Multisite and Multitemporal Grassland Yield Estimation Using UAV-Borne Hyperspectral Data
Grassland ecosystems can be hotspots of biodiversity and act as carbon sinks while at the same time providing the basis of forage production for ruminants in dairy and meat production. Annual grassland dry matter yield (DMY) is one of the most important agronomic parameters reflecting differences in...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 9; p. 2068 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Grassland ecosystems can be hotspots of biodiversity and act as carbon sinks while at the same time providing the basis of forage production for ruminants in dairy and meat production. Annual grassland dry matter yield (DMY) is one of the most important agronomic parameters reflecting differences in usage intensity such as number of harvests and fertilization. Current methods for grassland DMY estimation are labor-intensive and prone to error due to small sample size. With the advent of unmanned aerial vehicles (UAVs) and miniaturized hyperspectral sensors, a novel tool for remote sensing of grassland with high spatial, temporal and radiometric resolution and coverage is available. The present study aimed at developing a robust model capable of estimating grassland biomass across a gradient of usage intensity throughout one growing season. Therefore, UAV-borne hyperspectral data from eight grassland sites in North Hesse, Germany, originating from different harvests, were utilized for the modeling of fresh matter yield (FMY) and DMY. Four machine learning (ML) algorithms were compared for their modeling performance. Among them, the rule-based ML method Cubist regression (CBR) performed best, delivering high prediction accuracies for both FMY (nRMSEp 7.6%, Rp2 0.87) and DMY (nRMSEp 12.9%, Rp2 0.75). The model showed a high robustness across sites and harvest dates. The best models were employed to produce maps for FMY and DMY, enabling the detailed analysis of spatial patterns. Although the complexity of the approach still restricts its practical application in agricultural management, the current study proved that biomass of grassland sites being subject to different management intensities can be modeled from UAV-borne hyperspectral data at high spatial resolution with high prediction accuracies. |
---|---|
AbstractList | Grassland ecosystems can be hotspots of biodiversity and act as carbon sinks while at the same time providing the basis of forage production for ruminants in dairy and meat production. Annual grassland dry matter yield (DMY) is one of the most important agronomic parameters reflecting differences in usage intensity such as number of harvests and fertilization. Current methods for grassland DMY estimation are labor-intensive and prone to error due to small sample size. With the advent of unmanned aerial vehicles (UAVs) and miniaturized hyperspectral sensors, a novel tool for remote sensing of grassland with high spatial, temporal and radiometric resolution and coverage is available. The present study aimed at developing a robust model capable of estimating grassland biomass across a gradient of usage intensity throughout one growing season. Therefore, UAV-borne hyperspectral data from eight grassland sites in North Hesse, Germany, originating from different harvests, were utilized for the modeling of fresh matter yield (FMY) and DMY. Four machine learning (ML) algorithms were compared for their modeling performance. Among them, the rule-based ML method Cubist regression (CBR) performed best, delivering high prediction accuracies for both FMY (nRMSEp 7.6%, Rp2 0.87) and DMY (nRMSEp 12.9%, Rp2 0.75). The model showed a high robustness across sites and harvest dates. The best models were employed to produce maps for FMY and DMY, enabling the detailed analysis of spatial patterns. Although the complexity of the approach still restricts its practical application in agricultural management, the current study proved that biomass of grassland sites being subject to different management intensities can be modeled from UAV-borne hyperspectral data at high spatial resolution with high prediction accuracies. |
Author | Wengert, Matthias Astor, Thomas Wachendorf, Michael Wijesingha, Jayan Schulze-Brüninghoff, Damian |
Author_xml | – sequence: 1 givenname: Matthias orcidid: 0000-0003-4761-9209 surname: Wengert fullname: Wengert, Matthias – sequence: 2 givenname: Jayan orcidid: 0000-0003-2574-6303 surname: Wijesingha fullname: Wijesingha, Jayan – sequence: 3 givenname: Damian orcidid: 0000-0001-8215-975X surname: Schulze-Brüninghoff fullname: Schulze-Brüninghoff, Damian – sequence: 4 givenname: Michael orcidid: 0000-0002-2840-7086 surname: Wachendorf fullname: Wachendorf, Michael – sequence: 5 givenname: Thomas surname: Astor fullname: Astor, Thomas |
BookMark | eNptkUtr3DAQx0VJoHld-gkMvQXcjh6WrWNeTQIpvWQDOYmRPA5aHMuVtId8-3h3S1tK5zIPfvOfYeaYHUxxIsY-cfgipYGvKXMFRoDuPrAjAa2olTDi4K_4IzvLeQ2LSckNqCP2_H0zlpBDoQqnvtplhV7nmHCsbhPmPG7rz4HGvrrJJbxiCXGqVjlML9Xq4qm-jGmi6u5tppRn8mXbeI0FT9nhgGOms1_-hK2-3Txe3dUPP27vry4eai81L7XvnANphqHrkDQ2xAcYSBFIFJKj72UzKGzASXLKaO-kcsBVu2Cmc72TJ-x-r9tHXNs5LRumNxsx2F0hpheLqQQ_koUGyLcwoDRCybZ3jWhJ-051yHkn9KL1ea81p_hzQ7nYddykaVnfCq0l51q1ZqHO95RPMedEw--pHOz2E_bPJxYY_oF9KLsbLpcK4_9a3gHvD4yB |
CitedBy_id | crossref_primary_10_3390_agronomy13092441 crossref_primary_10_3390_rs16061003 crossref_primary_10_3390_rs15092411 crossref_primary_10_1016_j_engappai_2024_108871 crossref_primary_10_1111_gfs_12701 crossref_primary_10_32604_phyton_2024_047573 crossref_primary_10_3390_rs17020279 crossref_primary_10_3390_rs15030639 crossref_primary_10_3390_s22249572 crossref_primary_10_3390_s24041114 crossref_primary_10_1016_j_jag_2024_104043 crossref_primary_10_3390_rs16040652 |
Cites_doi | 10.3389/fenvs.2022.684589 10.1117/1.JRS.13.034525 10.1016/j.isprsjprs.2016.01.011 10.1016/j.rama.2018.10.005 10.1080/01431161.2010.532172 10.1002/rse2.182 10.1016/S1161-0301(02)00108-9 10.5194/bg-2021-250 10.1371/journal.pone.0234703 10.3390/ijgi4042792 10.18637/jss.v028.i05 10.3390/s20174802 10.1080/01431160902882496 10.1007/BF00994018 10.32614/RJ-2015-018 10.1016/j.chemolab.2008.06.009 10.1006/ijhc.1987.0321 10.3390/rs13214333 10.1016/j.eswa.2019.05.028 10.1016/j.spasta.2015.05.008 10.1109/TGRS.2005.843316 10.3389/fpls.2020.569948 10.18637/jss.v015.i09 10.1093/bib/bbx124 10.1111/gfs.12312 10.1017/CBO9780511973000 10.1016/j.agsy.2008.07.004 10.1016/j.rse.2020.111830 10.18637/jss.v036.i11 10.1080/01621459.1972.10481279 10.5194/jsss-5-301-2016 10.1111/j.1469-8137.2010.03536.x 10.1023/A:1010933404324 10.1017/S2040470017000619 10.3390/agronomy9020054 10.3390/rs13142751 10.3390/rs11060617 10.1016/j.neunet.2018.12.010 10.3390/rs12010126 10.1016/j.rse.2008.10.018 10.3390/agronomy10101600 10.1111/j.1365-2494.2012.00886.x 10.3390/rs12121949 10.2134/agronj1997.00021962008900040020x 10.1016/j.ecolind.2020.106201 10.14358/PERS.73.10.1141 10.3390/rs10071082 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs14092068 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_050ec70fa392437db527e6c848a11826 10_3390_rs14092068 |
GeographicLocations | Central Europe Germany |
GeographicLocations_xml | – name: Central Europe – name: Germany |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-c8bb039ff88ae6a5e1f0fe4e03a231acd35f4a50b3eb496cb34b01471f098bdb3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:27:40 EDT 2025 Sat Aug 23 14:17:28 EDT 2025 Tue Jul 01 01:59:12 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-c8bb039ff88ae6a5e1f0fe4e03a231acd35f4a50b3eb496cb34b01471f098bdb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2840-7086 0000-0003-4761-9209 0000-0003-2574-6303 0000-0001-8215-975X |
OpenAccessLink | https://doaj.org/article/050ec70fa392437db527e6c848a11826 |
PQID | 2663116479 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_050ec70fa392437db527e6c848a11826 proquest_journals_2663116479 crossref_primary_10_3390_rs14092068 crossref_citationtrail_10_3390_rs14092068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Kraemer (ref_24) 2008; 94 Genuer (ref_19) 2015; 7 Capolupo (ref_16) 2015; 4 ref_57 ref_11 Speiser (ref_25) 2019; 134 ref_52 ref_51 Karatzoglou (ref_30) 2006; 15 Stumpf (ref_7) 2020; 113 ref_17 Smit (ref_1) 2008; 98 Hakl (ref_4) 2012; 67 Wright (ref_33) 2015; 77 Harmoney (ref_3) 1997; 89 Wijesingha (ref_8) 2019; 78 Belgiu (ref_53) 2016; 114 Psomas (ref_55) 2011; 32 ref_23 Lussem (ref_15) 2019; 13 ref_22 Clevers (ref_41) 2008; 10 Sirsat (ref_54) 2019; 111 ref_28 ref_27 Oliveira (ref_12) 2020; 246 Ollinger (ref_40) 2011; 189 Kuhn (ref_38) 2008; 28 Degenhardt (ref_46) 2019; 20 Geipel (ref_13) 2017; 8 ref_35 Bauer (ref_39) 1972; 67 Breiman (ref_32) 2001; 45 Quinlan (ref_34) 1999; 51 Clevers (ref_18) 2007; 73 Wachendorf (ref_10) 2021; 7 Safari (ref_6) 2016; 5 ref_37 Zandler (ref_45) 2022; 10 Kong (ref_14) 2019; 72 Lussem (ref_42) 2020; 88 Cortes (ref_29) 1995; 20 Astor (ref_26) 2021; 11 Probst (ref_31) 2017; 18 Frey (ref_44) 2020; 11 Kokaly (ref_49) 2009; 113 Kremer (ref_21) 2019; 1 Appelhans (ref_36) 2015; 14 Riano (ref_48) 2005; 43 ref_43 Wachendorf (ref_2) 2018; 73 Chen (ref_47) 2009; 30 ref_9 Keating (ref_56) 2003; 18 ref_5 Kursa (ref_20) 2010; 36 |
References_xml | – volume: 10 start-page: 164 year: 2022 ident: ref_45 article-title: Contributions to Satellite-Based Land Cover Classification, Vegetation Quantification and Grassland Monitoring in Central Asian Highlands Using Sentinel-2 and MODIS Data publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2022.684589 – volume: 13 start-page: 034525 year: 2019 ident: ref_15 article-title: Estimating Biomass in Temperate Grassland with High Resolution Canopy Surface Models from UAV-Based RGB Images and Vegetation Indices publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.13.034525 – volume: 114 start-page: 24 year: 2016 ident: ref_53 article-title: Random Forest in Remote Sensing: A Review of Applications and Future Directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 72 start-page: 336 year: 2019 ident: ref_14 article-title: Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing publication-title: Rangel. Ecol. Manag. doi: 10.1016/j.rama.2018.10.005 – volume: 88 start-page: 407 year: 2020 ident: ref_42 article-title: Monitoring Forage Mass with Low-Cost UAV Data: Case Study at the Rengen Grassland Experiment publication-title: PFG–J. Photogramm. Remote Sens. Geoinf. Sci. – volume: 32 start-page: 9007 year: 2011 ident: ref_55 article-title: Hyperspectral Remote Sensing for Estimating Aboveground Biomass and for Exploring Species Richness Patterns of Grassland Habitats publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.532172 – volume: 78 start-page: 352 year: 2019 ident: ref_8 article-title: Evaluation of 3D Point Cloud-Based Models for the Prediction of Grassland Biomass publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 77 start-page: 1 year: 2015 ident: ref_33 article-title: Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R publication-title: J. Stat. Softw. – volume: 10 start-page: 388 year: 2008 ident: ref_41 article-title: Using Spectral Information from the NIR Water Absorption Features for the Retrieval of Canopy Water Content publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 7 start-page: 198 year: 2021 ident: ref_10 article-title: Remote Sensing Data Fusion as a Tool for Biomass Prediction in Extensive Grasslands Invaded by L. polyphyllus publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.182 – volume: 18 start-page: 267 year: 2003 ident: ref_56 article-title: An Overview of APSIM, a Model Designed for Farming Systems Simulation publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00108-9 – ident: ref_35 – ident: ref_43 doi: 10.5194/bg-2021-250 – volume: 1 start-page: 1 year: 2019 ident: ref_21 article-title: Niedrigwasser und Trockenheit. 2018 publication-title: Hess. Landesamt Für Nat. Umw. Geol. – ident: ref_9 doi: 10.1371/journal.pone.0234703 – ident: ref_23 – volume: 4 start-page: 2792 year: 2015 ident: ref_16 article-title: Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi4042792 – volume: 28 start-page: 1 year: 2008 ident: ref_38 article-title: Building Predictive Models in R Using the Caret Package publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i05 – ident: ref_57 doi: 10.3390/s20174802 – volume: 30 start-page: 6497 year: 2009 ident: ref_47 article-title: Estimating Aboveground Biomass of Grassland Having a High Canopy Cover: An Exploratory Analysis of in Situ Hyperspectral Data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160902882496 – volume: 20 start-page: 273 year: 1995 ident: ref_29 article-title: Support-Vector Networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 7 start-page: 19 year: 2015 ident: ref_19 article-title: VSURF: An R Package for Variable Selection Using Random Forests publication-title: R J. doi: 10.32614/RJ-2015-018 – volume: 94 start-page: 60 year: 2008 ident: ref_24 article-title: Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2008.06.009 – volume: 51 start-page: 497 year: 1999 ident: ref_34 article-title: Simplifying Decision Trees publication-title: Int. J. Hum.-Comput. Stud. doi: 10.1006/ijhc.1987.0321 – ident: ref_28 doi: 10.3390/rs13214333 – volume: 134 start-page: 93 year: 2019 ident: ref_25 article-title: A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modeling publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.05.028 – volume: 14 start-page: 91 year: 2015 ident: ref_36 article-title: Evaluating Machine Learning Approaches for the Interpolation of Monthly Air Temperature at Mt. Kilimanjaro, Tanzania publication-title: Spat. Stat. doi: 10.1016/j.spasta.2015.05.008 – volume: 43 start-page: 819 year: 2005 ident: ref_48 article-title: Estimation of Fuel Moisture Content by Inversion of Radiative Transfer Models to Simulate Equivalent Water Thickness and Dry Matter Content: Analysis at Leaf and Canopy Level publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.843316 – volume: 11 start-page: 1533 year: 2020 ident: ref_44 article-title: A Non-Destructive Method to Quantify Leaf Starch Content in Red Clover publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.569948 – volume: 15 start-page: 1 year: 2006 ident: ref_30 article-title: Support Vector Machines in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v015.i09 – volume: 20 start-page: 492 year: 2019 ident: ref_46 article-title: Evaluation of Variable Selection Methods for Random Forests and Omics Data Sets publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx124 – volume: 73 start-page: 1 year: 2018 ident: ref_2 article-title: Remote Sensing as a Tool to Assess Botanical Composition, Structure, Quantity and Quality of Temperate Grasslands publication-title: Grass Forage Sci. doi: 10.1111/gfs.12312 – ident: ref_51 doi: 10.1017/CBO9780511973000 – volume: 98 start-page: 208 year: 2008 ident: ref_1 article-title: Spatial Distribution of Grassland Productivity and Land Use in Europe publication-title: Agric. Syst. doi: 10.1016/j.agsy.2008.07.004 – volume: 246 start-page: 111830 year: 2020 ident: ref_12 article-title: Machine Learning Estimators for the Quantity and Quality of Grass Swards Used for Silage Production Using Drone-Based Imaging Spectrometry and Photogrammetry publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111830 – volume: 36 start-page: 1 year: 2010 ident: ref_20 article-title: Feature Selection with the Boruta Package publication-title: J. Stat. Softw. doi: 10.18637/jss.v036.i11 – volume: 11 start-page: 2192 year: 2021 ident: ref_26 article-title: Prediction of Biomass and N Fixation of Legume-Grass Mixtures Using Sensor Fusion publication-title: Front. Plant Sci. – volume: 67 start-page: 687 year: 1972 ident: ref_39 article-title: Constructing Confidence Sets Using Rank Statistics publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1972.10481279 – volume: 5 start-page: 301 year: 2016 ident: ref_6 article-title: Comparing Mobile and Static Assessment of Biomass in Heterogeneous Grassland with a Multi-Sensor System publication-title: J. Sens. Sens. Syst. doi: 10.5194/jsss-5-301-2016 – volume: 189 start-page: 375 year: 2011 ident: ref_40 article-title: Sources of Variability in Canopy Reflectance and the Convergent Properties of Plants: Tansley Review publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03536.x – volume: 45 start-page: 5 year: 2001 ident: ref_32 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 8 start-page: 770 year: 2017 ident: ref_13 article-title: Hyperspectral Aerial Imaging for Grassland Yield Estimation publication-title: Adv. Anim. Biosci. doi: 10.1017/S2040470017000619 – ident: ref_52 doi: 10.3390/agronomy9020054 – ident: ref_27 doi: 10.3390/rs13142751 – ident: ref_37 doi: 10.3390/rs11060617 – volume: 111 start-page: 11 year: 2019 ident: ref_54 article-title: An Extensive Experimental Survey of Regression Methods publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.12.010 – ident: ref_17 doi: 10.3390/rs12010126 – volume: 113 start-page: S78 year: 2009 ident: ref_49 article-title: Characterizing Canopy Biochemistry from Imaging Spectroscopy and Its Application to Ecosystem Studies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.10.018 – ident: ref_50 doi: 10.3390/agronomy10101600 – volume: 67 start-page: 589 year: 2012 ident: ref_4 article-title: The Use of a Rising Plate Meter to Evaluate Lucerne (Medicago sativa L.) Height as an Important Agronomic Trait Enabling Yield Estimation publication-title: Grass Forage Sci. doi: 10.1111/j.1365-2494.2012.00886.x – volume: 18 start-page: 6673 year: 2017 ident: ref_31 article-title: To Tune or Not to Tune the Number of Trees in Random Forest? publication-title: J. Mach. Learn. Res. – ident: ref_5 doi: 10.3390/rs12121949 – volume: 89 start-page: 665 year: 1997 ident: ref_3 article-title: Determination of Pasture Biomass Using Four Indirect Methods publication-title: Agron. J. doi: 10.2134/agronj1997.00021962008900040020x – ident: ref_22 – volume: 113 start-page: 106201 year: 2020 ident: ref_7 article-title: Spatial Monitoring of Grassland Management Using Multi-Temporal Satellite Imagery publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2020.106201 – volume: 73 start-page: 1141 year: 2007 ident: ref_18 article-title: Estimating Grassland Biomass Using SVM Band Shaving of Hyperspectral Data publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.73.10.1141 – ident: ref_11 doi: 10.3390/rs10071082 |
SSID | ssj0000331904 |
Score | 2.3831022 |
Snippet | Grassland ecosystems can be hotspots of biodiversity and act as carbon sinks while at the same time providing the basis of forage production for ruminants in... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2068 |
SubjectTerms | Agricultural management Algorithms Biodiversity Biomass Biosphere Cameras Carbon sinks Dry matter Estimation Feature selection Fertilization Fertilizers grassland Grasslands Growing season hyperspectral Machine learning Meat Meat production Modelling multisite multitemporal Radiometric resolution Remote sensing Remote sensors Satellites Sensors Software Spatial analysis Spatial data Spatial discrimination Spatial resolution UAV Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgHWBBfIpCQZZgYYjqxk7iTKiFQoVEhRBF7RTZjgNDlZQ0DPx7zo7bIoFYMiROZJ3tu3uXu3cIXdIgk5Jo5bFIhQBQlPZibqJNfsyFAsiV2nZvj6NwOGYPk2DiAm4Ll1a51IlWUaeFMjHyDhgS2jXkV_H1_MMzXaPM31XXQmMTNUEFcwBfzf5g9PS8irIQCluMsJqXlAK-75QLQ_HkE8Ot-sMSWcL-X_rYGpm7XbTjvEPcq5dzD23ofB9tuUbl718HaGoLZs2csMhTXJfP1uxSM3xfgidsMhXx1OSl4QEc37oyEdvMADzuvXr9osw1HgL8rKsszYu3ohKHaHw3eLkZeq47gqdo2K08xUHINM4yzoUORaC7Gck004QK8NmESmEZmAiIpFqyOFSSMgl4KIJhMZeppEeokRe5PkY4TAPOla-6UmkGGFBoCt-CKxh7yX3VQldLSSXKUYebDhazBCCEkWqylmoLXazGzmvCjD9H9Y3AVyMMybW9UZRviTszCQlgE0UwEfDhGI1SGfiRDhVnXFhY1ELt5XIl7uQtkvU-Ofn_8Sna9k0pg01ebKNGVX7qM3AwKnnudtE3AbPRWQ priority: 102 providerName: ProQuest |
Title | Multisite and Multitemporal Grassland Yield Estimation Using UAV-Borne Hyperspectral Data |
URI | https://www.proquest.com/docview/2663116479 https://doaj.org/article/050ec70fa392437db527e6c848a11826 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagDLAgnqJQKkuwMER1Yidxxpa-hGiFgKJ2imzHEUPVojQM_HvOdgqVQGJhSaTo4kR3tu--5O47hK5pmEtJtPJYrCIAKEp7CTdfm4KECwWQK7Pt3kbjaDhhd9NwutHqy-SEOXpgp7gWCWGkmOQCHDmjcSbDINaR4owLGxub3Rd83gaYsnswhalFmOMjpYDrW8XKUDsFxHCqbnggS9T_Yx-2zqV_gParqBC33dscoi29OEK7VYPy149jNLOFsuZPLwboj13ZrGOVmuNBARGwyVDEM5OPhnuwbF1FIrYZAXjSfvE6y2Kh8RBgp6uuNDd2RSlO0KTfe74delVXBE_RyC89xUG5NMlzzoWORKj9nOSaaUIFxGpCZaB-JkIiqZYsiZSkTAIOikEs4TKT9BTVFsuFPkM4ykLOVaB8qTQD7Cc0hbHgCE5e8kDV0c1aU6mqKMNN54p5CtDBaDX91modXX3JvjmijF-lOkbhXxKG3NpeAJOnlcnTv0xeR421udJqxa1SCDSob8jRkvP_eMYF2gtMoYNNbWygWlm860sIP0rZRNu8P2iinXZ3dP8E505v_PDYtPPvE1Lj23Y |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOMClanmIpbRYAg4cIryxkziHCkFhWZ4nFsEp2I4DB5Sl2a0q_lR_IzNOsiCBuHHJIZ5Y1nhsz-fMfAOwKaLCGO5sIBMbI0CxLkgV3TaFqdIWIVfuy72dX8T9gTy5jq6n4H-bC0Nhle2e6DfqfGjpjnwHDxLRJfKrdPfxT0BVo-jvaltCozaLU_f0DyHb6NfxAc7vVhj2Di9_94OmqkBgRdwdB1bh4ERaFEppF-vIdQteOOm40OjraJvj8KWOuBHOyDS2RkiDOCJBsVSZ3AjsdxpmpRAprSjVO5rc6XCBBs1lzYKK7XynGhGhVMiJyfXVuefLA7zZ_f2R1vsKXxpflO3VxvMNply5AHNNWfT7p0W48em5pAGmy5zVybo1l9UDO6rQ76a4SHZDUXDsEDeLOg-S-TgENti7CvaHVelYH8FundNJHx7osV6CwadobRlmymHpVoDFeaSUDW3XWCcRcWonsC98omthVGg7sN1qKrMNUTnVy3jIELCQVrMXrXZgYyL7WNNzvCu1TwqfSBCltn8xrO6yZoVmPEKTTXAg6DFKkeQmChMXWyWV9iCsA2vtdGXNOh9lL1a5-nHzOsz1L8_PsrPji9PvMB9SEoUPm1yDmXH11_1A12Zsfnp7YnD72Qb8DFwTDlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcqvISS1-WgAOHaL2xkzgHVHW7u2wprCrEovaU2o4DhypbsltV_Wv8us44ybYSiFsvOSQTyxmP7fmcmW8A3omoMIY7G8jExghQrAtSRadNYaq0RciV-3JvX6fxZCY_n0ana_CnzYWhsMp2TfQLdT63dEbew41E9In8Ku0VTVjEyXC8f_k7oApS9Ke1LadRm8ixu7lG-Lb4eDTEsX4fhuPR98NJ0FQYCKyI-8vAKuyoSItCKe1iHbl-wQsnHRca_R5tc_wUqSNuhDMyja0R0iCmSFAsVSY3Att9BOsJoiLegfXBaHrybXXCwwWaN5c1J6oQKe9VC6KXCjnxut7bBX2xgL_2Ar_BjTdho_FM2UFtSs9gzZXP4UlTJP3XzQs488m6pAOmy5zVqbs1s9UF-1ShF05RkuyMYuLYCJeOOiuS-agENjv4EQzmVenYBKFvneFJLw71Ur-E2YPo7RV0ynnpXgOL80gpG9q-sU4i_tROYFt4RUfDqNB24UOrqcw2tOVUPeMiQ_hCWs3utNqFtyvZy5qs459SA1L4SoIItv2NefUza-ZrxiM04AQ7gv6jFEluojBxsVVSaQ_JurDdDlfWzPpFdmejb_7_eA8eo_FmX46mx1vwNKSMCh9DuQ2dZXXldtDPWZrdxqAYnD-0Dd8CJJ0T6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisite+and+Multitemporal+Grassland+Yield+Estimation+Using+UAV-Borne+Hyperspectral+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Matthias+Wengert&rft.au=Jayan+Wijesingha&rft.au=Damian+Schulze-Br%C3%BCninghoff&rft.au=Michael+Wachendorf&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=9&rft.spage=2068&rft_id=info:doi/10.3390%2Frs14092068&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_050ec70fa392437db527e6c848a11826 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |