Improved Faster RCNN Based on Feature Amplification and Oversampling Data Augmentation for Oriented Vehicle Detection in Aerial Images

Vehicles in aerial images are generally with small sizes and unbalanced number of samples, which leads to the poor performances of the existing vehicle detection algorithms. Therefore, an oriented vehicle detection framework based on improved Faster RCNN is proposed for aerial images. First of all,...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 16; p. 2558
Main Authors Mo, Nan, Yan, Li
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vehicles in aerial images are generally with small sizes and unbalanced number of samples, which leads to the poor performances of the existing vehicle detection algorithms. Therefore, an oriented vehicle detection framework based on improved Faster RCNN is proposed for aerial images. First of all, we propose an oversampling and stitching data augmentation method to decrease the negative effect of category imbalance in the training dataset and construct a new dataset with balanced number of samples. Then considering that the pooling operation may loss the discriminative ability of features for small objects, we propose to amplify the feature map so that detailed information hidden in the last feature map can be enriched. Finally, we design a joint training loss function including center loss for both horizontal and oriented bounding boxes, and reduce the impact of small inter-class diversity on vehicle detection. The proposed framework is evaluated on the VEDAI dataset that consists of 9 vehicle categories. The experimental results show that the proposed framework outperforms previous approaches with a mean average precision of 60.4% and 60.1% in detecting horizontal and oriented bounding boxes respectively, which is about 8% better than Faster RCNN.
AbstractList Vehicles in aerial images are generally with small sizes and unbalanced number of samples, which leads to the poor performances of the existing vehicle detection algorithms. Therefore, an oriented vehicle detection framework based on improved Faster RCNN is proposed for aerial images. First of all, we propose an oversampling and stitching data augmentation method to decrease the negative effect of category imbalance in the training dataset and construct a new dataset with balanced number of samples. Then considering that the pooling operation may loss the discriminative ability of features for small objects, we propose to amplify the feature map so that detailed information hidden in the last feature map can be enriched. Finally, we design a joint training loss function including center loss for both horizontal and oriented bounding boxes, and reduce the impact of small inter-class diversity on vehicle detection. The proposed framework is evaluated on the VEDAI dataset that consists of 9 vehicle categories. The experimental results show that the proposed framework outperforms previous approaches with a mean average precision of 60.4% and 60.1% in detecting horizontal and oriented bounding boxes respectively, which is about 8% better than Faster RCNN.
Author Mo, Nan
Yan, Li
Author_xml – sequence: 1
  givenname: Nan
  orcidid: 0000-0001-6918-4416
  surname: Mo
  fullname: Mo, Nan
– sequence: 2
  givenname: Li
  surname: Yan
  fullname: Yan, Li
BookMark eNpNUdtqGzEQFSWFpkle-gWCvhXcrC6ry6PrxI0hxFCSvopZ7awr4125khzoD_S7K8elzbzMzJnDmcPMe3I2xQkJ-cCaz0LY5jplxpnibWvekHPeaD6T3PKzV_U7cpXztqkhBLONPCe_V-M-xWfs6RJywUS_LR4e6BfIFYkTXSKUQ0I6H_e7MAQPJVQUpp6unzFlOMLTht5AATo_bEacyokyxETXKdS-Cn3HH8HvkN5gQf8yDhOdYwqwo6sRNpgvydsBdhmv_uYL8rS8fVzcze7XX1eL-f3MC8XKzGuDCkDpDo3ARtjBKiYHDb3ulLCqQ2171KB4x9ve6M5KzWRruYZBqdaLC7I66fYRtm6fwgjpl4sQ3AsQ08ZBKkezzoDpvO9ANLKVCj0Y0anGGuy9VJKxqvXxpFUP-POAubhtPKSp2ndcCqEZ00ZV1qcTy6eYc8Lh31bWuOPb3P-3iT-N9IwC
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3116353
crossref_primary_10_3390_electronics13020319
crossref_primary_10_3390_rs14153689
crossref_primary_10_1016_j_scitotenv_2022_154278
crossref_primary_10_3390_rs14236103
crossref_primary_10_3390_s21051677
crossref_primary_10_1007_s11042_022_11948_7
crossref_primary_10_3390_rs15030827
crossref_primary_10_3390_s24010249
crossref_primary_10_3390_app11020576
crossref_primary_10_1155_2021_1966848
crossref_primary_10_1016_j_autcon_2022_104615
crossref_primary_10_1016_j_jii_2022_100427
crossref_primary_10_1109_LGRS_2021_3107281
crossref_primary_10_3390_drones7020112
crossref_primary_10_1109_ACCESS_2020_3033466
crossref_primary_10_3390_rs13050879
Cites_doi 10.1109/ICCV.2015.169
10.1109/TPAMI.2020.2981890
10.1109/CVPR.2019.00296
10.1109/TITS.2016.2620495
10.1109/ACCESS.2018.2869884
10.1109/WACV45572.2020.9093503
10.1109/CVPR.2014.81
10.1016/j.image.2018.09.002
10.1109/TGRS.2017.2778300
10.1109/CVPR.2016.91
10.1109/ACCESS.2017.2782260
10.3390/rs11030272
10.3390/rs10010132
10.1109/ACCESS.2020.2990870
10.1007/978-3-319-10578-9_23
10.1109/CVPR.2009.5206848
10.1109/ICRA.2011.5979853
10.1109/LGRS.2019.2923564
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2016.90
10.1007/978-3-319-46478-7_31
10.1109/LGRS.2019.2930308
10.1109/CVPR.2017.106
10.1016/j.isprsjprs.2018.04.003
10.1109/CVPR.2016.100
10.1109/CVPR.2008.4587597
10.1016/j.jvcir.2015.11.002
10.1109/CVPR.2018.00377
10.1109/TPAMI.2006.104
10.1109/IVS.2016.7535375
10.1109/CVPR.2017.690
10.1109/TMM.2018.2818020
10.1016/j.isprsjprs.2016.03.014
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs12162558
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_8a8bccba304546eca83b6098edc46411
10_3390_rs12162558
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-c78e6aa67be83e039f9614f7ad7b6396be79de7a62b25d87b947145927af665c3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Tue Oct 22 15:14:06 EDT 2024
Thu Oct 10 18:35:35 EDT 2024
Mon Sep 16 17:26:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c78e6aa67be83e039f9614f7ad7b6396be79de7a62b25d87b947145927af665c3
ORCID 0000-0001-6918-4416
OpenAccessLink https://www.proquest.com/docview/2433711786?pq-origsite=%requestingapplication%
PQID 2433711786
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_8a8bccba304546eca83b6098edc46411
proquest_journals_2433711786
crossref_primary_10_3390_rs12162558
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tayara (ref_28) 2018; 6
Ma (ref_35) 2018; 20
ref_14
ref_36
ref_13
ref_12
ref_34
ref_11
ref_10
ref_32
Yang (ref_39) 2018; 6
ref_30
Dai (ref_3) 2019; 70
Cheng (ref_7) 2016; 117
Mandal (ref_29) 2020; 17
ref_19
Mostofa (ref_27) 2020; 8
ref_18
ref_17
ref_16
ref_38
ref_15
ref_37
Ji (ref_25) 2020; 17
Deng (ref_33) 2017; 145
ref_24
Sun (ref_1) 2006; 28
ref_23
ref_22
Razakarivony (ref_6) 2016; 34
ref_21
ref_20
ref_40
ref_2
Li (ref_31) 2018; 56
ref_26
ref_9
ref_8
ref_4
Fang (ref_5) 2016; 18
References_xml – ident: ref_9
– ident: ref_24
– ident: ref_19
  doi: 10.1109/ICCV.2015.169
– ident: ref_21
  doi: 10.1109/TPAMI.2020.2981890
– ident: ref_11
– ident: ref_37
  doi: 10.1109/CVPR.2019.00296
– volume: 18
  start-page: 1782
  year: 2016
  ident: ref_5
  article-title: Fine-grained vehicle model recognition using a coarse-to-fine convolutional neural network architecture
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2620495
  contributor:
    fullname: Fang
– ident: ref_16
– volume: 6
  start-page: 50839
  year: 2018
  ident: ref_39
  article-title: Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869884
  contributor:
    fullname: Yang
– ident: ref_23
  doi: 10.1109/WACV45572.2020.9093503
– ident: ref_17
  doi: 10.1109/CVPR.2014.81
– volume: 70
  start-page: 79
  year: 2019
  ident: ref_3
  article-title: Hybridnet: A fast vehicle detection system for autonomous driving
  publication-title: Signal Process Image Commun.
  doi: 10.1016/j.image.2018.09.002
  contributor:
    fullname: Dai
– volume: 56
  start-page: 2337
  year: 2018
  ident: ref_31
  article-title: Rotation-insensitive and context-augmented object detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2778300
  contributor:
    fullname: Li
– ident: ref_13
  doi: 10.1109/CVPR.2016.91
– volume: 6
  start-page: 2220
  year: 2018
  ident: ref_28
  article-title: Vehicle detection and counting in high-resolution aerial images using convolutional regression neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2782260
  contributor:
    fullname: Tayara
– ident: ref_32
  doi: 10.3390/rs11030272
– ident: ref_36
  doi: 10.3390/rs10010132
– ident: ref_8
– volume: 8
  start-page: 82306
  year: 2020
  ident: ref_27
  article-title: Joint-Srvdnet: Joint super resolution and vehicle detection network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990870
  contributor:
    fullname: Mostofa
– ident: ref_18
  doi: 10.1007/978-3-319-10578-9_23
– ident: ref_40
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_4
  doi: 10.1109/ICRA.2011.5979853
– volume: 17
  start-page: 494
  year: 2020
  ident: ref_29
  article-title: AVDNet: A small-sized vehicle detection network for aerial visual data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2923564
  contributor:
    fullname: Mandal
– ident: ref_12
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_38
  doi: 10.1109/CVPR.2016.90
– ident: ref_34
  doi: 10.1007/978-3-319-46478-7_31
– volume: 17
  start-page: 676
  year: 2020
  ident: ref_25
  article-title: Vehicle detection in remote sensing images leveraging on simultaneous super-resolution
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2930308
  contributor:
    fullname: Ji
– ident: ref_30
  doi: 10.1109/CVPR.2017.106
– volume: 145
  start-page: 3
  year: 2017
  ident: ref_33
  article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.003
  contributor:
    fullname: Deng
– ident: ref_15
– ident: ref_22
  doi: 10.1109/CVPR.2016.100
– ident: ref_10
  doi: 10.1109/CVPR.2008.4587597
– volume: 34
  start-page: 187
  year: 2016
  ident: ref_6
  article-title: Vehicle detection in aerial imagery: A small target detection benchmark
  publication-title: J. Vis. Commun. Image Represent
  doi: 10.1016/j.jvcir.2015.11.002
  contributor:
    fullname: Razakarivony
– ident: ref_20
– ident: ref_26
  doi: 10.1109/CVPR.2018.00377
– volume: 28
  start-page: 694
  year: 2006
  ident: ref_1
  article-title: On-road vehicle detection: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.104
  contributor:
    fullname: Sun
– ident: ref_2
  doi: 10.1109/IVS.2016.7535375
– ident: ref_14
  doi: 10.1109/CVPR.2017.690
– volume: 20
  start-page: 3111
  year: 2018
  ident: ref_35
  article-title: Arbitrary-oriented scene text detection via rotation proposals
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2018.2818020
  contributor:
    fullname: Ma
– volume: 117
  start-page: 11
  year: 2016
  ident: ref_7
  article-title: A survey on object detection in optical remote sensing images
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.014
  contributor:
    fullname: Cheng
SSID ssj0000331904
Score 2.4552815
Snippet Vehicles in aerial images are generally with small sizes and unbalanced number of samples, which leads to the poor performances of the existing vehicle...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 2558
SubjectTerms aerial image
Algorithms
Amplification
Boxes
center loss
Data augmentation
Datasets
Deep learning
feature amplification
Feature maps
Horizontal orientation
Impact strength
oriented vehicle detection
Oversampling
oversampling data augmentation
Remote sensing
Researchers
Semantics
Stitching
Training
Vehicles
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL3BBLVCxtEUjwTVqYjt2fNzudlWQ2EqIVr1F_hi3HOqtdrMH_gC_u-MkhZU4cOnVSmRrZjzzJpl5w9jnGCNdNAxFKbQvMndOYbE0Ra2CkEpEblVuFP62VBdX8utNfbMz6ivXhA30wIPgThvbOO-dzX_0pEJvG-FUaRoMXio5dvWWZieZ6n2wINMq5cBHKiivP11vKl4R2M-z3XciUE_U_48f7oPLYp-9HlEhTIfTHLAXmN6wl-OA8rtfb9nvIfnHAAubqQ3g-2y5hDMKQQFWCTKQ264Rprk-PI6f4cCmAJe57MLm5XQLc9tZmG5v78eGowQEWeEyUx0T8IRrvMvbwxy7vkArwc8E095E4cs9OZ7NO3a1OP8xuyjGEQqFF6rqCq8bVNYq7bARWAoTDcXjqG3QjrCJcqhNQG0Vd7wOjXaGgpWsDdc2KlV7ccj20irhewahdDW97SKS3IWM1gtHWjWKxyiQhwn79CTW9mFgymgpw8jCb_8Kf8LOssT_PJHZrfsF0nk76rz9n84n7PhJX-145TYtl0LoqtKN-vAcexyxVzyn1n2t3zHb69ZbPCH80bmPvak9AuR72nw
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved Faster RCNN Based on Feature Amplification and Oversampling Data Augmentation for Oriented Vehicle Detection in Aerial Images
URI https://www.proquest.com/docview/2433711786
https://doaj.org/article/8a8bccba304546eca83b6098edc46411
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDBbW9LBdij2x9BEQ2K5GbcmW5FORtM26AUuHYh16M_Sg0h3qdIlz2B_Y757oKG2BAbvKFgRQFPmRoj4y9jGEEA8a-iwXymXEnZMZzOuskl6UUgRuJD0U_jqTF9fll5vqJiXcVqmscmsTe0PtF45y5Me8FEIVhdLy5P5XRl2j6HY1tdDYYbs8Rgp8wHYn57NvVw9ZllxEFcvLDS-piPH98XJV8CKCfurx_sQT9YT9_9jj3slMX7K9hA5hvNnOV-wZtq_Z89So_Pb3G_ZnkwRAD1NDFAdwdTqbwSS6Ig-LFgjQrZcIY6oTDykdB6b1cEnlF4aG2zmcmc7AeD2_Sw-PWojQFS6J8jgCUPiBt7Q8nGHXF2q18LOFca-q8PkuGqDVW3Y9Pf9-epGlVgqZE7LoMqc0SmOksqgF5qIOdfTLQRmvbMQo0qKqPSojueWV18rW0WmVVc2VCVJWTrxjg3bR4nsGPrdVnG0DlhHNlME4YePu1pKHIJD7IfuwFWtzv2HMaGKkQcJvHoU_ZBOS-MMfxHLdDyyW8yYdmkYbbZ2zhm5zS4nOaGFlXmv0Lq5dFEN2uN2vJh29VfOoKPv__3zAXnAKnvtqvkM26JZrPIoIo7MjtqOnn0ZJmUZ9nP4X0oHUxw
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagHMoF8RSBAiPBddVd22vvnlDaElJoUwm1qLeVnymHOiXZHPgD_G5mNk6LhMTVu5al8Xjm83jmG8Y-xBjxoAVflEK7grhzChPKtqiVF1KJyI2iQuHTmZpeyC-X9WUOuK1yWuXWJg6G2i8cxcj3uRRCV5Vu1MebnwV1jaLX1dxC4z57IAU6GqoUn3y-jbGUAhWslBtWUoG3-_3lquIVQn7q8P6XHxro-v-xxoOLmTxmjzI2hPFmM5-weyE9Zbu5TfnVr2fs9yYEEDxMDBEcwLfD2QwO0BF5WCQgOLdeBhhTlnjMwTgwycMZJV8YGk5zODK9gfF6fp3LjhIgcIUzIjxG-AnfwxUtD0ehH9K0EvxIMB4UFY6v0fysnrOLyafzw2mRGykUDqXSF043QRmjtA2NCKVoY4vCitp4bRGhKBt064M2ilte-0bbFl2WrFuuTVSqduIF20mLFF4y8KWtcbaNQSKWkdE4YXFvW8VjFIH7EXu_FWt3s-HL6PCeQcLv7oQ_Ygck8ds_iON6GFgs510-Ml1jGuucNfSWK1VwphFWlW0TvMO1q2rE9rb71eWDt-ru1OTV_z-_Y7vT89OT7uR49vU1e8jpGj3k9e2xnX65Dm8Qa_T27aBQfwBoL9R3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDBa2FNh2GfZEs3Utge1qxJZsST4NSdOg3cMtinXozdAz3aFKlziH_YH97lGO0g4o0KtsQQBFkR8p6iMhn7z3eNCczXImTBa5czLl8jqruGUlZ54qHh8Kf2_48UX55bK6TPVPq1RWubWJvaG2CxNz5CNaMiaKQkg-8qks4mw6-3zzO4sdpOJNa2qn8ZjsCFxFDsjO5Kg5O7_NuOQM1S0vNxylDGP90XJV0AIDgNjv_T-v1JP337PNvcOZvSDPE1KE8WZrX5JHLrwiT1PT8qs_r8nfTULAWZipSHcA54dNAxN0SxYWASK4Wy8djGPNuE-pOVDBwmksxVBxOMxhqjoF4_X8Oj1CCoAwFk4j_TGCUfjpruLyMHVdX7QV4FeAca-2cHKNxmj1hlzMjn4cHmeprUJmGC-6zAjpuFJcaCeZy1nta_TRXigrNOIVrp2orROKU00rK4Wu0YGVVU2F8pxXhr0lg7AIbpeAzXWFs7V3JSKb0ivDNO50zan3zFE7JB-3Ym1vNuwZLUYdUfjtnfCHZBIlfvtHZLzuBxbLeZsOUCuV1MZoFW92S-6MkkzzvJbOGly7KIZkb7tfbTqGq_ZOad49_PmAPEFtar-dNF_fk2c0xtR9kd8eGXTLtfuAwKPT-0mj_gHTZNoa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Faster+RCNN+Based+on+Feature+Amplification+and+Oversampling+Data+Augmentation+for+Oriented+Vehicle+Detection+in+Aerial+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Mo%2C+Nan&rft.au=Li%2C+Yan&rft.date=2020-08-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=16&rft.spage=2558&rft_id=info:doi/10.3390%2Frs12162558&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon