Improved Faster RCNN Based on Feature Amplification and Oversampling Data Augmentation for Oriented Vehicle Detection in Aerial Images
Vehicles in aerial images are generally with small sizes and unbalanced number of samples, which leads to the poor performances of the existing vehicle detection algorithms. Therefore, an oriented vehicle detection framework based on improved Faster RCNN is proposed for aerial images. First of all,...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 16; p. 2558 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vehicles in aerial images are generally with small sizes and unbalanced number of samples, which leads to the poor performances of the existing vehicle detection algorithms. Therefore, an oriented vehicle detection framework based on improved Faster RCNN is proposed for aerial images. First of all, we propose an oversampling and stitching data augmentation method to decrease the negative effect of category imbalance in the training dataset and construct a new dataset with balanced number of samples. Then considering that the pooling operation may loss the discriminative ability of features for small objects, we propose to amplify the feature map so that detailed information hidden in the last feature map can be enriched. Finally, we design a joint training loss function including center loss for both horizontal and oriented bounding boxes, and reduce the impact of small inter-class diversity on vehicle detection. The proposed framework is evaluated on the VEDAI dataset that consists of 9 vehicle categories. The experimental results show that the proposed framework outperforms previous approaches with a mean average precision of 60.4% and 60.1% in detecting horizontal and oriented bounding boxes respectively, which is about 8% better than Faster RCNN. |
---|---|
AbstractList | Vehicles in aerial images are generally with small sizes and unbalanced number of samples, which leads to the poor performances of the existing vehicle detection algorithms. Therefore, an oriented vehicle detection framework based on improved Faster RCNN is proposed for aerial images. First of all, we propose an oversampling and stitching data augmentation method to decrease the negative effect of category imbalance in the training dataset and construct a new dataset with balanced number of samples. Then considering that the pooling operation may loss the discriminative ability of features for small objects, we propose to amplify the feature map so that detailed information hidden in the last feature map can be enriched. Finally, we design a joint training loss function including center loss for both horizontal and oriented bounding boxes, and reduce the impact of small inter-class diversity on vehicle detection. The proposed framework is evaluated on the VEDAI dataset that consists of 9 vehicle categories. The experimental results show that the proposed framework outperforms previous approaches with a mean average precision of 60.4% and 60.1% in detecting horizontal and oriented bounding boxes respectively, which is about 8% better than Faster RCNN. |
Author | Mo, Nan Yan, Li |
Author_xml | – sequence: 1 givenname: Nan orcidid: 0000-0001-6918-4416 surname: Mo fullname: Mo, Nan – sequence: 2 givenname: Li surname: Yan fullname: Yan, Li |
BookMark | eNpNUdtqGzEQFSWFpkle-gWCvhXcrC6ry6PrxI0hxFCSvopZ7awr4125khzoD_S7K8elzbzMzJnDmcPMe3I2xQkJ-cCaz0LY5jplxpnibWvekHPeaD6T3PKzV_U7cpXztqkhBLONPCe_V-M-xWfs6RJywUS_LR4e6BfIFYkTXSKUQ0I6H_e7MAQPJVQUpp6unzFlOMLTht5AATo_bEacyokyxETXKdS-Cn3HH8HvkN5gQf8yDhOdYwqwo6sRNpgvydsBdhmv_uYL8rS8fVzcze7XX1eL-f3MC8XKzGuDCkDpDo3ARtjBKiYHDb3ulLCqQ2171KB4x9ve6M5KzWRruYZBqdaLC7I66fYRtm6fwgjpl4sQ3AsQ08ZBKkezzoDpvO9ANLKVCj0Y0anGGuy9VJKxqvXxpFUP-POAubhtPKSp2ndcCqEZ00ZV1qcTy6eYc8Lh31bWuOPb3P-3iT-N9IwC |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3116353 crossref_primary_10_3390_electronics13020319 crossref_primary_10_3390_rs14153689 crossref_primary_10_1016_j_scitotenv_2022_154278 crossref_primary_10_3390_rs14236103 crossref_primary_10_3390_s21051677 crossref_primary_10_1007_s11042_022_11948_7 crossref_primary_10_3390_rs15030827 crossref_primary_10_3390_s24010249 crossref_primary_10_3390_app11020576 crossref_primary_10_1155_2021_1966848 crossref_primary_10_1016_j_autcon_2022_104615 crossref_primary_10_1016_j_jii_2022_100427 crossref_primary_10_1109_LGRS_2021_3107281 crossref_primary_10_3390_drones7020112 crossref_primary_10_1109_ACCESS_2020_3033466 crossref_primary_10_3390_rs13050879 |
Cites_doi | 10.1109/ICCV.2015.169 10.1109/TPAMI.2020.2981890 10.1109/CVPR.2019.00296 10.1109/TITS.2016.2620495 10.1109/ACCESS.2018.2869884 10.1109/WACV45572.2020.9093503 10.1109/CVPR.2014.81 10.1016/j.image.2018.09.002 10.1109/TGRS.2017.2778300 10.1109/CVPR.2016.91 10.1109/ACCESS.2017.2782260 10.3390/rs11030272 10.3390/rs10010132 10.1109/ACCESS.2020.2990870 10.1007/978-3-319-10578-9_23 10.1109/CVPR.2009.5206848 10.1109/ICRA.2011.5979853 10.1109/LGRS.2019.2923564 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2016.90 10.1007/978-3-319-46478-7_31 10.1109/LGRS.2019.2930308 10.1109/CVPR.2017.106 10.1016/j.isprsjprs.2018.04.003 10.1109/CVPR.2016.100 10.1109/CVPR.2008.4587597 10.1016/j.jvcir.2015.11.002 10.1109/CVPR.2018.00377 10.1109/TPAMI.2006.104 10.1109/IVS.2016.7535375 10.1109/CVPR.2017.690 10.1109/TMM.2018.2818020 10.1016/j.isprsjprs.2016.03.014 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs12162558 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_8a8bccba304546eca83b6098edc46411 10_3390_rs12162558 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c361t-c78e6aa67be83e039f9614f7ad7b6396be79de7a62b25d87b947145927af665c3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:14:06 EDT 2024 Thu Oct 10 18:35:35 EDT 2024 Mon Sep 16 17:26:35 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-c78e6aa67be83e039f9614f7ad7b6396be79de7a62b25d87b947145927af665c3 |
ORCID | 0000-0001-6918-4416 |
OpenAccessLink | https://www.proquest.com/docview/2433711786?pq-origsite=%requestingapplication% |
PQID | 2433711786 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8a8bccba304546eca83b6098edc46411 proquest_journals_2433711786 crossref_primary_10_3390_rs12162558 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Tayara (ref_28) 2018; 6 Ma (ref_35) 2018; 20 ref_14 ref_36 ref_13 ref_12 ref_34 ref_11 ref_10 ref_32 Yang (ref_39) 2018; 6 ref_30 Dai (ref_3) 2019; 70 Cheng (ref_7) 2016; 117 Mandal (ref_29) 2020; 17 ref_19 Mostofa (ref_27) 2020; 8 ref_18 ref_17 ref_16 ref_38 ref_15 ref_37 Ji (ref_25) 2020; 17 Deng (ref_33) 2017; 145 ref_24 Sun (ref_1) 2006; 28 ref_23 ref_22 Razakarivony (ref_6) 2016; 34 ref_21 ref_20 ref_40 ref_2 Li (ref_31) 2018; 56 ref_26 ref_9 ref_8 ref_4 Fang (ref_5) 2016; 18 |
References_xml | – ident: ref_9 – ident: ref_24 – ident: ref_19 doi: 10.1109/ICCV.2015.169 – ident: ref_21 doi: 10.1109/TPAMI.2020.2981890 – ident: ref_11 – ident: ref_37 doi: 10.1109/CVPR.2019.00296 – volume: 18 start-page: 1782 year: 2016 ident: ref_5 article-title: Fine-grained vehicle model recognition using a coarse-to-fine convolutional neural network architecture publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2620495 contributor: fullname: Fang – ident: ref_16 – volume: 6 start-page: 50839 year: 2018 ident: ref_39 article-title: Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869884 contributor: fullname: Yang – ident: ref_23 doi: 10.1109/WACV45572.2020.9093503 – ident: ref_17 doi: 10.1109/CVPR.2014.81 – volume: 70 start-page: 79 year: 2019 ident: ref_3 article-title: Hybridnet: A fast vehicle detection system for autonomous driving publication-title: Signal Process Image Commun. doi: 10.1016/j.image.2018.09.002 contributor: fullname: Dai – volume: 56 start-page: 2337 year: 2018 ident: ref_31 article-title: Rotation-insensitive and context-augmented object detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2778300 contributor: fullname: Li – ident: ref_13 doi: 10.1109/CVPR.2016.91 – volume: 6 start-page: 2220 year: 2018 ident: ref_28 article-title: Vehicle detection and counting in high-resolution aerial images using convolutional regression neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2782260 contributor: fullname: Tayara – ident: ref_32 doi: 10.3390/rs11030272 – ident: ref_36 doi: 10.3390/rs10010132 – ident: ref_8 – volume: 8 start-page: 82306 year: 2020 ident: ref_27 article-title: Joint-Srvdnet: Joint super resolution and vehicle detection network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990870 contributor: fullname: Mostofa – ident: ref_18 doi: 10.1007/978-3-319-10578-9_23 – ident: ref_40 doi: 10.1109/CVPR.2009.5206848 – ident: ref_4 doi: 10.1109/ICRA.2011.5979853 – volume: 17 start-page: 494 year: 2020 ident: ref_29 article-title: AVDNet: A small-sized vehicle detection network for aerial visual data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2923564 contributor: fullname: Mandal – ident: ref_12 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_38 doi: 10.1109/CVPR.2016.90 – ident: ref_34 doi: 10.1007/978-3-319-46478-7_31 – volume: 17 start-page: 676 year: 2020 ident: ref_25 article-title: Vehicle detection in remote sensing images leveraging on simultaneous super-resolution publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2930308 contributor: fullname: Ji – ident: ref_30 doi: 10.1109/CVPR.2017.106 – volume: 145 start-page: 3 year: 2017 ident: ref_33 article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.003 contributor: fullname: Deng – ident: ref_15 – ident: ref_22 doi: 10.1109/CVPR.2016.100 – ident: ref_10 doi: 10.1109/CVPR.2008.4587597 – volume: 34 start-page: 187 year: 2016 ident: ref_6 article-title: Vehicle detection in aerial imagery: A small target detection benchmark publication-title: J. Vis. Commun. Image Represent doi: 10.1016/j.jvcir.2015.11.002 contributor: fullname: Razakarivony – ident: ref_20 – ident: ref_26 doi: 10.1109/CVPR.2018.00377 – volume: 28 start-page: 694 year: 2006 ident: ref_1 article-title: On-road vehicle detection: A review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.104 contributor: fullname: Sun – ident: ref_2 doi: 10.1109/IVS.2016.7535375 – ident: ref_14 doi: 10.1109/CVPR.2017.690 – volume: 20 start-page: 3111 year: 2018 ident: ref_35 article-title: Arbitrary-oriented scene text detection via rotation proposals publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2018.2818020 contributor: fullname: Ma – volume: 117 start-page: 11 year: 2016 ident: ref_7 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.014 contributor: fullname: Cheng |
SSID | ssj0000331904 |
Score | 2.4552815 |
Snippet | Vehicles in aerial images are generally with small sizes and unbalanced number of samples, which leads to the poor performances of the existing vehicle... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2558 |
SubjectTerms | aerial image Algorithms Amplification Boxes center loss Data augmentation Datasets Deep learning feature amplification Feature maps Horizontal orientation Impact strength oriented vehicle detection Oversampling oversampling data augmentation Remote sensing Researchers Semantics Stitching Training Vehicles |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL3BBLVCxtEUjwTVqYjt2fNzudlWQ2EqIVr1F_hi3HOqtdrMH_gC_u-MkhZU4cOnVSmRrZjzzJpl5w9jnGCNdNAxFKbQvMndOYbE0Ra2CkEpEblVuFP62VBdX8utNfbMz6ivXhA30wIPgThvbOO-dzX_0pEJvG-FUaRoMXio5dvWWZieZ6n2wINMq5cBHKiivP11vKl4R2M-z3XciUE_U_48f7oPLYp-9HlEhTIfTHLAXmN6wl-OA8rtfb9nvIfnHAAubqQ3g-2y5hDMKQQFWCTKQ264Rprk-PI6f4cCmAJe57MLm5XQLc9tZmG5v78eGowQEWeEyUx0T8IRrvMvbwxy7vkArwc8E095E4cs9OZ7NO3a1OP8xuyjGEQqFF6rqCq8bVNYq7bARWAoTDcXjqG3QjrCJcqhNQG0Vd7wOjXaGgpWsDdc2KlV7ccj20irhewahdDW97SKS3IWM1gtHWjWKxyiQhwn79CTW9mFgymgpw8jCb_8Kf8LOssT_PJHZrfsF0nk76rz9n84n7PhJX-145TYtl0LoqtKN-vAcexyxVzyn1n2t3zHb69ZbPCH80bmPvak9AuR72nw priority: 102 providerName: Directory of Open Access Journals |
Title | Improved Faster RCNN Based on Feature Amplification and Oversampling Data Augmentation for Oriented Vehicle Detection in Aerial Images |
URI | https://www.proquest.com/docview/2433711786 https://doaj.org/article/8a8bccba304546eca83b6098edc46411 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDBbW9LBdij2x9BEQ2K5GbcmW5FORtM26AUuHYh16M_Sg0h3qdIlz2B_Y757oKG2BAbvKFgRQFPmRoj4y9jGEEA8a-iwXymXEnZMZzOuskl6UUgRuJD0U_jqTF9fll5vqJiXcVqmscmsTe0PtF45y5Me8FEIVhdLy5P5XRl2j6HY1tdDYYbs8Rgp8wHYn57NvVw9ZllxEFcvLDS-piPH98XJV8CKCfurx_sQT9YT9_9jj3slMX7K9hA5hvNnOV-wZtq_Z89So_Pb3G_ZnkwRAD1NDFAdwdTqbwSS6Ig-LFgjQrZcIY6oTDykdB6b1cEnlF4aG2zmcmc7AeD2_Sw-PWojQFS6J8jgCUPiBt7Q8nGHXF2q18LOFca-q8PkuGqDVW3Y9Pf9-epGlVgqZE7LoMqc0SmOksqgF5qIOdfTLQRmvbMQo0qKqPSojueWV18rW0WmVVc2VCVJWTrxjg3bR4nsGPrdVnG0DlhHNlME4YePu1pKHIJD7IfuwFWtzv2HMaGKkQcJvHoU_ZBOS-MMfxHLdDyyW8yYdmkYbbZ2zhm5zS4nOaGFlXmv0Lq5dFEN2uN2vJh29VfOoKPv__3zAXnAKnvtqvkM26JZrPIoIo7MjtqOnn0ZJmUZ9nP4X0oHUxw |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagHMoF8RSBAiPBddVd22vvnlDaElJoUwm1qLeVnymHOiXZHPgD_G5mNk6LhMTVu5al8Xjm83jmG8Y-xBjxoAVflEK7grhzChPKtqiVF1KJyI2iQuHTmZpeyC-X9WUOuK1yWuXWJg6G2i8cxcj3uRRCV5Vu1MebnwV1jaLX1dxC4z57IAU6GqoUn3y-jbGUAhWslBtWUoG3-_3lquIVQn7q8P6XHxro-v-xxoOLmTxmjzI2hPFmM5-weyE9Zbu5TfnVr2fs9yYEEDxMDBEcwLfD2QwO0BF5WCQgOLdeBhhTlnjMwTgwycMZJV8YGk5zODK9gfF6fp3LjhIgcIUzIjxG-AnfwxUtD0ehH9K0EvxIMB4UFY6v0fysnrOLyafzw2mRGykUDqXSF043QRmjtA2NCKVoY4vCitp4bRGhKBt064M2ilte-0bbFl2WrFuuTVSqduIF20mLFF4y8KWtcbaNQSKWkdE4YXFvW8VjFIH7EXu_FWt3s-HL6PCeQcLv7oQ_Ygck8ds_iON6GFgs510-Ml1jGuucNfSWK1VwphFWlW0TvMO1q2rE9rb71eWDt-ru1OTV_z-_Y7vT89OT7uR49vU1e8jpGj3k9e2xnX65Dm8Qa_T27aBQfwBoL9R3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDBa2FNh2GfZEs3Utge1qxJZsST4NSdOg3cMtinXozdAz3aFKlziH_YH97lGO0g4o0KtsQQBFkR8p6iMhn7z3eNCczXImTBa5czLl8jqruGUlZ54qHh8Kf2_48UX55bK6TPVPq1RWubWJvaG2CxNz5CNaMiaKQkg-8qks4mw6-3zzO4sdpOJNa2qn8ZjsCFxFDsjO5Kg5O7_NuOQM1S0vNxylDGP90XJV0AIDgNjv_T-v1JP337PNvcOZvSDPE1KE8WZrX5JHLrwiT1PT8qs_r8nfTULAWZipSHcA54dNAxN0SxYWASK4Wy8djGPNuE-pOVDBwmksxVBxOMxhqjoF4_X8Oj1CCoAwFk4j_TGCUfjpruLyMHVdX7QV4FeAca-2cHKNxmj1hlzMjn4cHmeprUJmGC-6zAjpuFJcaCeZy1nta_TRXigrNOIVrp2orROKU00rK4Wu0YGVVU2F8pxXhr0lg7AIbpeAzXWFs7V3JSKb0ivDNO50zan3zFE7JB-3Ym1vNuwZLUYdUfjtnfCHZBIlfvtHZLzuBxbLeZsOUCuV1MZoFW92S-6MkkzzvJbOGly7KIZkb7tfbTqGq_ZOad49_PmAPEFtar-dNF_fk2c0xtR9kd8eGXTLtfuAwKPT-0mj_gHTZNoa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Faster+RCNN+Based+on+Feature+Amplification+and+Oversampling+Data+Augmentation+for+Oriented+Vehicle+Detection+in+Aerial+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Mo%2C+Nan&rft.au=Li%2C+Yan&rft.date=2020-08-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=16&rft.spage=2558&rft_id=info:doi/10.3390%2Frs12162558&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |