A condensed phase model of the initial Al/CuO reaction stage to interpret experimental findings

A model based uniquely on condensed phase reactions coupled with the thermal equation is developed to study the initiation and early stage of the redox reaction in Al/CuO nanothermites. It considers the effect of a wetting contact angle between Al and CuO particles, which may be induced by sintering...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 125; no. 3
Main Authors Brotman, Sarah, Rouhani, Mehdi Djafari, Rossi, Carole, Estève, Alain
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 21.01.2019
Subjects
Online AccessGet full text
ISSN0021-8979
1089-7550
DOI10.1063/1.5063285

Cover

Loading…
Abstract A model based uniquely on condensed phase reactions coupled with the thermal equation is developed to study the initiation and early stage of the redox reaction in Al/CuO nanothermites. It considers the effect of a wetting contact angle between Al and CuO particles, which may be induced by sintering mechanisms and/or the synthesis method. In order to validate the model, two published experiments are reproduced in silico. Results provide the first quantification of: (i) how sintering affects the initiation of Al/CuO nanoparticle mixtures, depending on experimental conditions, (ii) the extent to which condensed phase mechanisms dominate gas-mediated reactions in the initiation process, two subjects that have been highly debated in the literature. It was found that initiation appears more strongly affected by sintering when particles are exposed to an ultra-short and intense heat pulse (∼1011 K s−1) than those exposed to a lower heating rate (∼105 K s−1). Additionally, calculations show that sintering may cause a drastic decrease in the initiation delay (down to the ns regime) when using CuO nanoparticles below 50 nm in diameter that can be brought to melting temperature through optical absorption. Finally, the role of gas-surface versus condensed phase reactions in the Al/CuO initiation process is evaluated theoretically. Initiation through condensed phase reactions, while slightly faster and more efficient, exhibits a comparable timescale (∼1–2 ms) to initiation through gas-surface reactions, providing clear evidence for the contribution of both during the initiation phase.
AbstractList A model based uniquely on condensed phase reactions coupled with the thermal equation is developed to study the initiation and early stage of the redox reaction in Al/CuO nanothermites. It considers the effect of a wetting contact angle between Al and CuO particles, which may be induced by sintering mechanisms and/or the synthesis method. In order to validate the model, two published experiments are reproduced in silico. Results provide the first quantification of: (i) how sintering affects the initiation of Al/CuO nanoparticle mixtures, depending on experimental conditions, (ii) the extent to which condensed phase mechanisms dominate gas-mediated reactions in the initiation process, two subjects that have been highly debated in the literature. It was found that initiation appears more strongly affected by sintering when particles are exposed to an ultra-short and intense heat pulse (∼1011 K s−1) than those exposed to a lower heating rate (∼105 K s−1). Additionally, calculations show that sintering may cause a drastic decrease in the initiation delay (down to the ns regime) when using CuO nanoparticles below 50 nm in diameter that can be brought to melting temperature through optical absorption. Finally, the role of gas-surface versus condensed phase reactions in the Al/CuO initiation process is evaluated theoretically. Initiation through condensed phase reactions, while slightly faster and more efficient, exhibits a comparable timescale (∼1–2 ms) to initiation through gas-surface reactions, providing clear evidence for the contribution of both during the initiation phase.
A model based uniquely on condensed phase reactions coupled with the thermal equation is developed to study the initiation and early stage of the redox reaction in Al/CuO nanothermites. It considers the effect of a wetting contact angle between Al and CuO particles, which may be induced by sintering mechanisms and/or the synthesis method. In order to validate the model, two published experiments are reproduced in silico. Results provide the first quantification of: (i) how sintering affects the initiation of Al/CuO nanoparticle mixtures, depending on experimental conditions, (ii) the extent to which condensed phase mechanisms dominate gas-mediated reactions in the initiation process, two subjects that have been highly debated in the literature. It was found that initiation appears more strongly affected by sintering when particles are exposed to an ultra-short and intense heat pulse (∼1011 K s−1) than those exposed to a lower heating rate (∼105 K s−1). Additionally, calculations show that sintering may cause a drastic decrease in the initiation delay (down to the ns regime) when using CuO nanoparticles below 50 nm in diameter that can be brought to melting temperature through optical absorption. Finally, the role of gas-surface versus condensed phase reactions in the Al/CuO initiation process is evaluated theoretically. Initiation through condensed phase reactions, while slightly faster and more efficient, exhibits a comparable timescale (∼1–2 ms) to initiation through gas-surface reactions, providing clear evidence for the contribution of both during the initiation phase
Author Rossi, Carole
Estève, Alain
Brotman, Sarah
Rouhani, Mehdi Djafari
Author_xml – sequence: 1
  givenname: Sarah
  surname: Brotman
  fullname: Brotman, Sarah
  organization: University of Toulouse, LAAS-CNRS, 7 avenue du colonel Roche, 31031 Toulouse, France
– sequence: 2
  givenname: Mehdi Djafari
  surname: Rouhani
  fullname: Rouhani, Mehdi Djafari
  organization: University of Toulouse, LAAS-CNRS, 7 avenue du colonel Roche, 31031 Toulouse, France
– sequence: 3
  givenname: Carole
  surname: Rossi
  fullname: Rossi, Carole
  organization: University of Toulouse, LAAS-CNRS, 7 avenue du colonel Roche, 31031 Toulouse, France
– sequence: 4
  givenname: Alain
  surname: Estève
  fullname: Estève, Alain
  organization: University of Toulouse, LAAS-CNRS, 7 avenue du colonel Roche, 31031 Toulouse, France
BackLink https://hal.science/hal-02348944$$DView record in HAL
BookMark eNp90MFqGzEQBmBRXKiT5pA3EPTUwtrSrrS7OhrTxAVDLu1ZyNIoVthIW0k2ydtHxo4DbchpQHzza_gv0MQHDwhdUzKjpG3mdMbLqHv-CU0p6UXVcU4maEpITatedOILukjpgRBK-0ZMkVxgHbwBn8DgcasS4MdgYMDB4rwF7LzLTg14McyXuzscQensgscpq3vAORSQIY4RMoanEaJ7BJ-Lt84b5-_TV_TZqiHB1Wleoj83P38vV9X67vbXcrGudNPSXOneUK4Ia3VN243Qral5zWoBFkRnO2OZ6DkxnVCwqftOCLMBDdSQIhSzvLlE34-5WzXIsZyh4rMMysnVYi0Pb6RuWC8Y29Nivx3tGMPfHaQsH8Iu-nKeLL93THBO2VuijiGlCPYcS4k8dC2pPHVd7Pwfq11Wh6JyVG54d-PHcSO9ynP8PsQ3KEdjP8L_J78ApaydxA
CODEN JAPIAU
CitedBy_id crossref_primary_10_1016_j_cej_2020_126367
crossref_primary_10_1021_acsami_2c05412
crossref_primary_10_1016_j_combustflame_2021_01_040
crossref_primary_10_1615_NanoSciTechnolIntJ_2023051589
crossref_primary_10_59761_RCR5106
crossref_primary_10_1002_prep_202000290
crossref_primary_10_1007_s00161_023_01243_7
crossref_primary_10_1016_j_applthermaleng_2024_123874
crossref_primary_10_1016_j_tca_2020_178656
crossref_primary_10_3390_molecules27113586
crossref_primary_10_1063_5_0109018
crossref_primary_10_3390_app11146553
crossref_primary_10_1016_j_icheatmasstransfer_2023_107113
crossref_primary_10_1016_j_intermet_2020_106851
Cites_doi 10.1021/jp101146a
10.1016/j.combustflame.2011.07.015
10.1002/prep.201400297
10.1016/j.combustflame.2015.04.013
10.1063/1.1713945
10.1021/jp402990v
10.1063/1.5000312
10.2514/1.26089
10.1063/1.3490752
10.1021/acs.jpcc.5b04117
10.1002/adma.201504286
10.1016/j.cplett.2016.02.048
10.1021/jp5084746
10.1063/1.4867116
10.1016/j.cplett.2009.10.038
10.1021/acs.jpcc.5b07321
10.1007/BF02653953
10.1063/1.4746943
10.1021/acsaem.8b00296
10.1016/j.combustflame.2011.02.004
10.1021/am503126k
10.1016/j.combustflame.2017.02.031
10.1021/jp306717m
10.2514/1.26090
10.1002/adfm.201100763
10.1021/jp906613p
ContentType Journal Article
Copyright Author(s)
2019 Author(s). Published under license by AIP Publishing.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Author(s)
– notice: 2019 Author(s). Published under license by AIP Publishing.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FD
H8D
L7M
1XC
DOI 10.1063/1.5063285
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID oai_HAL_hal_02348944v1
10_1063_1_5063285
jap
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
.GJ
0ZJ
186
1XC
2WC
3O-
41~
6TJ
AAYJJ
ABDPE
ABRJW
ACKIV
ADXHL
AETEA
AFFNX
AI.
FA8
MVM
NEJ
NEUPN
NHB
OHT
P0-
RDFOP
ROL
UKR
VH1
VOH
XJT
XOL
XXG
YYP
ZCG
ZY4
ID FETCH-LOGICAL-c361t-c8d15a046c216b9c6d252429efe97f7df49850d79aeb28799dbece1d09efa4f53
ISSN 0021-8979
IngestDate Wed Jun 25 06:43:36 EDT 2025
Sun Jun 29 15:18:04 EDT 2025
Tue Jul 01 02:01:07 EDT 2025
Thu Apr 24 23:05:09 EDT 2025
Sun Jul 14 10:54:30 EDT 2019
Fri Jun 21 00:14:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Published under license by AIP Publishing.
0021-8979/2019/125(3)/035102/10/$30.00
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c361t-c8d15a046c216b9c6d252429efe97f7df49850d79aeb28799dbece1d09efa4f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3864-7574
0000-0002-0301-7479
PQID 2167495514
PQPubID 2050677
PageCount 10
ParticipantIDs scitation_primary_10_1063_1_5063285
crossref_citationtrail_10_1063_1_5063285
crossref_primary_10_1063_1_5063285
hal_primary_oai_HAL_hal_02348944v1
proquest_journals_2167495514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-21
PublicationDateYYYYMMDD 2019-01-21
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-21
  day: 21
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2019
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Lahiner, Nicollet, Zapata, Marin, Richard, Rouhani, Rossi, Esteve (c21) 2017
Martirosyan, Wang, Luss (c4) 2009
Zhang, Dreizin (c18) 2013
Thiruvengadathan, Bezmelnitsyn, Apperson, Staley, Redner, Balas, Nicolich, Kapoor, Gangopadhyay, Gangopadhyay (c5) 2011
Son, Asay, Foley, Yetter, Wu, Risha (c3) 2007
Zhou, Piekiel, Chowdhury, Zachariah (c17) 2010
Egan, Zachariah (c11) 2015
Baijot, Glavier, Ducere, Rouhani, Rossi, Esteve (c8) 2015
Baijot, Ducere, Rouhani, Rossi, Esteve (c30) 2016
Lanthony, Ducere, Rouhani, Hemeryck, Esteve, Rossi (c22) 2012
Lanthony, Guiltat, Ducere, Verdier, Hemeryck, Djafari-Rouhani, Rossi, Chabal, Esteve (c23) 2014
Sanders, Asay, Foley, Tappan, Pacheco, Son (c2) 2007
Abdallah, Zapata, Lahiner, Warrot-Fonrose, Cure, Chabal, Esteve, Rossi (c14) 2018
Sullivan, Zhu, Duoss, Gash, Kolesky, Kuntz, Lewis, Spadaccini (c7) 2016
Jian, Piekiel, Zachariah (c12) 2012
Narula, Tare, Worrell (c24) 1983
Coulet, Rufino, Esposito, Neisius, Isnard, Denoyel (c15) 2015
Baijot, Mehdi, Rossi, Esteve (c16) 2017
Deal, Grove (c20) 1965
Severac, Alphonse, Esteve, Bancaud, Rossi (c6) 2012
Egan, LaGrange, Zachariah (c19) 2015
Chowdhury, Sullivan, Piekiel, Zhou, Zachariah (c9) 2010
Sullivan, Chiou, Fiore, Zachariah (c13) 2010
Egan, Mily, Maria, Zachariah (c25) 2015
Sullivan, Piekiel, Wu, Chowdhury, Kelly, Hufnagel, Fezzaa, Zachariah (c10) 2012
Egan, Sullivan, LaGrange, Reed, Zachariah (c26) 2014
(2023062407435112500_c10) 2012; 159
2023062407435112500_c29
2023062407435112500_c27
2023062407435112500_c28
(2023062407435112500_c11) 2015; 162
(2023062407435112500_c8) 2015; 40
(2023062407435112500_c9) 2010; 114
(2023062407435112500_c13) 2010; 97
(2023062407435112500_c24) 1983; 14
(2023062407435112500_c30) 2016; 649
(2023062407435112500_c6) 2012; 22
(2023062407435112500_c5) 2011; 158
(2023062407435112500_c3) 2007; 23
(2023062407435112500_c4) 2009; 483
(2023062407435112500_c12) 2012; 116
(2023062407435112500_c23) 2014; 6
(2023062407435112500_c26) 2014; 115
(2023062407435112500_c17) 2010; 114
(2023062407435112500_c22) 2012; 137
(2023062407435112500_c1) 1998
(2023062407435112500_c20) 1965; 36
(2023062407435112500_c14) 2018; 1
(2023062407435112500_c7) 2016; 28
(2023062407435112500_c21) 2017; 122
(2023062407435112500_c15) 2015; 119
(2023062407435112500_c16) 2017; 180
(2023062407435112500_c18) 2013; 117
(2023062407435112500_c2) 2007; 23
(2023062407435112500_c19) 2015; 119
(2023062407435112500_c25) 2015; 119
References_xml – start-page: 3770
  year: 1965
  ident: c20
  article-title: General relationship for the thermal oxidation of silicon
  publication-title: J. Appl. Phys.
– start-page: 155105
  year: 2017
  ident: c21
  article-title: A diffusion-reaction scheme for modeling ignition and self-propagating reactions in Al/CuO multilayered thin films
  publication-title: J. Appl. Phys.
– start-page: 094707
  year: 2012
  ident: c22
  article-title: On the early stage of aluminum oxidation: An extraction mechanism via oxygen cooperation
  publication-title: J. Chem. Phys.
– start-page: 402
  year: 2015
  ident: c8
  article-title: Modeling the pressure generation in aluminum-based thermites
  publication-title: Propell. Explos. Pyrot.
– start-page: 107
  year: 2009
  ident: c4
  article-title: Novel nanoenergetic system based on iodine pentoxide
  publication-title: Chem. Phys. Lett.
– start-page: 14025
  year: 2013
  ident: c18
  article-title: Reaction interface for heterogeneous oxidation of aluminum powders
  publication-title: J. Phys. Chem. C
– start-page: 2
  year: 2012
  ident: c10
  article-title: Reactive sintering: An important component in the combustion of nanocomposite thermites
  publication-title: Combust. Flame
– start-page: 084903
  year: 2014
  ident: c26
  article-title: In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates
  publication-title: J. Appl. Phys.
– start-page: 133104
  year: 2010
  ident: c13
  article-title: In situ microscopy of rapidly heated nano-Al and nano-Al/WO3 thermites
  publication-title: Appl. Phys. Lett.
– start-page: 25063
  year: 2015
  ident: c15
  article-title: Oxidation mechanism of aluminum nanopowders
  publication-title: J. Phys. Chem. C
– start-page: 1762
  year: 2018
  ident: c14
  article-title: Structure and chemical characterization at the atomic level of reactions in Al/CuO multilayers
  publication-title: Appl. Energy Mater.
– start-page: 26881
  year: 2012
  ident: c12
  article-title: Time-resolved mass spectrometry of nano-Al and nano-Al/CuO thermite under rapid heating: A mechanistic study
  publication-title: J. Phys. Chem. C
– start-page: 2792
  year: 2015
  ident: c19
  article-title: Time-resolved nanosecond imaging of nanoscale condensed phase reaction
  publication-title: J. Phys. Chem. C
– start-page: 10
  year: 2017
  ident: c16
  article-title: A multi-phase micro-kinetic model for simulating aluminum based thermite reactions
  publication-title: Combust. Flame
– start-page: 323
  year: 2012
  ident: c6
  article-title: High-Energy Al/CuO nanocomposites obtained by DNA-directed assembly
  publication-title: Adv. Funct. Mater.
– start-page: 15086
  year: 2014
  ident: c23
  article-title: Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: Copper and oxygen deposition on aluminum (111) surfaces
  publication-title: ACS Appl. Mater. Inter.
– start-page: 2959
  year: 2015
  ident: c11
  article-title: Commentary on the heat transfer mechanisms controlling propagation in nanothermites
  publication-title: Combust. Flame
– start-page: 673
  year: 1983
  ident: c24
  article-title: Diffusivity and solubility of oxygen in solid copper using potentiostatic and potentiometric techniques
  publication-title: Metall .Trans. B
– start-page: 9191
  year: 2010
  ident: c9
  article-title: Diffusive vs explosive reaction at the nanoscale
  publication-title: J. Phys. Chem. C
– start-page: 20401
  year: 2015
  ident: c25
  article-title: Probing the reaction dynamics of thermite nanolaminates
  publication-title: J. Phys. Chem. C
– start-page: 88
  year: 2016
  ident: c30
  article-title: Effect of temperature and O-2 pressure on the gaseous species produced during combustion of aluminum
  publication-title: Chem. Phys. Lett.
– start-page: 964
  year: 2011
  ident: c5
  article-title: Combustion characteristics of novel hybrid nanoenergetic formulations
  publication-title: Combust. Flame
– start-page: 14269
  year: 2010
  ident: c17
  article-title: Time-resolved mass spectrometry of the exothermic reaction between nanoaluminum and metal oxides: The role of oxygen release
  publication-title: J. Phys. Chem. C
– start-page: 715
  year: 2007
  ident: c3
  article-title: Combustion of nanoscale Al/MoO3 thermite in microchannels
  publication-title: J. Propul. Power.
– start-page: 707
  year: 2007
  ident: c2
  article-title: Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3)
  publication-title: J. Propul. Power.
– start-page: 1934
  year: 2016
  ident: c7
  article-title: Controlling material reactivity using architecture
  publication-title: Adv. Mater.
– volume: 114
  start-page: 14269
  issue: 33
  year: 2010
  ident: 2023062407435112500_c17
  article-title: Time-resolved mass spectrometry of the exothermic reaction between nanoaluminum and metal oxides: The role of oxygen release
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp101146a
– volume: 159
  start-page: 2
  issue: 1
  year: 2012
  ident: 2023062407435112500_c10
  article-title: Reactive sintering: An important component in the combustion of nanocomposite thermites
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2011.07.015
– ident: 2023062407435112500_c27
– year: 1998
  ident: 2023062407435112500_c1
– volume: 40
  start-page: 402
  issue: 3
  year: 2015
  ident: 2023062407435112500_c8
  article-title: Modeling the pressure generation in aluminum-based thermites
  publication-title: Propell. Explos. Pyrot.
  doi: 10.1002/prep.201400297
– volume: 162
  start-page: 2959
  issue: 7
  year: 2015
  ident: 2023062407435112500_c11
  article-title: Commentary on the heat transfer mechanisms controlling propagation in nanothermites
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2015.04.013
– volume: 36
  start-page: 3770
  year: 1965
  ident: 2023062407435112500_c20
  article-title: General relationship for the thermal oxidation of silicon
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1713945
– volume: 117
  start-page: 14025
  issue: 27
  year: 2013
  ident: 2023062407435112500_c18
  article-title: Reaction interface for heterogeneous oxidation of aluminum powders
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp402990v
– volume: 122
  start-page: 155105
  issue: 15
  year: 2017
  ident: 2023062407435112500_c21
  article-title: A diffusion-reaction scheme for modeling ignition and self-propagating reactions in Al/CuO multilayered thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5000312
– volume: 23
  start-page: 707
  issue: 4
  year: 2007
  ident: 2023062407435112500_c2
  article-title: Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3)
  publication-title: J. Propul. Power.
  doi: 10.2514/1.26089
– volume: 97
  start-page: 133104
  issue: 13
  year: 2010
  ident: 2023062407435112500_c13
  article-title: In situ microscopy of rapidly heated nano-Al and nano-Al/WO3 thermites
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3490752
– volume: 119
  start-page: 20401
  issue: 35
  year: 2015
  ident: 2023062407435112500_c25
  article-title: Probing the reaction dynamics of thermite nanolaminates
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b04117
– volume: 28
  start-page: 1934
  issue: 10
  year: 2016
  ident: 2023062407435112500_c7
  article-title: Controlling material reactivity using architecture
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504286
– volume: 649
  start-page: 88
  year: 2016
  ident: 2023062407435112500_c30
  article-title: Effect of temperature and O-2 pressure on the gaseous species produced during combustion of aluminum
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.02.048
– volume: 119
  start-page: 2792
  issue: 5
  year: 2015
  ident: 2023062407435112500_c19
  article-title: Time-resolved nanosecond imaging of nanoscale condensed phase reaction
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5084746
– volume: 115
  start-page: 084903
  issue: 8
  year: 2014
  ident: 2023062407435112500_c26
  article-title: In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4867116
– volume: 483
  start-page: 107
  issue: 1–3
  year: 2009
  ident: 2023062407435112500_c4
  article-title: Novel nanoenergetic system based on iodine pentoxide
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2009.10.038
– volume: 119
  start-page: 25063
  issue: 44
  year: 2015
  ident: 2023062407435112500_c15
  article-title: Oxidation mechanism of aluminum nanopowders
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b07321
– volume: 14
  start-page: 673
  issue: 4
  year: 1983
  ident: 2023062407435112500_c24
  article-title: Diffusivity and solubility of oxygen in solid copper using potentiostatic and potentiometric techniques
  publication-title: Metall .Trans. B
  doi: 10.1007/BF02653953
– volume: 137
  start-page: 094707
  issue: 9
  year: 2012
  ident: 2023062407435112500_c22
  article-title: On the early stage of aluminum oxidation: An extraction mechanism via oxygen cooperation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4746943
– ident: 2023062407435112500_c28
– volume: 1
  start-page: 1762
  issue: 4
  year: 2018
  ident: 2023062407435112500_c14
  article-title: Structure and chemical characterization at the atomic level of reactions in Al/CuO multilayers
  publication-title: Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00296
– volume: 158
  start-page: 964
  issue: 5
  year: 2011
  ident: 2023062407435112500_c5
  article-title: Combustion characteristics of novel hybrid nanoenergetic formulations
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2011.02.004
– volume: 6
  start-page: 15086
  issue: 17
  year: 2014
  ident: 2023062407435112500_c23
  article-title: Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: Copper and oxygen deposition on aluminum (111) surfaces
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am503126k
– volume: 180
  start-page: 10
  year: 2017
  ident: 2023062407435112500_c16
  article-title: A multi-phase micro-kinetic model for simulating aluminum based thermite reactions
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2017.02.031
– ident: 2023062407435112500_c29
– volume: 116
  start-page: 26881
  issue: 51
  year: 2012
  ident: 2023062407435112500_c12
  article-title: Time-resolved mass spectrometry of nano-Al and nano-Al/CuO thermite under rapid heating: A mechanistic study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp306717m
– volume: 23
  start-page: 715
  issue: 4
  year: 2007
  ident: 2023062407435112500_c3
  article-title: Combustion of nanoscale Al/MoO3 thermite in microchannels
  publication-title: J. Propul. Power.
  doi: 10.2514/1.26090
– volume: 22
  start-page: 323
  issue: 2
  year: 2012
  ident: 2023062407435112500_c6
  article-title: High-Energy Al/CuO nanocomposites obtained by DNA-directed assembly
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100763
– volume: 114
  start-page: 9191
  issue: 20
  year: 2010
  ident: 2023062407435112500_c9
  article-title: Diffusive vs explosive reaction at the nanoscale
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp906613p
SSID ssj0011839
Score 2.3674505
Snippet A model based uniquely on condensed phase reactions coupled with the thermal equation is developed to study the initiation and early stage of the redox...
SourceID hal
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Contact angle
Dispersed gas phase hold up
Engineering Sciences
Heating rate
Materials
Melt temperature
Nanoparticles
Sintering
Surface reactions
Wetting
Title A condensed phase model of the initial Al/CuO reaction stage to interpret experimental findings
URI http://dx.doi.org/10.1063/1.5063285
https://www.proquest.com/docview/2167495514
https://hal.science/hal-02348944
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ti9MwGA-7HaJ-ED0Vp6cE9YMwulvT9CUfi7fjkO1OdIN9K2mT3iZjHVs30L_eJ03SdTgO9UspbWhDnl-S3_PkeUHoo0gFjQIZOIR61KE5lQ4nkXBSLrPIo9ILfRWcPLoJrif0y9Sftlo_G15L2zLtZb-OxpX8j1ThGchVRcn-g2Trj8IDuAf5whUkDNe_knGsnMZh4dgAa1zNYD_ShW3suf9cOQYpESxUFtztbRcIoq4MDpTwrqqZMbc-h4ep_quTbGtC_5O6ckNdtVlkb2hfF6U1qDYNzd-K7Ywv592RnIl59_IHz0FB37-EWVm7ntQwG2zK6gw_2knoPzf5wY15QkVEuQ5puHrYc6cD34evje7ZoALXiZiuK9OTei3uR8wJfZ2Xtl6sdZi0QaV3dBMA1qXsET0fboguCHSYaPvmNrmaDIfJeDAdn6BTAhoGaaPT-HI0_F4fQSnqqP2DdM9sWqrAu6g_fUBmTmbKlbahpzwEEqP9KRqUZfwUPTECw7EGzjPUkssz9LiRgfIMPTBj9BwlMa7BhCsw4QpMuMgxgAkbMOF4cQFQwhZKuIISLgtcQwk3oYQtlF6gydVg_PnaMdU3nMwL3NLJIuH6vE-DjLhByrJAEB_4HJO5ZGEeipyyyO-LkHGZgtrNmIDlQLqiDy04zX3vJWovi6V8hTDPWEByn4s09yiVoFSkIqWCET-FPSEKO-iTHcbEDpmqkLJIKheJwEvcxIx4B72vm650PpajjUAW9XuVQf06HibqGVBUGjFKd24HnVtRJWZObxKignKY0iI66EMtvvv-dKTVrljvWyQrkb--_1dv0KP9zDlH7XK9lW-B6pbpOwPK35eirIg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+condensed+phase+model+of+the+initial+Al%2FCuO+reaction+stage+to+interpret+experimental+findings&rft.jtitle=Journal+of+applied+physics&rft.au=Brotman%2C+Sarah&rft.au=Rouhani+Mehdi+Djafari&rft.au=Rossi%2C+Carole&rft.au=Est%C3%A8ve+Alain&rft.date=2019-01-21&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=125&rft.issue=3&rft_id=info:doi/10.1063%2F1.5063285&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon