A condensed phase model of the initial Al/CuO reaction stage to interpret experimental findings
A model based uniquely on condensed phase reactions coupled with the thermal equation is developed to study the initiation and early stage of the redox reaction in Al/CuO nanothermites. It considers the effect of a wetting contact angle between Al and CuO particles, which may be induced by sintering...
Saved in:
Published in | Journal of applied physics Vol. 125; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
21.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8979 1089-7550 |
DOI | 10.1063/1.5063285 |
Cover
Loading…
Abstract | A model based uniquely on condensed phase reactions coupled with the thermal equation is developed to study the initiation and early stage of the redox reaction in Al/CuO nanothermites. It considers the effect of a wetting contact angle between Al and CuO particles, which may be induced by sintering mechanisms and/or the synthesis method. In order to validate the model, two published experiments are reproduced in silico. Results provide the first quantification of: (i) how sintering affects the initiation of Al/CuO nanoparticle mixtures, depending on experimental conditions, (ii) the extent to which condensed phase mechanisms dominate gas-mediated reactions in the initiation process, two subjects that have been highly debated in the literature. It was found that initiation appears more strongly affected by sintering when particles are exposed to an ultra-short and intense heat pulse (∼1011 K s−1) than those exposed to a lower heating rate (∼105 K s−1). Additionally, calculations show that sintering may cause a drastic decrease in the initiation delay (down to the ns regime) when using CuO nanoparticles below 50 nm in diameter that can be brought to melting temperature through optical absorption. Finally, the role of gas-surface versus condensed phase reactions in the Al/CuO initiation process is evaluated theoretically. Initiation through condensed phase reactions, while slightly faster and more efficient, exhibits a comparable timescale (∼1–2 ms) to initiation through gas-surface reactions, providing clear evidence for the contribution of both during the initiation phase. |
---|---|
AbstractList | A model based uniquely on condensed phase reactions coupled with the thermal equation is developed to study the initiation and early stage of the redox reaction in Al/CuO nanothermites. It considers the effect of a wetting contact angle between Al and CuO particles, which may be induced by sintering mechanisms and/or the synthesis method. In order to validate the model, two published experiments are reproduced in silico. Results provide the first quantification of: (i) how sintering affects the initiation of Al/CuO nanoparticle mixtures, depending on experimental conditions, (ii) the extent to which condensed phase mechanisms dominate gas-mediated reactions in the initiation process, two subjects that have been highly debated in the literature. It was found that initiation appears more strongly affected by sintering when particles are exposed to an ultra-short and intense heat pulse (∼1011 K s−1) than those exposed to a lower heating rate (∼105 K s−1). Additionally, calculations show that sintering may cause a drastic decrease in the initiation delay (down to the ns regime) when using CuO nanoparticles below 50 nm in diameter that can be brought to melting temperature through optical absorption. Finally, the role of gas-surface versus condensed phase reactions in the Al/CuO initiation process is evaluated theoretically. Initiation through condensed phase reactions, while slightly faster and more efficient, exhibits a comparable timescale (∼1–2 ms) to initiation through gas-surface reactions, providing clear evidence for the contribution of both during the initiation phase. A model based uniquely on condensed phase reactions coupled with the thermal equation is developed to study the initiation and early stage of the redox reaction in Al/CuO nanothermites. It considers the effect of a wetting contact angle between Al and CuO particles, which may be induced by sintering mechanisms and/or the synthesis method. In order to validate the model, two published experiments are reproduced in silico. Results provide the first quantification of: (i) how sintering affects the initiation of Al/CuO nanoparticle mixtures, depending on experimental conditions, (ii) the extent to which condensed phase mechanisms dominate gas-mediated reactions in the initiation process, two subjects that have been highly debated in the literature. It was found that initiation appears more strongly affected by sintering when particles are exposed to an ultra-short and intense heat pulse (∼1011 K s−1) than those exposed to a lower heating rate (∼105 K s−1). Additionally, calculations show that sintering may cause a drastic decrease in the initiation delay (down to the ns regime) when using CuO nanoparticles below 50 nm in diameter that can be brought to melting temperature through optical absorption. Finally, the role of gas-surface versus condensed phase reactions in the Al/CuO initiation process is evaluated theoretically. Initiation through condensed phase reactions, while slightly faster and more efficient, exhibits a comparable timescale (∼1–2 ms) to initiation through gas-surface reactions, providing clear evidence for the contribution of both during the initiation phase |
Author | Rossi, Carole Estève, Alain Brotman, Sarah Rouhani, Mehdi Djafari |
Author_xml | – sequence: 1 givenname: Sarah surname: Brotman fullname: Brotman, Sarah organization: University of Toulouse, LAAS-CNRS, 7 avenue du colonel Roche, 31031 Toulouse, France – sequence: 2 givenname: Mehdi Djafari surname: Rouhani fullname: Rouhani, Mehdi Djafari organization: University of Toulouse, LAAS-CNRS, 7 avenue du colonel Roche, 31031 Toulouse, France – sequence: 3 givenname: Carole surname: Rossi fullname: Rossi, Carole organization: University of Toulouse, LAAS-CNRS, 7 avenue du colonel Roche, 31031 Toulouse, France – sequence: 4 givenname: Alain surname: Estève fullname: Estève, Alain organization: University of Toulouse, LAAS-CNRS, 7 avenue du colonel Roche, 31031 Toulouse, France |
BackLink | https://hal.science/hal-02348944$$DView record in HAL |
BookMark | eNp90MFqGzEQBmBRXKiT5pA3EPTUwtrSrrS7OhrTxAVDLu1ZyNIoVthIW0k2ydtHxo4DbchpQHzza_gv0MQHDwhdUzKjpG3mdMbLqHv-CU0p6UXVcU4maEpITatedOILukjpgRBK-0ZMkVxgHbwBn8DgcasS4MdgYMDB4rwF7LzLTg14McyXuzscQensgscpq3vAORSQIY4RMoanEaJ7BJ-Lt84b5-_TV_TZqiHB1Wleoj83P38vV9X67vbXcrGudNPSXOneUK4Ia3VN243Qral5zWoBFkRnO2OZ6DkxnVCwqftOCLMBDdSQIhSzvLlE34-5WzXIsZyh4rMMysnVYi0Pb6RuWC8Y29Nivx3tGMPfHaQsH8Iu-nKeLL93THBO2VuijiGlCPYcS4k8dC2pPHVd7Pwfq11Wh6JyVG54d-PHcSO9ynP8PsQ3KEdjP8L_J78ApaydxA |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_126367 crossref_primary_10_1021_acsami_2c05412 crossref_primary_10_1016_j_combustflame_2021_01_040 crossref_primary_10_1615_NanoSciTechnolIntJ_2023051589 crossref_primary_10_59761_RCR5106 crossref_primary_10_1002_prep_202000290 crossref_primary_10_1007_s00161_023_01243_7 crossref_primary_10_1016_j_applthermaleng_2024_123874 crossref_primary_10_1016_j_tca_2020_178656 crossref_primary_10_3390_molecules27113586 crossref_primary_10_1063_5_0109018 crossref_primary_10_3390_app11146553 crossref_primary_10_1016_j_icheatmasstransfer_2023_107113 crossref_primary_10_1016_j_intermet_2020_106851 |
Cites_doi | 10.1021/jp101146a 10.1016/j.combustflame.2011.07.015 10.1002/prep.201400297 10.1016/j.combustflame.2015.04.013 10.1063/1.1713945 10.1021/jp402990v 10.1063/1.5000312 10.2514/1.26089 10.1063/1.3490752 10.1021/acs.jpcc.5b04117 10.1002/adma.201504286 10.1016/j.cplett.2016.02.048 10.1021/jp5084746 10.1063/1.4867116 10.1016/j.cplett.2009.10.038 10.1021/acs.jpcc.5b07321 10.1007/BF02653953 10.1063/1.4746943 10.1021/acsaem.8b00296 10.1016/j.combustflame.2011.02.004 10.1021/am503126k 10.1016/j.combustflame.2017.02.031 10.1021/jp306717m 10.2514/1.26090 10.1002/adfm.201100763 10.1021/jp906613p |
ContentType | Journal Article |
Copyright | Author(s) 2019 Author(s). Published under license by AIP Publishing. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Author(s) – notice: 2019 Author(s). Published under license by AIP Publishing. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 8FD H8D L7M 1XC |
DOI | 10.1063/1.5063285 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | oai_HAL_hal_02348944v1 10_1063_1_5063285 jap |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M .GJ 0ZJ 186 1XC 2WC 3O- 41~ 6TJ AAYJJ ABDPE ABRJW ACKIV ADXHL AETEA AFFNX AI. FA8 MVM NEJ NEUPN NHB OHT P0- RDFOP ROL UKR VH1 VOH XJT XOL XXG YYP ZCG ZY4 |
ID | FETCH-LOGICAL-c361t-c8d15a046c216b9c6d252429efe97f7df49850d79aeb28799dbece1d09efa4f53 |
ISSN | 0021-8979 |
IngestDate | Wed Jun 25 06:43:36 EDT 2025 Sun Jun 29 15:18:04 EDT 2025 Tue Jul 01 02:01:07 EDT 2025 Thu Apr 24 23:05:09 EDT 2025 Sun Jul 14 10:54:30 EDT 2019 Fri Jun 21 00:14:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Published under license by AIP Publishing. 0021-8979/2019/125(3)/035102/10/$30.00 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c361t-c8d15a046c216b9c6d252429efe97f7df49850d79aeb28799dbece1d09efa4f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3864-7574 0000-0002-0301-7479 |
PQID | 2167495514 |
PQPubID | 2050677 |
PageCount | 10 |
ParticipantIDs | scitation_primary_10_1063_1_5063285 crossref_citationtrail_10_1063_1_5063285 crossref_primary_10_1063_1_5063285 hal_primary_oai_HAL_hal_02348944v1 proquest_journals_2167495514 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-21 |
PublicationDateYYYYMMDD | 2019-01-21 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2019 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Lahiner, Nicollet, Zapata, Marin, Richard, Rouhani, Rossi, Esteve (c21) 2017 Martirosyan, Wang, Luss (c4) 2009 Zhang, Dreizin (c18) 2013 Thiruvengadathan, Bezmelnitsyn, Apperson, Staley, Redner, Balas, Nicolich, Kapoor, Gangopadhyay, Gangopadhyay (c5) 2011 Son, Asay, Foley, Yetter, Wu, Risha (c3) 2007 Zhou, Piekiel, Chowdhury, Zachariah (c17) 2010 Egan, Zachariah (c11) 2015 Baijot, Glavier, Ducere, Rouhani, Rossi, Esteve (c8) 2015 Baijot, Ducere, Rouhani, Rossi, Esteve (c30) 2016 Lanthony, Ducere, Rouhani, Hemeryck, Esteve, Rossi (c22) 2012 Lanthony, Guiltat, Ducere, Verdier, Hemeryck, Djafari-Rouhani, Rossi, Chabal, Esteve (c23) 2014 Sanders, Asay, Foley, Tappan, Pacheco, Son (c2) 2007 Abdallah, Zapata, Lahiner, Warrot-Fonrose, Cure, Chabal, Esteve, Rossi (c14) 2018 Sullivan, Zhu, Duoss, Gash, Kolesky, Kuntz, Lewis, Spadaccini (c7) 2016 Jian, Piekiel, Zachariah (c12) 2012 Narula, Tare, Worrell (c24) 1983 Coulet, Rufino, Esposito, Neisius, Isnard, Denoyel (c15) 2015 Baijot, Mehdi, Rossi, Esteve (c16) 2017 Deal, Grove (c20) 1965 Severac, Alphonse, Esteve, Bancaud, Rossi (c6) 2012 Egan, LaGrange, Zachariah (c19) 2015 Chowdhury, Sullivan, Piekiel, Zhou, Zachariah (c9) 2010 Sullivan, Chiou, Fiore, Zachariah (c13) 2010 Egan, Mily, Maria, Zachariah (c25) 2015 Sullivan, Piekiel, Wu, Chowdhury, Kelly, Hufnagel, Fezzaa, Zachariah (c10) 2012 Egan, Sullivan, LaGrange, Reed, Zachariah (c26) 2014 (2023062407435112500_c10) 2012; 159 2023062407435112500_c29 2023062407435112500_c27 2023062407435112500_c28 (2023062407435112500_c11) 2015; 162 (2023062407435112500_c8) 2015; 40 (2023062407435112500_c9) 2010; 114 (2023062407435112500_c13) 2010; 97 (2023062407435112500_c24) 1983; 14 (2023062407435112500_c30) 2016; 649 (2023062407435112500_c6) 2012; 22 (2023062407435112500_c5) 2011; 158 (2023062407435112500_c3) 2007; 23 (2023062407435112500_c4) 2009; 483 (2023062407435112500_c12) 2012; 116 (2023062407435112500_c23) 2014; 6 (2023062407435112500_c26) 2014; 115 (2023062407435112500_c17) 2010; 114 (2023062407435112500_c22) 2012; 137 (2023062407435112500_c1) 1998 (2023062407435112500_c20) 1965; 36 (2023062407435112500_c14) 2018; 1 (2023062407435112500_c7) 2016; 28 (2023062407435112500_c21) 2017; 122 (2023062407435112500_c15) 2015; 119 (2023062407435112500_c16) 2017; 180 (2023062407435112500_c18) 2013; 117 (2023062407435112500_c2) 2007; 23 (2023062407435112500_c19) 2015; 119 (2023062407435112500_c25) 2015; 119 |
References_xml | – start-page: 3770 year: 1965 ident: c20 article-title: General relationship for the thermal oxidation of silicon publication-title: J. Appl. Phys. – start-page: 155105 year: 2017 ident: c21 article-title: A diffusion-reaction scheme for modeling ignition and self-propagating reactions in Al/CuO multilayered thin films publication-title: J. Appl. Phys. – start-page: 094707 year: 2012 ident: c22 article-title: On the early stage of aluminum oxidation: An extraction mechanism via oxygen cooperation publication-title: J. Chem. Phys. – start-page: 402 year: 2015 ident: c8 article-title: Modeling the pressure generation in aluminum-based thermites publication-title: Propell. Explos. Pyrot. – start-page: 107 year: 2009 ident: c4 article-title: Novel nanoenergetic system based on iodine pentoxide publication-title: Chem. Phys. Lett. – start-page: 14025 year: 2013 ident: c18 article-title: Reaction interface for heterogeneous oxidation of aluminum powders publication-title: J. Phys. Chem. C – start-page: 2 year: 2012 ident: c10 article-title: Reactive sintering: An important component in the combustion of nanocomposite thermites publication-title: Combust. Flame – start-page: 084903 year: 2014 ident: c26 article-title: In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates publication-title: J. Appl. Phys. – start-page: 133104 year: 2010 ident: c13 article-title: In situ microscopy of rapidly heated nano-Al and nano-Al/WO3 thermites publication-title: Appl. Phys. Lett. – start-page: 25063 year: 2015 ident: c15 article-title: Oxidation mechanism of aluminum nanopowders publication-title: J. Phys. Chem. C – start-page: 1762 year: 2018 ident: c14 article-title: Structure and chemical characterization at the atomic level of reactions in Al/CuO multilayers publication-title: Appl. Energy Mater. – start-page: 26881 year: 2012 ident: c12 article-title: Time-resolved mass spectrometry of nano-Al and nano-Al/CuO thermite under rapid heating: A mechanistic study publication-title: J. Phys. Chem. C – start-page: 2792 year: 2015 ident: c19 article-title: Time-resolved nanosecond imaging of nanoscale condensed phase reaction publication-title: J. Phys. Chem. C – start-page: 10 year: 2017 ident: c16 article-title: A multi-phase micro-kinetic model for simulating aluminum based thermite reactions publication-title: Combust. Flame – start-page: 323 year: 2012 ident: c6 article-title: High-Energy Al/CuO nanocomposites obtained by DNA-directed assembly publication-title: Adv. Funct. Mater. – start-page: 15086 year: 2014 ident: c23 article-title: Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: Copper and oxygen deposition on aluminum (111) surfaces publication-title: ACS Appl. Mater. Inter. – start-page: 2959 year: 2015 ident: c11 article-title: Commentary on the heat transfer mechanisms controlling propagation in nanothermites publication-title: Combust. Flame – start-page: 673 year: 1983 ident: c24 article-title: Diffusivity and solubility of oxygen in solid copper using potentiostatic and potentiometric techniques publication-title: Metall .Trans. B – start-page: 9191 year: 2010 ident: c9 article-title: Diffusive vs explosive reaction at the nanoscale publication-title: J. Phys. Chem. C – start-page: 20401 year: 2015 ident: c25 article-title: Probing the reaction dynamics of thermite nanolaminates publication-title: J. Phys. Chem. C – start-page: 88 year: 2016 ident: c30 article-title: Effect of temperature and O-2 pressure on the gaseous species produced during combustion of aluminum publication-title: Chem. Phys. Lett. – start-page: 964 year: 2011 ident: c5 article-title: Combustion characteristics of novel hybrid nanoenergetic formulations publication-title: Combust. Flame – start-page: 14269 year: 2010 ident: c17 article-title: Time-resolved mass spectrometry of the exothermic reaction between nanoaluminum and metal oxides: The role of oxygen release publication-title: J. Phys. Chem. C – start-page: 715 year: 2007 ident: c3 article-title: Combustion of nanoscale Al/MoO3 thermite in microchannels publication-title: J. Propul. Power. – start-page: 707 year: 2007 ident: c2 article-title: Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3) publication-title: J. Propul. Power. – start-page: 1934 year: 2016 ident: c7 article-title: Controlling material reactivity using architecture publication-title: Adv. Mater. – volume: 114 start-page: 14269 issue: 33 year: 2010 ident: 2023062407435112500_c17 article-title: Time-resolved mass spectrometry of the exothermic reaction between nanoaluminum and metal oxides: The role of oxygen release publication-title: J. Phys. Chem. C doi: 10.1021/jp101146a – volume: 159 start-page: 2 issue: 1 year: 2012 ident: 2023062407435112500_c10 article-title: Reactive sintering: An important component in the combustion of nanocomposite thermites publication-title: Combust. Flame doi: 10.1016/j.combustflame.2011.07.015 – ident: 2023062407435112500_c27 – year: 1998 ident: 2023062407435112500_c1 – volume: 40 start-page: 402 issue: 3 year: 2015 ident: 2023062407435112500_c8 article-title: Modeling the pressure generation in aluminum-based thermites publication-title: Propell. Explos. Pyrot. doi: 10.1002/prep.201400297 – volume: 162 start-page: 2959 issue: 7 year: 2015 ident: 2023062407435112500_c11 article-title: Commentary on the heat transfer mechanisms controlling propagation in nanothermites publication-title: Combust. Flame doi: 10.1016/j.combustflame.2015.04.013 – volume: 36 start-page: 3770 year: 1965 ident: 2023062407435112500_c20 article-title: General relationship for the thermal oxidation of silicon publication-title: J. Appl. Phys. doi: 10.1063/1.1713945 – volume: 117 start-page: 14025 issue: 27 year: 2013 ident: 2023062407435112500_c18 article-title: Reaction interface for heterogeneous oxidation of aluminum powders publication-title: J. Phys. Chem. C doi: 10.1021/jp402990v – volume: 122 start-page: 155105 issue: 15 year: 2017 ident: 2023062407435112500_c21 article-title: A diffusion-reaction scheme for modeling ignition and self-propagating reactions in Al/CuO multilayered thin films publication-title: J. Appl. Phys. doi: 10.1063/1.5000312 – volume: 23 start-page: 707 issue: 4 year: 2007 ident: 2023062407435112500_c2 article-title: Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3) publication-title: J. Propul. Power. doi: 10.2514/1.26089 – volume: 97 start-page: 133104 issue: 13 year: 2010 ident: 2023062407435112500_c13 article-title: In situ microscopy of rapidly heated nano-Al and nano-Al/WO3 thermites publication-title: Appl. Phys. Lett. doi: 10.1063/1.3490752 – volume: 119 start-page: 20401 issue: 35 year: 2015 ident: 2023062407435112500_c25 article-title: Probing the reaction dynamics of thermite nanolaminates publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b04117 – volume: 28 start-page: 1934 issue: 10 year: 2016 ident: 2023062407435112500_c7 article-title: Controlling material reactivity using architecture publication-title: Adv. Mater. doi: 10.1002/adma.201504286 – volume: 649 start-page: 88 year: 2016 ident: 2023062407435112500_c30 article-title: Effect of temperature and O-2 pressure on the gaseous species produced during combustion of aluminum publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.02.048 – volume: 119 start-page: 2792 issue: 5 year: 2015 ident: 2023062407435112500_c19 article-title: Time-resolved nanosecond imaging of nanoscale condensed phase reaction publication-title: J. Phys. Chem. C doi: 10.1021/jp5084746 – volume: 115 start-page: 084903 issue: 8 year: 2014 ident: 2023062407435112500_c26 article-title: In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates publication-title: J. Appl. Phys. doi: 10.1063/1.4867116 – volume: 483 start-page: 107 issue: 1–3 year: 2009 ident: 2023062407435112500_c4 article-title: Novel nanoenergetic system based on iodine pentoxide publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2009.10.038 – volume: 119 start-page: 25063 issue: 44 year: 2015 ident: 2023062407435112500_c15 article-title: Oxidation mechanism of aluminum nanopowders publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b07321 – volume: 14 start-page: 673 issue: 4 year: 1983 ident: 2023062407435112500_c24 article-title: Diffusivity and solubility of oxygen in solid copper using potentiostatic and potentiometric techniques publication-title: Metall .Trans. B doi: 10.1007/BF02653953 – volume: 137 start-page: 094707 issue: 9 year: 2012 ident: 2023062407435112500_c22 article-title: On the early stage of aluminum oxidation: An extraction mechanism via oxygen cooperation publication-title: J. Chem. Phys. doi: 10.1063/1.4746943 – ident: 2023062407435112500_c28 – volume: 1 start-page: 1762 issue: 4 year: 2018 ident: 2023062407435112500_c14 article-title: Structure and chemical characterization at the atomic level of reactions in Al/CuO multilayers publication-title: Appl. Energy Mater. doi: 10.1021/acsaem.8b00296 – volume: 158 start-page: 964 issue: 5 year: 2011 ident: 2023062407435112500_c5 article-title: Combustion characteristics of novel hybrid nanoenergetic formulations publication-title: Combust. Flame doi: 10.1016/j.combustflame.2011.02.004 – volume: 6 start-page: 15086 issue: 17 year: 2014 ident: 2023062407435112500_c23 article-title: Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: Copper and oxygen deposition on aluminum (111) surfaces publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am503126k – volume: 180 start-page: 10 year: 2017 ident: 2023062407435112500_c16 article-title: A multi-phase micro-kinetic model for simulating aluminum based thermite reactions publication-title: Combust. Flame doi: 10.1016/j.combustflame.2017.02.031 – ident: 2023062407435112500_c29 – volume: 116 start-page: 26881 issue: 51 year: 2012 ident: 2023062407435112500_c12 article-title: Time-resolved mass spectrometry of nano-Al and nano-Al/CuO thermite under rapid heating: A mechanistic study publication-title: J. Phys. Chem. C doi: 10.1021/jp306717m – volume: 23 start-page: 715 issue: 4 year: 2007 ident: 2023062407435112500_c3 article-title: Combustion of nanoscale Al/MoO3 thermite in microchannels publication-title: J. Propul. Power. doi: 10.2514/1.26090 – volume: 22 start-page: 323 issue: 2 year: 2012 ident: 2023062407435112500_c6 article-title: High-Energy Al/CuO nanocomposites obtained by DNA-directed assembly publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100763 – volume: 114 start-page: 9191 issue: 20 year: 2010 ident: 2023062407435112500_c9 article-title: Diffusive vs explosive reaction at the nanoscale publication-title: J. Phys. Chem. C doi: 10.1021/jp906613p |
SSID | ssj0011839 |
Score | 2.3674505 |
Snippet | A model based uniquely on condensed phase reactions coupled with the thermal equation is developed to study the initiation and early stage of the redox... |
SourceID | hal proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Contact angle Dispersed gas phase hold up Engineering Sciences Heating rate Materials Melt temperature Nanoparticles Sintering Surface reactions Wetting |
Title | A condensed phase model of the initial Al/CuO reaction stage to interpret experimental findings |
URI | http://dx.doi.org/10.1063/1.5063285 https://www.proquest.com/docview/2167495514 https://hal.science/hal-02348944 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ti9MwGA-7HaJ-ED0Vp6cE9YMwulvT9CUfi7fjkO1OdIN9K2mT3iZjHVs30L_eJ03SdTgO9UspbWhDnl-S3_PkeUHoo0gFjQIZOIR61KE5lQ4nkXBSLrPIo9ILfRWcPLoJrif0y9Sftlo_G15L2zLtZb-OxpX8j1ThGchVRcn-g2Trj8IDuAf5whUkDNe_knGsnMZh4dgAa1zNYD_ShW3suf9cOQYpESxUFtztbRcIoq4MDpTwrqqZMbc-h4ep_quTbGtC_5O6ckNdtVlkb2hfF6U1qDYNzd-K7Ywv592RnIl59_IHz0FB37-EWVm7ntQwG2zK6gw_2knoPzf5wY15QkVEuQ5puHrYc6cD34evje7ZoALXiZiuK9OTei3uR8wJfZ2Xtl6sdZi0QaV3dBMA1qXsET0fboguCHSYaPvmNrmaDIfJeDAdn6BTAhoGaaPT-HI0_F4fQSnqqP2DdM9sWqrAu6g_fUBmTmbKlbahpzwEEqP9KRqUZfwUPTECw7EGzjPUkssz9LiRgfIMPTBj9BwlMa7BhCsw4QpMuMgxgAkbMOF4cQFQwhZKuIISLgtcQwk3oYQtlF6gydVg_PnaMdU3nMwL3NLJIuH6vE-DjLhByrJAEB_4HJO5ZGEeipyyyO-LkHGZgtrNmIDlQLqiDy04zX3vJWovi6V8hTDPWEByn4s09yiVoFSkIqWCET-FPSEKO-iTHcbEDpmqkLJIKheJwEvcxIx4B72vm650PpajjUAW9XuVQf06HibqGVBUGjFKd24HnVtRJWZObxKignKY0iI66EMtvvv-dKTVrljvWyQrkb--_1dv0KP9zDlH7XK9lW-B6pbpOwPK35eirIg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+condensed+phase+model+of+the+initial+Al%2FCuO+reaction+stage+to+interpret+experimental+findings&rft.jtitle=Journal+of+applied+physics&rft.au=Brotman%2C+Sarah&rft.au=Rouhani+Mehdi+Djafari&rft.au=Rossi%2C+Carole&rft.au=Est%C3%A8ve+Alain&rft.date=2019-01-21&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=125&rft.issue=3&rft_id=info:doi/10.1063%2F1.5063285&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |