On Input/Output Architectures for Convolutional Neural Network-Based Cross-View Gait Recognition

In this paper, we discuss input/output architectures for convolutional neural network (CNN)-based cross-view gait recognition. For this purpose, we consider two aspects: verification versus identification and the tradeoff between spatial displacements caused by subject difference and view difference...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 29; no. 9; pp. 2708 - 2719
Main Authors Takemura, Noriko, Makihara, Yasushi, Muramatsu, Daigo, Echigo, Tomio, Yagi, Yasushi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we discuss input/output architectures for convolutional neural network (CNN)-based cross-view gait recognition. For this purpose, we consider two aspects: verification versus identification and the tradeoff between spatial displacements caused by subject difference and view difference. More specifically, we use the Siamese network with a pair of inputs and contrastive loss for verification and a triplet network with a triplet of inputs and triplet ranking loss for identification. The aforementioned CNN architectures are insensitive to spatial displacement, because the difference between a matching pair is calculated at the last layer after passing through the convolution and max pooling layers; hence, they are expected to work relatively well under large view differences. By contrast, because it is better to use the spatial displacement to its best advantage because of the subject difference under small view differences, we also use CNN architectures where the difference between a matching pair is calculated at the input level to make them more sensitive to spatial displacement. We conducted experiments for cross-view gait recognition and confirmed that the proposed architectures outperformed the state-of-the-art benchmarks in accordance with their suitable situations of verification/identification tasks and view differences.
AbstractList In this paper, we discuss input/output architectures for convolutional neural network (CNN)-based cross-view gait recognition. For this purpose, we consider two aspects: verification versus identification and the tradeoff between spatial displacements caused by subject difference and view difference. More specifically, we use the Siamese network with a pair of inputs and contrastive loss for verification and a triplet network with a triplet of inputs and triplet ranking loss for identification. The aforementioned CNN architectures are insensitive to spatial displacement, because the difference between a matching pair is calculated at the last layer after passing through the convolution and max pooling layers; hence, they are expected to work relatively well under large view differences. By contrast, because it is better to use the spatial displacement to its best advantage because of the subject difference under small view differences, we also use CNN architectures where the difference between a matching pair is calculated at the input level to make them more sensitive to spatial displacement. We conducted experiments for cross-view gait recognition and confirmed that the proposed architectures outperformed the state-of-the-art benchmarks in accordance with their suitable situations of verification/identification tasks and view differences.
Author Makihara, Yasushi
Takemura, Noriko
Yagi, Yasushi
Echigo, Tomio
Muramatsu, Daigo
Author_xml – sequence: 1
  givenname: Noriko
  orcidid: 0000-0003-1977-4690
  surname: Takemura
  fullname: Takemura, Noriko
  email: takemura@am.sanken.osaka-u.ac.jp
  organization: Mitsubishi Electric Collaborative Research Division for Wide-Area Security Technology, Institute of the Scientific and Industrial Research, Osaka University, Osaka, Japan
– sequence: 2
  givenname: Yasushi
  surname: Makihara
  fullname: Makihara, Yasushi
  email: makihara@am.sanken.osaka-u.ac.jp
  organization: Mitsubishi Electric Collaborative Research Division for Wide-Area Security Technology, Institute of the Scientific and Industrial Research, Osaka University, Osaka, Japan
– sequence: 3
  givenname: Daigo
  surname: Muramatsu
  fullname: Muramatsu, Daigo
  email: muramatsu@am.sanken.osaka-u.ac.jp
  organization: Mitsubishi Electric Collaborative Research Division for Wide-Area Security Technology, Institute of the Scientific and Industrial Research, Osaka University, Osaka, Japan
– sequence: 4
  givenname: Tomio
  surname: Echigo
  fullname: Echigo, Tomio
  email: echigo@osakac.ac.jp
  organization: Department of Engineering Informatics, Osaka Electro-Communication University, Osaka, Japan
– sequence: 5
  givenname: Yasushi
  surname: Yagi
  fullname: Yagi, Yasushi
  email: yagi@am.sanken.osaka-u.ac.jp
  organization: Mitsubishi Electric Collaborative Research Division for Wide-Area Security Technology, Institute of the Scientific and Industrial Research, Osaka University, Osaka, Japan
BookMark eNp9kM1OwzAQhC1UJNrCC8AlEue0_okd-1giKJUqKkHpNbiOAy4hLrZDxduTtBUHDpxmD_Ptzs4A9GpbawAuERwhBMV4mT2tliMMUTrCKYOc0BPQR5TyGGNIe-0MKYo5RvQMDLzfQIgSnqR98LKoo1m9bcJ40YRWoolTbyZoFRqnfVRaF2W2_rJVE4ytZRU96MbtJeyse49vpNdFlDnrfbwyehdNpQnRo1b2tTYdcg5OS1l5fXHUIXi-u11m9_F8MZ1lk3msCEMhVimRFDNOFJaiEGtM1qxEZQHZmkCRYI5FKRAuCi0SASlGPBValEwlBceMcjIE14e9W2c_G-1DvrGNaxP7HGNOCRGQs9aFDy7VJXa6zLfOfEj3nSOYd03m-ybzrsn82GQL8T-QMkF2zwUnTfU_enVAjdb69xaHjJAkIT8REINc
CODEN ITCTEM
CitedBy_id crossref_primary_10_1007_s11042_018_6045_y
crossref_primary_10_1007_s11042_020_10071_9
crossref_primary_10_4018_IJBDIA_287616
crossref_primary_10_1109_TIFS_2018_2844819
crossref_primary_10_1109_TPAMI_2021_3057879
crossref_primary_10_1109_JIOT_2019_2953488
crossref_primary_10_1109_ACCESS_2024_3445415
crossref_primary_10_3390_s23104875
crossref_primary_10_1007_s11227_023_05143_0
crossref_primary_10_1109_TIP_2021_3055936
crossref_primary_10_1016_j_nanoen_2020_105246
crossref_primary_10_1109_TNNLS_2022_3154723
crossref_primary_10_1016_j_eswa_2022_117730
crossref_primary_10_3390_jimaging10120326
crossref_primary_10_1109_ACCESS_2024_3443231
crossref_primary_10_1109_JIOT_2023_3301908
crossref_primary_10_1016_j_neucom_2022_07_002
crossref_primary_10_1007_s10489_024_05422_0
crossref_primary_10_1109_TBIOM_2022_3174559
crossref_primary_10_1109_TIFS_2020_2985535
crossref_primary_10_1109_TIFS_2019_2912577
crossref_primary_10_1049_ipr2_12024
crossref_primary_10_1109_ACCESS_2023_3266252
crossref_primary_10_1109_TIFS_2020_2985628
crossref_primary_10_3233_AIC_230121
crossref_primary_10_1049_iet_bmt_2018_5063
crossref_primary_10_1007_s11042_019_7712_3
crossref_primary_10_1016_j_procs_2021_10_022
crossref_primary_10_26599_TST_2023_9010089
crossref_primary_10_1007_s11760_024_03765_2
crossref_primary_10_1016_j_neucom_2021_08_054
crossref_primary_10_1109_TIFS_2024_3382606
crossref_primary_10_7717_peerj_cs_996
crossref_primary_10_1111_coin_12361
crossref_primary_10_1016_j_neucom_2024_128313
crossref_primary_10_1109_TMC_2023_3310508
crossref_primary_10_1007_s00521_020_04811_z
crossref_primary_10_1109_TCBB_2019_2951146
crossref_primary_10_1109_TMC_2021_3052314
crossref_primary_10_1186_s41074_018_0041_z
crossref_primary_10_1007_s00521_019_04524_y
crossref_primary_10_1109_TCSVT_2022_3202531
crossref_primary_10_1109_TCSVT_2022_3175959
crossref_primary_10_1109_TGRS_2024_3379376
crossref_primary_10_1109_ACCESS_2024_3510718
crossref_primary_10_1109_TBIOM_2024_3384704
crossref_primary_10_1371_journal_pdig_0000668
crossref_primary_10_1007_s10489_022_03818_4
crossref_primary_10_1109_JIOT_2022_3203559
crossref_primary_10_3390_ai3020031
crossref_primary_10_1007_s10462_022_10365_4
crossref_primary_10_1109_ACCESS_2022_3168019
crossref_primary_10_1016_j_neucom_2019_02_025
crossref_primary_10_1109_JSTSP_2023_3271827
crossref_primary_10_1109_TIP_2019_2926208
crossref_primary_10_1007_s11042_019_7638_9
crossref_primary_10_1109_ACCESS_2020_3047266
crossref_primary_10_1109_TPAMI_2022_3151865
crossref_primary_10_1049_cit2_12051
crossref_primary_10_32604_cmc_2021_017275
crossref_primary_10_1186_s41074_019_0054_2
crossref_primary_10_1007_s42235_021_00083_y
crossref_primary_10_1109_ACCESS_2020_2997814
crossref_primary_10_1007_s11042_024_18859_9
crossref_primary_10_1049_cvi2_12070
crossref_primary_10_1109_TCSVT_2020_2975671
crossref_primary_10_1134_S0361768819040091
crossref_primary_10_1002_itl2_379
crossref_primary_10_1016_j_patrec_2024_06_031
crossref_primary_10_1109_TBIOM_2021_3074963
crossref_primary_10_1109_TBIOM_2022_3216857
crossref_primary_10_3390_s22197362
crossref_primary_10_1109_TPAMI_2022_3183288
crossref_primary_10_1109_JSEN_2019_2928777
crossref_primary_10_1109_TCSVT_2024_3476384
crossref_primary_10_1109_TCSVT_2021_3095290
crossref_primary_10_1007_s11042_022_12665_x
crossref_primary_10_1109_ACCESS_2024_3482430
crossref_primary_10_1016_j_inffus_2022_10_032
crossref_primary_10_1109_TVT_2021_3111600
crossref_primary_10_1109_TIFS_2023_3236181
crossref_primary_10_3390_s22155682
crossref_primary_10_1109_TIFS_2024_3428371
crossref_primary_10_1109_ACCESS_2021_3102936
crossref_primary_10_1109_ACCESS_2020_3044580
crossref_primary_10_1007_s11831_019_09375_3
crossref_primary_10_1007_s10489_021_02322_5
crossref_primary_10_1109_JSEN_2023_3248868
crossref_primary_10_1016_j_eswa_2024_123181
crossref_primary_10_1109_TCSVT_2024_3360232
crossref_primary_10_1109_TCSVT_2019_2893736
crossref_primary_10_3390_s22239113
Cites_doi 10.1109/BTAS.2014.6996272
10.1109/TSMCB.2009.2031091
10.1109/CVPR.2014.180
10.1109/ICB.2016.7550060
10.1109/TPAMI.2006.38
10.1016/j.patrec.2010.05.027
10.1109/TMM.2015.2477681
10.1109/CVPRW.2006.216
10.1109/ICCV.2015.320
10.1109/TCSVT.2012.2186744
10.1049/iet-bmt.2014.0042
10.1109/ICASSP.2016.7472194
10.1109/TPAMI.2016.2545669
10.1109/TPAMI.2011.260
10.1109/TIP.2014.2371335
10.1111/j.1556-4029.2011.01793.x
10.1109/CVPR.2015.7298594
10.1007/978-3-319-59147-6_23
10.1049/iet-bmt.2013.0090
10.1109/BTAS.2013.6712705
10.1109/TIFS.2012.2204253
10.1109/ICIP.2016.7533144
10.1109/CVPR.2014.223
10.2197/ipsjtcva.5.163
10.1109/34.598228
10.1109/ICB.2016.7550090
10.1109/TCYB.2015.2452577
10.1109/CVPR.2011.5995598
10.1109/TPAMI.2014.2366766
10.1016/j.patcog.2014.06.010
10.1109/CVPR.2005.202
10.1109/AVSS.2003.1217914
10.1016/S0031-3203(03)00239-5
10.1109/ICCVW.2009.5457587
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2017.2760835
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2719
ExternalDocumentID 10_1109_TCSVT_2017_2760835
8063344
Genre orig-research
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: JP15H01693
  funderid: 10.13039/501100001691
– fundername: Core Research for Evolutional Science and Technology
  funderid: 10.13039/501100003382
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-c73a52683c2a9d9b23b6f1fd06b30942829f912dde9490521879e9f6c4d826583
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 10:12:28 EDT 2025
Tue Jul 01 00:41:11 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Wed Aug 27 02:46:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c73a52683c2a9d9b23b6f1fd06b30942829f912dde9490521879e9f6c4d826583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1977-4690
PQID 2285339086
PQPubID 85433
PageCount 12
ParticipantIDs ieee_primary_8063344
crossref_primary_10_1109_TCSVT_2017_2760835
proquest_journals_2285339086
crossref_citationtrail_10_1109_TCSVT_2017_2760835
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
bousquet (ref31) 2008
ref11
yu (ref20) 2006; 4
ref10
otsu (ref40) 1982
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
liu (ref22) 2004; 1
ref24
srivastava (ref32) 2014; 15
nair (ref29) 2010
ref23
ref26
ref25
ref42
ref41
ref21
takemura (ref33) 2016; j99 a
glorot (ref30) 2010
makihara (ref6) 2006
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref5
References_xml – start-page: 249
  year: 2010
  ident: ref30
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc Artif Intell Statist (AISTATS) Conf
– ident: ref10
  doi: 10.1109/BTAS.2014.6996272
– ident: ref5
  doi: 10.1109/TSMCB.2009.2031091
– start-page: 557
  year: 1982
  ident: ref40
  article-title: Optimal linear and nonlinear solutions for least-square discriminant feature extraction
  publication-title: Proc 6th Int Conf Pattern Recognit
– ident: ref25
  doi: 10.1109/CVPR.2014.180
– ident: ref15
  doi: 10.1109/ICB.2016.7550060
– ident: ref8
  doi: 10.1109/TPAMI.2006.38
– ident: ref9
  doi: 10.1016/j.patrec.2010.05.027
– ident: ref13
  doi: 10.1109/TMM.2015.2477681
– ident: ref35
  doi: 10.1109/CVPRW.2006.216
– ident: ref26
  doi: 10.1109/ICCV.2015.320
– ident: ref7
  doi: 10.1109/TCSVT.2012.2186744
– ident: ref38
  doi: 10.1049/iet-bmt.2014.0042
– volume: j99 a
  start-page: 440
  year: 2016
  ident: ref33
  article-title: View-invariant gait recognition using convolutional neural network
  publication-title: IEICE Trans Fundam
– ident: ref16
  doi: 10.1109/ICASSP.2016.7472194
– ident: ref14
  doi: 10.1109/TPAMI.2016.2545669
– ident: ref24
  doi: 10.1109/TPAMI.2011.260
– ident: ref37
  doi: 10.1109/TIP.2014.2371335
– ident: ref1
  doi: 10.1111/j.1556-4029.2011.01793.x
– ident: ref42
  doi: 10.1109/CVPR.2015.7298594
– ident: ref23
  doi: 10.1007/978-3-319-59147-6_23
– ident: ref2
  doi: 10.1049/iet-bmt.2013.0090
– ident: ref19
  doi: 10.1109/BTAS.2013.6712705
– start-page: 807
  year: 2010
  ident: ref29
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn (ICML)
– volume: 4
  start-page: 441
  year: 2006
  ident: ref20
  article-title: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition
  publication-title: Proc 18th Int Conf Pattern Recognit
– ident: ref21
  doi: 10.1109/TIFS.2012.2204253
– ident: ref17
  doi: 10.1109/ICIP.2016.7533144
– ident: ref28
  doi: 10.1109/CVPR.2014.223
– ident: ref3
  doi: 10.2197/ipsjtcva.5.163
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref32
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref41
  doi: 10.1109/34.598228
– start-page: 161
  year: 2008
  ident: ref31
  article-title: The tradeoffs of large scale learning
  publication-title: Advances in neural information processing systems
– ident: ref34
  doi: 10.1109/ICB.2016.7550090
– start-page: 151
  year: 2006
  ident: ref6
  article-title: Gait recognition using a view transformation model in the frequency domain
  publication-title: Proc 9th Eur Conf Comput Vis
– ident: ref39
  doi: 10.1109/TCYB.2015.2452577
– ident: ref27
  doi: 10.1109/CVPR.2011.5995598
– ident: ref11
  doi: 10.1109/TPAMI.2014.2366766
– ident: ref12
  doi: 10.1016/j.patcog.2014.06.010
– ident: ref18
  doi: 10.1109/CVPR.2005.202
– ident: ref4
  doi: 10.1109/AVSS.2003.1217914
– volume: 1
  start-page: 211
  year: 2004
  ident: ref22
  article-title: Simplest representation yet for gait recognition: Averaged silhouette
  publication-title: Proc 17th Int Conf Pattern Recognit
  doi: 10.1016/S0031-3203(03)00239-5
– ident: ref36
  doi: 10.1109/ICCVW.2009.5457587
SSID ssj0014847
Score 2.6053076
Snippet In this paper, we discuss input/output architectures for convolutional neural network (CNN)-based cross-view gait recognition. For this purpose, we consider...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2708
SubjectTerms Artificial neural networks
Convolution
Convolutional neural network
cross-view
Displacement
Gait recognition
Matching
Mathematical analysis
Network architecture
Neural networks
Performance evaluation
Probes
Robustness
Title On Input/Output Architectures for Convolutional Neural Network-Based Cross-View Gait Recognition
URI https://ieeexplore.ieee.org/document/8063344
https://www.proquest.com/docview/2285339086
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH7YnvTgVsW6kYM3TdtJxmly1GKtgha0FW9jswwUZSp2RsFf70s6U9wQT5lDEjJ8Sd738jaAA4FXnDFKUaNli4Y6kFSqSNHEKmfXMSjj3Tvk1XXUG4aX98f3C3A0j4Wx1nrnM9twn96WbyY6d09lTYHylIdhBSqouM1iteYWg1D4YmJIFwIqUI6VATIt2Rx0bu8Gzour3WDtyHGOL0LIV1X5cRV7-dJdgatyZTO3ksdGnqmGfv-WtPG_S1-F5YJokpPZzliDBZuuw9Kn9IM1eOin5CJ9zrNmP8-wISefrApTgnSWdCbpa7E5cTKXycM33nWcnqIENKTjfpHeje0bOR-NM3JTuiRN0g0Yds8GnR4tKi5QzaMgo7rNRy7_C9dsJI1UjKsoCRLTihRHPdBZXRMZMLwSZShd2K9oSyuTSIcG1ZRjwTehmk5SuwWEac6ZVaOERyYMlBGGBUqjuoScxghh6xCUEMS6SEfuqmI8xV4tacnYwxY72OICtjoczsc8z5Jx_Nm75nCY9ywgqMNuiXRcnNdpzBjSFi5Rv9v-fdQOLOLchXfZLlSzl9zuIR3J1L7fhx-b49uC
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8q4wAcNqAgOjbmAzdwW9tpah9HtdKNfkjQVr2F-iNSxZRWawISfz3PblKVgRAn52Antn6Of-_5fQG8lXjEWas1tUa1aWSYokrHmqZOe7uORY7395CjcTyYRTeLzqIG7_exMM654Hzmmv4x2PLt2hT-qqwlkU9FFD2Ah8j7HbaL1trbDCIZyomhwMCoRCarQmTaqjXtfZlPvR9Xt8m7sZc6fqOhUFflj8M4MEz_BEbV3HaOJd-aRa6b5ue9tI3_O_mncFyKmuRytzeeQc1lz-HJQQLCOnydZOQ62xR5a1Lk2JDLA7vClqBAS3rr7Hu5PfFlPpdHaILzOP2AHGhJzy-RzlfuB_m4XOXkc-WUtM5ewKx_Ne0NaFlzgRoRs5yarlj6DDDC8KWySnOh45Slth1rgZqgt7uminE8FFWkfOCv7Cqn0thEFhWVjhQv4ShbZ-4VEG6E4E4vUxHbiGkrLWfaoMKEUo2V0jWAVRAkpkxI7uti3CZBMWmrJMCWeNiSErYGvNuP2ezScfyzd93jsO9ZQtCAswrppPxjtwnnKLgIhRre6d9HXcCjwXQ0TIbX40-v4TF-p_Q1O4Oj_K5w5yic5PpN2JO_ADiB3ss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Input%2FOutput+Architectures+for+Convolutional+Neural+Network-Based+Cross-View+Gait+Recognition&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Takemura%2C+Noriko&rft.au=Makihara%2C+Yasushi&rft.au=Muramatsu%2C+Daigo&rft.au=Echigo%2C+Tomio&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=29&rft.issue=9&rft.spage=2708&rft.epage=2719&rft_id=info:doi/10.1109%2FTCSVT.2017.2760835&rft.externalDocID=8063344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon