_1109_TCI_2017_2692645
crossref_primary_10_1016_j_jag_2021_102591
crossref_primary_10_1177_1094342013476120
crossref_primary_10_1109_TGRS_2018_2819367
crossref_primary_10_3390_rs11030258
crossref_primary_10_1109_JSTARS_2014_2363473
crossref_primary_10_1109_TGRS_2019_2951441
crossref_primary_10_1109_JSTARS_2024_3370151
crossref_primary_10_1016_j_rse_2015_12_031
crossref_primary_10_32604_jai_2022_034931
crossref_primary_10_1109_JSTARS_2020_3009116
crossref_primary_10_3390_rs13030440
crossref_primary_10_3390_rs15153739
crossref_primary_10_1016_j_isprsjprs_2015_02_005
crossref_primary_10_1109_LGRS_2021_3085022
crossref_primary_10_1109_TGRS_2023_3332338
crossref_primary_10_1016_j_rse_2017_09_022
crossref_primary_10_1109_JSTARS_2021_3064311
crossref_primary_10_1109_ACCESS_2019_2902613
crossref_primary_10_1016_j_scs_2021_102760
crossref_primary_10_1016_j_jag_2021_102348
crossref_primary_10_3390_rs10101578
crossref_primary_10_1080_2150704X_2023_2217527
crossref_primary_10_1109_TGRS_2018_2849692
crossref_primary_10_1080_01431161_2013_878062
crossref_primary_10_1080_01431161_2022_2123721
crossref_primary_10_1109_TGRS_2017_2650198
crossref_primary_10_1109_TGRS_2022_3200985
crossref_primary_10_1007_s12145_021_00734_y
crossref_primary_10_1109_JSTARS_2014_2330808
crossref_primary_10_1109_TGRS_2020_3001584
crossref_primary_10_1155_2018_7274141
crossref_primary_10_1109_TGRS_2021_3067096
crossref_primary_10_1016_j_isprsjprs_2023_06_017
crossref_primary_10_1109_JSTARS_2019_2939133
crossref_primary_10_1109_TGRS_2024_3362914
crossref_primary_10_3390_rs13122241
crossref_primary_10_3390_rs13214269
crossref_primary_10_1016_j_jfranklin_2024_107424
crossref_primary_10_1109_TGRS_2024_3410131
crossref_primary_10_1109_TGRS_2023_3269892
crossref_primary_10_1109_LGRS_2019_2922198
crossref_primary_10_1109_JSTARS_2022_3159528
crossref_primary_10_1109_JSTARS_2024_3394571
crossref_primary_10_1016_j_rse_2015_01_006
Cites_doi 10.1109/TGRS.2010.2045506
10.1109/79.543975
10.1016/0034-4257(93)90013-N
10.1109/TPAMI.2009.57
10.1109/TIP.2006.888195
10.1080/01431160500222608
10.14358/PERS.69.4.369
10.1080/0143116031000101675
10.1109/IGARSS.2008.4779815
10.1111/j.2517-6161.1977.tb01600.x
10.1117/12.510835
10.1109/ICDM.2001.989517
10.1109/TGRS.2008.916201
10.1080/0143116031000139863
10.1109/LGRS.2009.2025059
10.1109/IWSSIP.2008.4604384
10.1109/TIP.2004.838698
10.1109/LGRS.2009.2029248
10.1109/TGRS.2006.885408
10.1109/TGRS.2007.907604
10.1109/TGRS.2008.2001035
10.1016/j.patrec.2004.06.002
10.1109/LGRS.2008.2007429
10.1145/565117.565124
10.1080/01431160801950162
10.1109/TIP.2010.2045070
10.1109/36.843009
10.1109/LGRS.2008.915600
10.1145/601858.601862
10.1109/36.602528
10.1080/01431169508954622
10.1016/j.rse.2004.07.013
10.1109/TGRS.2004.830549
10.1109/TGRS.2009.2017014
10.1109/LGRS.2009.2021780
10.1080/014311697216702
10.1109/36.905255
10.1109/TGRS.2008.916476
10.1109/TGRS.2009.2029095
10.1080/01431168908903939
10.1080/014311600750037552
10.1111/1467-9868.00293
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
DOI 10.1109/TGRS.2011.2171493
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 2212
ExternalDocumentID 25982704
10_1109_TGRS_2011_2171493
6085609
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
IQODW
ID FETCH-LOGICAL-c361t-cae19cee1880ed1e2246686305b9b31c408e796a8487cc1a20b81ecd73da11f03
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Wed Apr 02 08:12:31 EDT 2025
Tue Jul 01 05:25:00 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Tue Aug 26 17:18:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords ground truth
detection
multispectral remote sensing
multitemporal images
remote sensing
thresholding procedure
Bayes decision rule
change detection (CD)
low-dimensional representation
channels
solution
standard samples
change vector analysis (CVA)
multiple changes
strategy
frame structure
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-cae19cee1880ed1e2246686305b9b31c408e796a8487cc1a20b81ecd73da11f03
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2011_2171493
pascalfrancis_primary_25982704
ieee_primary_6085609
crossref_primary_10_1109_TGRS_2011_2171493
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
dempster (ref38) 1977; 39
malila (ref22) 1980
ref51
ref50
sohn (ref30) 2002; 68
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
pelleg (ref40) 2000
ref8
ref7
ref9
ref4
ref3
ref6
ref5
gueguen (ref12) 2009
ref35
ref34
ref37
ref31
ref33
ref2
ref1
ref24
ref23
jain (ref43) 1986
ref26
ref25
ref20
ref21
girouard (ref27) 2004
ref28
ref29
macqueen (ref39) 1967
bash (ref32) 2002
schowengerdt (ref36) 1997
References_xml – ident: ref11
  doi: 10.1109/TGRS.2010.2045506
– year: 2002
  ident: ref32
  article-title: Assessing land cover changes using standardized principal component and spectral angle mapping techniques
  publication-title: Proc Pecora 15/Land Satell Inf IV/ISPRS Comm I/FIEOS
– ident: ref37
  doi: 10.1109/79.543975
– ident: ref26
  doi: 10.1016/0034-4257(93)90013-N
– ident: ref5
  doi: 10.1109/TPAMI.2009.57
– ident: ref15
  doi: 10.1109/TIP.2006.888195
– ident: ref16
  doi: 10.1080/01431160500222608
– ident: ref23
  doi: 10.14358/PERS.69.4.369
– ident: ref7
  doi: 10.1080/0143116031000101675
– start-page: 599
  year: 2004
  ident: ref27
  article-title: Validated spectral angle mapper algorithm for geological mapping: Comparative study between Quickbird and Landsat-TM
  publication-title: Proc 20th Int Soc Photogramm Remote Sens Congr
– ident: ref29
  doi: 10.1109/IGARSS.2008.4779815
– volume: 39
  start-page: 1
  year: 1977
  ident: ref38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Statist Soc
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref35
  doi: 10.1117/12.510835
– ident: ref42
  doi: 10.1109/ICDM.2001.989517
– year: 1997
  ident: ref36
  publication-title: Remote Sensing Models and Methods for Image Processing
– ident: ref1
  doi: 10.1109/TGRS.2008.916201
– ident: ref8
  doi: 10.1080/0143116031000139863
– start-page: 281
  year: 1967
  ident: ref39
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc 5th Berkeley Symp Math Stat Probab
– ident: ref21
  doi: 10.1109/LGRS.2009.2025059
– ident: ref14
  doi: 10.1109/IWSSIP.2008.4604384
– ident: ref9
  doi: 10.1109/TIP.2004.838698
– ident: ref44
  doi: 10.1109/LGRS.2009.2029248
– ident: ref17
  doi: 10.1109/TGRS.2006.885408
– ident: ref45
  doi: 10.1109/TGRS.2007.907604
– ident: ref28
  doi: 10.1109/TGRS.2008.2001035
– ident: ref6
  doi: 10.1016/j.patrec.2004.06.002
– ident: ref48
  doi: 10.1109/LGRS.2008.2007429
– ident: ref51
  doi: 10.1145/565117.565124
– start-page: 727
  year: 2000
  ident: ref40
  article-title: X-means: Extending K-means with efficient estimation of the number of clusters
  publication-title: Proc 17th Int Conf Mach Learn
– ident: ref24
  doi: 10.1080/01431160801950162
– ident: ref47
  doi: 10.1109/TIP.2010.2045070
– ident: ref19
  doi: 10.1109/36.843009
– start-page: 326
  year: 1980
  ident: ref22
  article-title: Change vector analysis: An approach for detecting forest
  publication-title: Proc LARS Mach Process Remotely Sensed
– year: 1986
  ident: ref43
  publication-title: Handbook of Pattern Recognition and Image Processing
– volume: 68
  start-page: 1271
  year: 2002
  ident: ref30
  article-title: Supervised and unsupervised spectral angle classifiers
  publication-title: Photogram Eng Remote Sens
– ident: ref2
  doi: 10.1109/LGRS.2008.915600
– ident: ref52
  doi: 10.1145/601858.601862
– ident: ref4
  doi: 10.1109/36.602528
– year: 2009
  ident: ref12
  article-title: Mixed information measure: Application to change detection in earth observation
  publication-title: Proc Int Workshop on the Analysis of Multi-Temporal Remote Sensing Images
– ident: ref33
  doi: 10.1080/01431169508954622
– ident: ref34
  doi: 10.1016/j.rse.2004.07.013
– ident: ref31
  doi: 10.1109/TGRS.2004.830549
– ident: ref46
  doi: 10.1109/TGRS.2009.2017014
– ident: ref10
  doi: 10.1109/LGRS.2009.2021780
– ident: ref25
  doi: 10.1080/014311697216702
– ident: ref50
  doi: 10.1109/36.905255
– ident: ref13
  doi: 10.1109/TGRS.2008.916476
– ident: ref20
  doi: 10.1109/TGRS.2009.2029095
– ident: ref49
  doi: 10.1109/36.602528
– ident: ref3
  doi: 10.1080/01431168908903939
– ident: ref18
  doi: 10.1080/014311600750037552
– ident: ref41
  doi: 10.1111/1467-9868.00293
SSID ssj0014517
Score 2.5198038
Snippet The detection of multiple changes (i.e., different kinds of change) in multitemporal remote sensing images is a complex problem. When multispectral images...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 2196
SubjectTerms Accuracy
Applied geophysics
Bayes decision rule
change detection (CD)
change vector analysis (CVA)
Data mining
Earth sciences
Earth, ocean, space
Exact sciences and technology
Feature extraction
Geologic measurements
Image coding
Internal geophysics
low-dimensional representation
multiple changes
multitemporal images
Remote sensing
thresholding procedure
Vectors
Title A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images
URI https://ieeexplore.ieee.org/document/6085609
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH4CpElwYBsFUcYqH3aaSGsnqRMfq7Gum1QOrJV6C47tSIiSIpJc-PV7jt0IEEK7RYkdWfksv_fyvvc9gG9cUfTZVBKg9dcYoBQ8EGiWgiLVVKKFGuexrUaeX_HZMv6zGq924KKrhTHGtOQzM7SXbS5fb1Rjf5WNOPoH3Fbr7WLg5mq1uoxBPGa-NJoHGESEPoPJqBgtfl3_dWKdoW33LaIXNqhtqmIpkbLCr1K4dhbPbMz0I8y3q3PUkrthU-dD9fRKuPF_l_8JDr2zSSZud3yGHVMewcEzCcIj-NBSQFXVg5sJmW6ZWgRdWTJp6k0r6EpkqcmyrJoHe7BURpNLU7cUrpJsCjL3nETiKhUqclu6e172ak1-3-OpVR3Dcvpz8WMW-P4LgYo4qwMlDRNoRK1km9HMWO05nnI8IXKRR0zFNDWJ4DLFoEcpJkOap8wonURaMlbQ6AT2yk1pToFIjr5CznmimI6FDvMwGqMrZFiUSi1S3ge6RSRTXpzc9shYZ22QQkVmQcwsiJkHsQ_fuykPTpnjvcE9i0c30EPRh8EL2LvnodU1TGh89va8L7CPbw8dZewc9urHxnxF56TOB-2u_AcL8t9v
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VIgQc-GhBLB_FB7ggZWs7iRMfOKwoyy7t9gC7Um-pYzsSomQrkgjBb-Gv8N8Yx96oRYhbJW5RYieKPfG8id-8AXghNEXMprMIvb_BAKUSkUS3FFW5oQo9VFomLht5cSxmq-T9SXqyBT-HXBhrbU8-s2N32O_lm7Xu3K-yfYH4QFAZKJSH9vs3DNCa1_MDnM2XnE_fLt_MolBDINKxYG2klWUSHYGTHbOGWaefJnKBVl7KMmY6obnNpFA5AnetmeK0zJnVJouNYqyiMd73GlxHnJFynx027FEkKQvJ2CLCsIWHPVNG5f7y3YePXh6UuwLjMr7k9foyLo6EqRqch8oX0Ljg1aZ34ddmPDyZ5fO4a8ux_vGHVOT_OmD34E6A02Ti7f8-bNl6B25fEFncgRs9yVU3u3A6IdMNF40gWCeTrl33krVE1Yas6qY7d0tnYw05sG1PUqvJuiKLwLokPhejIZ9qfy4Ie52R-Rdcl5sHsLqSl30I2_W6to-AKIFoqBQi08wk0vCSxymCPcviXBmZixHQjQUUOsivuyogZ0UfhlFZOKMpnNEUwWhG8Grocu61R_7VeNfN_9AwTP0I9i6Z2XCdO-XGjCaP_97vOdycLRdHxdH8-PAJ3MIncU-Qewrb7dfOPkMo1pZ7_RdB4PSqLeo36zI8fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Automatic+and+Unsupervised+Detection+of+Multiple+Changes+in+Multitemporal+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=BOVOLO%2C+Francesca&rft.au=MARCHESI%2C+Silvia&rft.au=BRUZZONE%2C+Lorenzo&rft.date=2012-06-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0196-2892&rft.volume=50&rft.issue=6&rft.spage=2196&rft.epage=2212&rft_id=info:doi/10.1109%2FTGRS.2011.2171493&rft.externalDBID=n%2Fa&rft.externalDocID=25982704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon