Multisite and Multitemporal Grassland Yield Estimation Using UAV-Borne Hyperspectral Data

Grassland ecosystems can be hotspots of biodiversity and act as carbon sinks while at the same time providing the basis of forage production for ruminants in dairy and meat production. Annual grassland dry matter yield (DMY) is one of the most important agronomic parameters reflecting differences in...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 9; p. 2068
Main Authors Wengert, Matthias, Wijesingha, Jayan, Schulze-Brüninghoff, Damian, Wachendorf, Michael, Astor, Thomas
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grassland ecosystems can be hotspots of biodiversity and act as carbon sinks while at the same time providing the basis of forage production for ruminants in dairy and meat production. Annual grassland dry matter yield (DMY) is one of the most important agronomic parameters reflecting differences in usage intensity such as number of harvests and fertilization. Current methods for grassland DMY estimation are labor-intensive and prone to error due to small sample size. With the advent of unmanned aerial vehicles (UAVs) and miniaturized hyperspectral sensors, a novel tool for remote sensing of grassland with high spatial, temporal and radiometric resolution and coverage is available. The present study aimed at developing a robust model capable of estimating grassland biomass across a gradient of usage intensity throughout one growing season. Therefore, UAV-borne hyperspectral data from eight grassland sites in North Hesse, Germany, originating from different harvests, were utilized for the modeling of fresh matter yield (FMY) and DMY. Four machine learning (ML) algorithms were compared for their modeling performance. Among them, the rule-based ML method Cubist regression (CBR) performed best, delivering high prediction accuracies for both FMY (nRMSEp 7.6%, Rp2 0.87) and DMY (nRMSEp 12.9%, Rp2 0.75). The model showed a high robustness across sites and harvest dates. The best models were employed to produce maps for FMY and DMY, enabling the detailed analysis of spatial patterns. Although the complexity of the approach still restricts its practical application in agricultural management, the current study proved that biomass of grassland sites being subject to different management intensities can be modeled from UAV-borne hyperspectral data at high spatial resolution with high prediction accuracies.
AbstractList Grassland ecosystems can be hotspots of biodiversity and act as carbon sinks while at the same time providing the basis of forage production for ruminants in dairy and meat production. Annual grassland dry matter yield (DMY) is one of the most important agronomic parameters reflecting differences in usage intensity such as number of harvests and fertilization. Current methods for grassland DMY estimation are labor-intensive and prone to error due to small sample size. With the advent of unmanned aerial vehicles (UAVs) and miniaturized hyperspectral sensors, a novel tool for remote sensing of grassland with high spatial, temporal and radiometric resolution and coverage is available. The present study aimed at developing a robust model capable of estimating grassland biomass across a gradient of usage intensity throughout one growing season. Therefore, UAV-borne hyperspectral data from eight grassland sites in North Hesse, Germany, originating from different harvests, were utilized for the modeling of fresh matter yield (FMY) and DMY. Four machine learning (ML) algorithms were compared for their modeling performance. Among them, the rule-based ML method Cubist regression (CBR) performed best, delivering high prediction accuracies for both FMY (nRMSEp 7.6%, Rp2 0.87) and DMY (nRMSEp 12.9%, Rp2 0.75). The model showed a high robustness across sites and harvest dates. The best models were employed to produce maps for FMY and DMY, enabling the detailed analysis of spatial patterns. Although the complexity of the approach still restricts its practical application in agricultural management, the current study proved that biomass of grassland sites being subject to different management intensities can be modeled from UAV-borne hyperspectral data at high spatial resolution with high prediction accuracies.
Author Wengert, Matthias
Astor, Thomas
Wachendorf, Michael
Wijesingha, Jayan
Schulze-Brüninghoff, Damian
Author_xml – sequence: 1
  givenname: Matthias
  orcidid: 0000-0003-4761-9209
  surname: Wengert
  fullname: Wengert, Matthias
– sequence: 2
  givenname: Jayan
  orcidid: 0000-0003-2574-6303
  surname: Wijesingha
  fullname: Wijesingha, Jayan
– sequence: 3
  givenname: Damian
  orcidid: 0000-0001-8215-975X
  surname: Schulze-Brüninghoff
  fullname: Schulze-Brüninghoff, Damian
– sequence: 4
  givenname: Michael
  orcidid: 0000-0002-2840-7086
  surname: Wachendorf
  fullname: Wachendorf, Michael
– sequence: 5
  givenname: Thomas
  surname: Astor
  fullname: Astor, Thomas
BookMark eNptkUtr3DAQx0VJoHld-gkMvQXcjh6WrWNeTQIpvWQDOYmRPA5aHMuVtId8-3h3S1tK5zIPfvOfYeaYHUxxIsY-cfgipYGvKXMFRoDuPrAjAa2olTDi4K_4IzvLeQ2LSckNqCP2_H0zlpBDoQqnvtplhV7nmHCsbhPmPG7rz4HGvrrJJbxiCXGqVjlML9Xq4qm-jGmi6u5tppRn8mXbeI0FT9nhgGOms1_-hK2-3Txe3dUPP27vry4eai81L7XvnANphqHrkDQ2xAcYSBFIFJKj72UzKGzASXLKaO-kcsBVu2Cmc72TJ-x-r9tHXNs5LRumNxsx2F0hpheLqQQ_koUGyLcwoDRCybZ3jWhJ-051yHkn9KL1ea81p_hzQ7nYddykaVnfCq0l51q1ZqHO95RPMedEw--pHOz2E_bPJxYY_oF9KLsbLpcK4_9a3gHvD4yB
CitedBy_id crossref_primary_10_3390_agronomy13092441
crossref_primary_10_3390_rs16061003
crossref_primary_10_3390_rs15092411
crossref_primary_10_1016_j_engappai_2024_108871
crossref_primary_10_1111_gfs_12701
crossref_primary_10_32604_phyton_2024_047573
crossref_primary_10_3390_rs17020279
crossref_primary_10_3390_rs15030639
crossref_primary_10_3390_s22249572
crossref_primary_10_3390_s24041114
crossref_primary_10_1016_j_jag_2024_104043
crossref_primary_10_3390_rs16040652
Cites_doi 10.3389/fenvs.2022.684589
10.1117/1.JRS.13.034525
10.1016/j.isprsjprs.2016.01.011
10.1016/j.rama.2018.10.005
10.1080/01431161.2010.532172
10.1002/rse2.182
10.1016/S1161-0301(02)00108-9
10.5194/bg-2021-250
10.1371/journal.pone.0234703
10.3390/ijgi4042792
10.18637/jss.v028.i05
10.3390/s20174802
10.1080/01431160902882496
10.1007/BF00994018
10.32614/RJ-2015-018
10.1016/j.chemolab.2008.06.009
10.1006/ijhc.1987.0321
10.3390/rs13214333
10.1016/j.eswa.2019.05.028
10.1016/j.spasta.2015.05.008
10.1109/TGRS.2005.843316
10.3389/fpls.2020.569948
10.18637/jss.v015.i09
10.1093/bib/bbx124
10.1111/gfs.12312
10.1017/CBO9780511973000
10.1016/j.agsy.2008.07.004
10.1016/j.rse.2020.111830
10.18637/jss.v036.i11
10.1080/01621459.1972.10481279
10.5194/jsss-5-301-2016
10.1111/j.1469-8137.2010.03536.x
10.1023/A:1010933404324
10.1017/S2040470017000619
10.3390/agronomy9020054
10.3390/rs13142751
10.3390/rs11060617
10.1016/j.neunet.2018.12.010
10.3390/rs12010126
10.1016/j.rse.2008.10.018
10.3390/agronomy10101600
10.1111/j.1365-2494.2012.00886.x
10.3390/rs12121949
10.2134/agronj1997.00021962008900040020x
10.1016/j.ecolind.2020.106201
10.14358/PERS.73.10.1141
10.3390/rs10071082
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs14092068
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_050ec70fa392437db527e6c848a11826
10_3390_rs14092068
GeographicLocations Central Europe
Germany
GeographicLocations_xml – name: Central Europe
– name: Germany
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-c8bb039ff88ae6a5e1f0fe4e03a231acd35f4a50b3eb496cb34b01471f098bdb3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:27:40 EDT 2025
Sat Aug 23 14:17:28 EDT 2025
Tue Jul 01 01:59:12 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c8bb039ff88ae6a5e1f0fe4e03a231acd35f4a50b3eb496cb34b01471f098bdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2840-7086
0000-0003-4761-9209
0000-0003-2574-6303
0000-0001-8215-975X
OpenAccessLink https://doaj.org/article/050ec70fa392437db527e6c848a11826
PQID 2663116479
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_050ec70fa392437db527e6c848a11826
proquest_journals_2663116479
crossref_primary_10_3390_rs14092068
crossref_citationtrail_10_3390_rs14092068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Kraemer (ref_24) 2008; 94
Genuer (ref_19) 2015; 7
Capolupo (ref_16) 2015; 4
ref_57
ref_11
Speiser (ref_25) 2019; 134
ref_52
ref_51
Karatzoglou (ref_30) 2006; 15
Stumpf (ref_7) 2020; 113
ref_17
Smit (ref_1) 2008; 98
Hakl (ref_4) 2012; 67
Wright (ref_33) 2015; 77
Harmoney (ref_3) 1997; 89
Wijesingha (ref_8) 2019; 78
Belgiu (ref_53) 2016; 114
Psomas (ref_55) 2011; 32
ref_23
Lussem (ref_15) 2019; 13
ref_22
Clevers (ref_41) 2008; 10
Sirsat (ref_54) 2019; 111
ref_28
ref_27
Oliveira (ref_12) 2020; 246
Ollinger (ref_40) 2011; 189
Kuhn (ref_38) 2008; 28
Degenhardt (ref_46) 2019; 20
Geipel (ref_13) 2017; 8
ref_35
Bauer (ref_39) 1972; 67
Breiman (ref_32) 2001; 45
Quinlan (ref_34) 1999; 51
Clevers (ref_18) 2007; 73
Wachendorf (ref_10) 2021; 7
Safari (ref_6) 2016; 5
ref_37
Zandler (ref_45) 2022; 10
Kong (ref_14) 2019; 72
Lussem (ref_42) 2020; 88
Cortes (ref_29) 1995; 20
Astor (ref_26) 2021; 11
Probst (ref_31) 2017; 18
Frey (ref_44) 2020; 11
Kokaly (ref_49) 2009; 113
Kremer (ref_21) 2019; 1
Appelhans (ref_36) 2015; 14
Riano (ref_48) 2005; 43
ref_43
Wachendorf (ref_2) 2018; 73
Chen (ref_47) 2009; 30
ref_9
Keating (ref_56) 2003; 18
ref_5
Kursa (ref_20) 2010; 36
References_xml – volume: 10
  start-page: 164
  year: 2022
  ident: ref_45
  article-title: Contributions to Satellite-Based Land Cover Classification, Vegetation Quantification and Grassland Monitoring in Central Asian Highlands Using Sentinel-2 and MODIS Data
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2022.684589
– volume: 13
  start-page: 034525
  year: 2019
  ident: ref_15
  article-title: Estimating Biomass in Temperate Grassland with High Resolution Canopy Surface Models from UAV-Based RGB Images and Vegetation Indices
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.13.034525
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_53
  article-title: Random Forest in Remote Sensing: A Review of Applications and Future Directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 72
  start-page: 336
  year: 2019
  ident: ref_14
  article-title: Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing
  publication-title: Rangel. Ecol. Manag.
  doi: 10.1016/j.rama.2018.10.005
– volume: 88
  start-page: 407
  year: 2020
  ident: ref_42
  article-title: Monitoring Forage Mass with Low-Cost UAV Data: Case Study at the Rengen Grassland Experiment
  publication-title: PFG–J. Photogramm. Remote Sens. Geoinf. Sci.
– volume: 32
  start-page: 9007
  year: 2011
  ident: ref_55
  article-title: Hyperspectral Remote Sensing for Estimating Aboveground Biomass and for Exploring Species Richness Patterns of Grassland Habitats
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.532172
– volume: 78
  start-page: 352
  year: 2019
  ident: ref_8
  article-title: Evaluation of 3D Point Cloud-Based Models for the Prediction of Grassland Biomass
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 77
  start-page: 1
  year: 2015
  ident: ref_33
  article-title: Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
  publication-title: J. Stat. Softw.
– volume: 10
  start-page: 388
  year: 2008
  ident: ref_41
  article-title: Using Spectral Information from the NIR Water Absorption Features for the Retrieval of Canopy Water Content
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 198
  year: 2021
  ident: ref_10
  article-title: Remote Sensing Data Fusion as a Tool for Biomass Prediction in Extensive Grasslands Invaded by L. polyphyllus
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.182
– volume: 18
  start-page: 267
  year: 2003
  ident: ref_56
  article-title: An Overview of APSIM, a Model Designed for Farming Systems Simulation
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00108-9
– ident: ref_35
– ident: ref_43
  doi: 10.5194/bg-2021-250
– volume: 1
  start-page: 1
  year: 2019
  ident: ref_21
  article-title: Niedrigwasser und Trockenheit. 2018
  publication-title: Hess. Landesamt Für Nat. Umw. Geol.
– ident: ref_9
  doi: 10.1371/journal.pone.0234703
– ident: ref_23
– volume: 4
  start-page: 2792
  year: 2015
  ident: ref_16
  article-title: Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi4042792
– volume: 28
  start-page: 1
  year: 2008
  ident: ref_38
  article-title: Building Predictive Models in R Using the Caret Package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v028.i05
– ident: ref_57
  doi: 10.3390/s20174802
– volume: 30
  start-page: 6497
  year: 2009
  ident: ref_47
  article-title: Estimating Aboveground Biomass of Grassland Having a High Canopy Cover: An Exploratory Analysis of in Situ Hyperspectral Data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160902882496
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_29
  article-title: Support-Vector Networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 7
  start-page: 19
  year: 2015
  ident: ref_19
  article-title: VSURF: An R Package for Variable Selection Using Random Forests
  publication-title: R J.
  doi: 10.32614/RJ-2015-018
– volume: 94
  start-page: 60
  year: 2008
  ident: ref_24
  article-title: Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2008.06.009
– volume: 51
  start-page: 497
  year: 1999
  ident: ref_34
  article-title: Simplifying Decision Trees
  publication-title: Int. J. Hum.-Comput. Stud.
  doi: 10.1006/ijhc.1987.0321
– ident: ref_28
  doi: 10.3390/rs13214333
– volume: 134
  start-page: 93
  year: 2019
  ident: ref_25
  article-title: A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modeling
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.028
– volume: 14
  start-page: 91
  year: 2015
  ident: ref_36
  article-title: Evaluating Machine Learning Approaches for the Interpolation of Monthly Air Temperature at Mt. Kilimanjaro, Tanzania
  publication-title: Spat. Stat.
  doi: 10.1016/j.spasta.2015.05.008
– volume: 43
  start-page: 819
  year: 2005
  ident: ref_48
  article-title: Estimation of Fuel Moisture Content by Inversion of Radiative Transfer Models to Simulate Equivalent Water Thickness and Dry Matter Content: Analysis at Leaf and Canopy Level
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.843316
– volume: 11
  start-page: 1533
  year: 2020
  ident: ref_44
  article-title: A Non-Destructive Method to Quantify Leaf Starch Content in Red Clover
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.569948
– volume: 15
  start-page: 1
  year: 2006
  ident: ref_30
  article-title: Support Vector Machines in R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v015.i09
– volume: 20
  start-page: 492
  year: 2019
  ident: ref_46
  article-title: Evaluation of Variable Selection Methods for Random Forests and Omics Data Sets
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx124
– volume: 73
  start-page: 1
  year: 2018
  ident: ref_2
  article-title: Remote Sensing as a Tool to Assess Botanical Composition, Structure, Quantity and Quality of Temperate Grasslands
  publication-title: Grass Forage Sci.
  doi: 10.1111/gfs.12312
– ident: ref_51
  doi: 10.1017/CBO9780511973000
– volume: 98
  start-page: 208
  year: 2008
  ident: ref_1
  article-title: Spatial Distribution of Grassland Productivity and Land Use in Europe
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2008.07.004
– volume: 246
  start-page: 111830
  year: 2020
  ident: ref_12
  article-title: Machine Learning Estimators for the Quantity and Quality of Grass Swards Used for Silage Production Using Drone-Based Imaging Spectrometry and Photogrammetry
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111830
– volume: 36
  start-page: 1
  year: 2010
  ident: ref_20
  article-title: Feature Selection with the Boruta Package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v036.i11
– volume: 11
  start-page: 2192
  year: 2021
  ident: ref_26
  article-title: Prediction of Biomass and N Fixation of Legume-Grass Mixtures Using Sensor Fusion
  publication-title: Front. Plant Sci.
– volume: 67
  start-page: 687
  year: 1972
  ident: ref_39
  article-title: Constructing Confidence Sets Using Rank Statistics
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1972.10481279
– volume: 5
  start-page: 301
  year: 2016
  ident: ref_6
  article-title: Comparing Mobile and Static Assessment of Biomass in Heterogeneous Grassland with a Multi-Sensor System
  publication-title: J. Sens. Sens. Syst.
  doi: 10.5194/jsss-5-301-2016
– volume: 189
  start-page: 375
  year: 2011
  ident: ref_40
  article-title: Sources of Variability in Canopy Reflectance and the Convergent Properties of Plants: Tansley Review
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03536.x
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_32
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 8
  start-page: 770
  year: 2017
  ident: ref_13
  article-title: Hyperspectral Aerial Imaging for Grassland Yield Estimation
  publication-title: Adv. Anim. Biosci.
  doi: 10.1017/S2040470017000619
– ident: ref_52
  doi: 10.3390/agronomy9020054
– ident: ref_27
  doi: 10.3390/rs13142751
– ident: ref_37
  doi: 10.3390/rs11060617
– volume: 111
  start-page: 11
  year: 2019
  ident: ref_54
  article-title: An Extensive Experimental Survey of Regression Methods
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.12.010
– ident: ref_17
  doi: 10.3390/rs12010126
– volume: 113
  start-page: S78
  year: 2009
  ident: ref_49
  article-title: Characterizing Canopy Biochemistry from Imaging Spectroscopy and Its Application to Ecosystem Studies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.10.018
– ident: ref_50
  doi: 10.3390/agronomy10101600
– volume: 67
  start-page: 589
  year: 2012
  ident: ref_4
  article-title: The Use of a Rising Plate Meter to Evaluate Lucerne (Medicago sativa L.) Height as an Important Agronomic Trait Enabling Yield Estimation
  publication-title: Grass Forage Sci.
  doi: 10.1111/j.1365-2494.2012.00886.x
– volume: 18
  start-page: 6673
  year: 2017
  ident: ref_31
  article-title: To Tune or Not to Tune the Number of Trees in Random Forest?
  publication-title: J. Mach. Learn. Res.
– ident: ref_5
  doi: 10.3390/rs12121949
– volume: 89
  start-page: 665
  year: 1997
  ident: ref_3
  article-title: Determination of Pasture Biomass Using Four Indirect Methods
  publication-title: Agron. J.
  doi: 10.2134/agronj1997.00021962008900040020x
– ident: ref_22
– volume: 113
  start-page: 106201
  year: 2020
  ident: ref_7
  article-title: Spatial Monitoring of Grassland Management Using Multi-Temporal Satellite Imagery
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2020.106201
– volume: 73
  start-page: 1141
  year: 2007
  ident: ref_18
  article-title: Estimating Grassland Biomass Using SVM Band Shaving of Hyperspectral Data
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.73.10.1141
– ident: ref_11
  doi: 10.3390/rs10071082
SSID ssj0000331904
Score 2.3831022
Snippet Grassland ecosystems can be hotspots of biodiversity and act as carbon sinks while at the same time providing the basis of forage production for ruminants in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2068
SubjectTerms Agricultural management
Algorithms
Biodiversity
Biomass
Biosphere
Cameras
Carbon sinks
Dry matter
Estimation
Feature selection
Fertilization
Fertilizers
grassland
Grasslands
Growing season
hyperspectral
Machine learning
Meat
Meat production
Modelling
multisite
multitemporal
Radiometric resolution
Remote sensing
Remote sensors
Satellites
Sensors
Software
Spatial analysis
Spatial data
Spatial discrimination
Spatial resolution
UAV
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgHWBBfIpCQZZgYYjqxk7iTKiFQoVEhRBF7RTZjgNDlZQ0DPx7zo7bIoFYMiROZJ3tu3uXu3cIXdIgk5Jo5bFIhQBQlPZibqJNfsyFAsiV2nZvj6NwOGYPk2DiAm4Ll1a51IlWUaeFMjHyDhgS2jXkV_H1_MMzXaPM31XXQmMTNUEFcwBfzf5g9PS8irIQCluMsJqXlAK-75QLQ_HkE8Ot-sMSWcL-X_rYGpm7XbTjvEPcq5dzD23ofB9tuUbl718HaGoLZs2csMhTXJfP1uxSM3xfgidsMhXx1OSl4QEc37oyEdvMADzuvXr9osw1HgL8rKsszYu3ohKHaHw3eLkZeq47gqdo2K08xUHINM4yzoUORaC7Gck004QK8NmESmEZmAiIpFqyOFSSMgl4KIJhMZeppEeokRe5PkY4TAPOla-6UmkGGFBoCt-CKxh7yX3VQldLSSXKUYebDhazBCCEkWqylmoLXazGzmvCjD9H9Y3AVyMMybW9UZRviTszCQlgE0UwEfDhGI1SGfiRDhVnXFhY1ELt5XIl7uQtkvU-Ofn_8Sna9k0pg01ebKNGVX7qM3AwKnnudtE3AbPRWQ
  priority: 102
  providerName: ProQuest
Title Multisite and Multitemporal Grassland Yield Estimation Using UAV-Borne Hyperspectral Data
URI https://www.proquest.com/docview/2663116479
https://doaj.org/article/050ec70fa392437db527e6c848a11826
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagDLAgnqJQKkuwMER1Yidxxpa-hGiFgKJ2imzHEUPVojQM_HvOdgqVQGJhSaTo4kR3tu--5O47hK5pmEtJtPJYrCIAKEp7CTdfm4KECwWQK7Pt3kbjaDhhd9NwutHqy-SEOXpgp7gWCWGkmOQCHDmjcSbDINaR4owLGxub3Rd83gaYsnswhalFmOMjpYDrW8XKUDsFxHCqbnggS9T_Yx-2zqV_gParqBC33dscoi29OEK7VYPy149jNLOFsuZPLwboj13ZrGOVmuNBARGwyVDEM5OPhnuwbF1FIrYZAXjSfvE6y2Kh8RBgp6uuNDd2RSlO0KTfe74delVXBE_RyC89xUG5NMlzzoWORKj9nOSaaUIFxGpCZaB-JkIiqZYsiZSkTAIOikEs4TKT9BTVFsuFPkM4ykLOVaB8qTQD7Cc0hbHgCE5e8kDV0c1aU6mqKMNN54p5CtDBaDX91modXX3JvjmijF-lOkbhXxKG3NpeAJOnlcnTv0xeR421udJqxa1SCDSob8jRkvP_eMYF2gtMoYNNbWygWlm860sIP0rZRNu8P2iinXZ3dP8E505v_PDYtPPvE1Lj23Y
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOMClanmIpbRYAg4cIryxkziHCkFhWZ4nFsEp2I4DB5Sl2a0q_lR_IzNOsiCBuHHJIZ5Y1nhsz-fMfAOwKaLCGO5sIBMbI0CxLkgV3TaFqdIWIVfuy72dX8T9gTy5jq6n4H-bC0Nhle2e6DfqfGjpjnwHDxLRJfKrdPfxT0BVo-jvaltCozaLU_f0DyHb6NfxAc7vVhj2Di9_94OmqkBgRdwdB1bh4ERaFEppF-vIdQteOOm40OjraJvj8KWOuBHOyDS2RkiDOCJBsVSZ3AjsdxpmpRAprSjVO5rc6XCBBs1lzYKK7XynGhGhVMiJyfXVuefLA7zZ_f2R1vsKXxpflO3VxvMNply5AHNNWfT7p0W48em5pAGmy5zVybo1l9UDO6rQ76a4SHZDUXDsEDeLOg-S-TgENti7CvaHVelYH8FundNJHx7osV6CwadobRlmymHpVoDFeaSUDW3XWCcRcWonsC98omthVGg7sN1qKrMNUTnVy3jIELCQVrMXrXZgYyL7WNNzvCu1TwqfSBCltn8xrO6yZoVmPEKTTXAg6DFKkeQmChMXWyWV9iCsA2vtdGXNOh9lL1a5-nHzOsz1L8_PsrPji9PvMB9SEoUPm1yDmXH11_1A12Zsfnp7YnD72Qb8DFwTDlg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcqvISS1-WgAOHaL2xkzgHVHW7u2wprCrEovaU2o4DhypbsltV_Wv8us44ybYSiFsvOSQTyxmP7fmcmW8A3omoMIY7G8jExghQrAtSRadNYaq0RciV-3JvX6fxZCY_n0ana_CnzYWhsMp2TfQLdT63dEbew41E9In8Ku0VTVjEyXC8f_k7oApS9Ke1LadRm8ixu7lG-Lb4eDTEsX4fhuPR98NJ0FQYCKyI-8vAKuyoSItCKe1iHbl-wQsnHRca_R5tc_wUqSNuhDMyja0R0iCmSFAsVSY3Att9BOsJoiLegfXBaHrybXXCwwWaN5c1J6oQKe9VC6KXCjnxut7bBX2xgL_2Ar_BjTdho_FM2UFtSs9gzZXP4UlTJP3XzQs488m6pAOmy5zVqbs1s9UF-1ShF05RkuyMYuLYCJeOOiuS-agENjv4EQzmVenYBKFvneFJLw71Ur-E2YPo7RV0ynnpXgOL80gpG9q-sU4i_tROYFt4RUfDqNB24UOrqcw2tOVUPeMiQ_hCWs3utNqFtyvZy5qs459SA1L4SoIItv2NefUza-ZrxiM04AQ7gv6jFEluojBxsVVSaQ_JurDdDlfWzPpFdmejb_7_eA8eo_FmX46mx1vwNKSMCh9DuQ2dZXXldtDPWZrdxqAYnD-0Dd8CJJ0T6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisite+and+Multitemporal+Grassland+Yield+Estimation+Using+UAV-Borne+Hyperspectral+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Matthias+Wengert&rft.au=Jayan+Wijesingha&rft.au=Damian+Schulze-Br%C3%BCninghoff&rft.au=Michael+Wachendorf&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=9&rft.spage=2068&rft_id=info:doi/10.3390%2Frs14092068&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_050ec70fa392437db527e6c848a11826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon