ClassHyPer: ClassMix-Based Hybrid Perturbations for Deep Semi-Supervised Semantic Segmentation of Remote Sensing Imagery

Inspired by the tremendous success of deep learning (DL) and the increased availability of remote sensing data, DL-based image semantic segmentation has attracted growing interest in the remote sensing community. The ideal scenario of DL application requires a vast number of annotation data with the...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 4; p. 879
Main Authors He, Yongjun, Wang, Jinfei, Liao, Chunhua, Shan, Bo, Zhou, Xin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inspired by the tremendous success of deep learning (DL) and the increased availability of remote sensing data, DL-based image semantic segmentation has attracted growing interest in the remote sensing community. The ideal scenario of DL application requires a vast number of annotation data with the same feature distribution as the area of interest. However, obtaining such enormous training sets that suit the data distribution of the target area is highly time-consuming and costly. Consistency-regularization-based semi-supervised learning (SSL) methods have gained growing popularity thanks to their ease of implementation and remarkable performance. However, there have been limited applications of SSL in remote sensing. This study comprehensively analyzed several advanced SSL methods based on consistency regularization from the perspective of data- and model-level perturbation. Then, an end-to-end SSL approach based on a hybrid perturbation paradigm was introduced to improve the DL model’s performance with a limited number of labels. The proposed method integrates the semantic boundary information to generate more meaningful mixing images when performing data-level perturbation. Additionally, by using implicit pseudo-supervision based on model-level perturbation, it eliminates the need to set extra threshold parameters in training. Furthermore, it can be flexibly paired with the DL model in an end-to-end manner, as opposed to the separated training stages used in the traditional pseudo-labeling. Experimental results for five remote sensing benchmark datasets in the application of segmentation of roads, buildings, and land cover demonstrated the effectiveness and robustness of the proposed approach. It is particularly encouraging that the ratio of accuracy obtained using the proposed method with 5% labels to that using the purely supervised method with 100% labels was more than 89% on all benchmark datasets.
AbstractList Inspired by the tremendous success of deep learning (DL) and the increased availability of remote sensing data, DL-based image semantic segmentation has attracted growing interest in the remote sensing community. The ideal scenario of DL application requires a vast number of annotation data with the same feature distribution as the area of interest. However, obtaining such enormous training sets that suit the data distribution of the target area is highly time-consuming and costly. Consistency-regularization-based semi-supervised learning (SSL) methods have gained growing popularity thanks to their ease of implementation and remarkable performance. However, there have been limited applications of SSL in remote sensing. This study comprehensively analyzed several advanced SSL methods based on consistency regularization from the perspective of data- and model-level perturbation. Then, an end-to-end SSL approach based on a hybrid perturbation paradigm was introduced to improve the DL model’s performance with a limited number of labels. The proposed method integrates the semantic boundary information to generate more meaningful mixing images when performing data-level perturbation. Additionally, by using implicit pseudo-supervision based on model-level perturbation, it eliminates the need to set extra threshold parameters in training. Furthermore, it can be flexibly paired with the DL model in an end-to-end manner, as opposed to the separated training stages used in the traditional pseudo-labeling. Experimental results for five remote sensing benchmark datasets in the application of segmentation of roads, buildings, and land cover demonstrated the effectiveness and robustness of the proposed approach. It is particularly encouraging that the ratio of accuracy obtained using the proposed method with 5% labels to that using the purely supervised method with 100% labels was more than 89% on all benchmark datasets.
Author Shan, Bo
Wang, Jinfei
Zhou, Xin
He, Yongjun
Liao, Chunhua
Author_xml – sequence: 1
  givenname: Yongjun
  orcidid: 0000-0002-1656-560X
  surname: He
  fullname: He, Yongjun
– sequence: 2
  givenname: Jinfei
  orcidid: 0000-0002-8404-0530
  surname: Wang
  fullname: Wang, Jinfei
– sequence: 3
  givenname: Chunhua
  surname: Liao
  fullname: Liao, Chunhua
– sequence: 4
  givenname: Bo
  surname: Shan
  fullname: Shan, Bo
– sequence: 5
  givenname: Xin
  orcidid: 0000-0003-1321-510X
  surname: Zhou
  fullname: Zhou, Xin
BookMark eNpNUdtOwzAMjRBIDNgLXxCJN6RCbk1T3mBcNgkE4vJcpakzZVqbkXRo-3uyDQF-8bF9fGzZR2i_8x0gdErJBecluQyRCiKIKso9NGCkYJlgJdv_hw_RMMYZScY5LYkYoNVormMcr18gXOEtfnKr7EZHaPB4XQfX4FTql6HWvfNdxNYHfAuwwG_QuuxtuYDw5TbsFOuudyaBaQtdv-Vjb_ErtL6HlO6i66Z40uophPUJOrB6HmH444_Rx_3d-2icPT4_TEbXj5nhkvaZKbgwupbGKKkI1IqRUjGgrLGWU2tsIWkuc2kKRiRhoi5yTcqy1LkwijWEH6PJTrfxelYtgmt1WFdeu2qb8GFa6ZDWnkPFpDBWCaZqToVlVnOqC2kV5cwWkIukdbbTWgT_uYTYVzO_DF1aP_WmiwquxIZ1vmOZ4GMMYH-nUlJtHlX9PYp_Az5hhoM
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2024_04_010
crossref_primary_10_1109_TGRS_2023_3321041
crossref_primary_10_1139_geomat_2021_0013
crossref_primary_10_3390_rs15020478
crossref_primary_10_1007_s12524_023_01667_3
crossref_primary_10_1109_JSTARS_2023_3298994
crossref_primary_10_1007_s12524_022_01604_w
crossref_primary_10_3390_s24051708
crossref_primary_10_1109_TGRS_2024_3388199
crossref_primary_10_3390_rs14081786
crossref_primary_10_3390_rs16122056
crossref_primary_10_1109_TIP_2022_3222904
crossref_primary_10_1016_j_isprsjprs_2023_12_009
crossref_primary_10_1109_JSTARS_2024_3378348
crossref_primary_10_1016_j_isprsjprs_2023_03_012
crossref_primary_10_1016_j_isprsjprs_2024_03_012
crossref_primary_10_3390_rs15040986
crossref_primary_10_1109_JSTARS_2022_3215730
crossref_primary_10_1109_TGRS_2023_3264232
crossref_primary_10_1109_TGRS_2023_3285752
crossref_primary_10_1109_TGRS_2022_3224477
Cites_doi 10.1109/TGRS.2021.3068532
10.1109/TGRS.2018.2858817
10.1016/j.rse.2019.04.032
10.1109/CVPR46437.2021.00264
10.1109/ICCV.2019.00612
10.3390/rs12213603
10.1109/JSTARS.2019.2924582
10.1109/IGARSS.2019.8898071
10.3390/rs13030371
10.1109/WACV48630.2021.00141
10.1007/s11263-014-0733-5
10.1109/MMSP.2018.8547095
10.1109/LGRS.2022.3188257
10.1109/ICIP42928.2021.9506602
10.1016/j.isprsjprs.2017.11.004
10.1007/978-3-030-58601-0_26
10.3390/app11188670
10.1109/CVPR.2016.350
10.3390/rs10121970
10.1109/WACV.2017.58
10.5194/isprsannals-I-3-293-2012
10.1109/JSTARS.2021.3119286
10.1016/j.isprsjprs.2020.07.016
10.1007/s10994-019-05855-6
10.1109/CVPR.2015.7298965
10.1109/CVPRW.2018.00034
10.1609/aaai.v30i1.9906
10.1016/j.knosys.2015.01.010
10.3390/rs71114680
10.3390/rs12061049
10.3390/rs12040708
10.1016/j.rse.2019.111322
10.1109/TGRS.2020.2990640
10.1109/CVPRW.2018.00031
10.1016/j.isprsjprs.2021.01.020
10.1016/j.neucom.2018.05.083
10.3390/rs12050832
10.1109/JPROC.2020.3004555
10.1016/j.isprsjprs.2020.09.019
10.1109/TGRS.2017.2713123
10.1109/CVPR.2009.5206848
10.1109/CVPR42600.2020.01269
10.1109/TGRS.2017.2719738
10.1109/MGRS.2017.2762307
10.3390/rs11070830
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs14040879
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_264cf8428b314f2fa31a76f8132f7e54
10_3390_rs14040879
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-c734cab6cc8680eb820982e12dff31fcf7615656c7206024b75a0999a54c82d03
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 22 15:10:43 EDT 2024
Sat Nov 09 04:03:34 EST 2024
Thu Sep 26 20:59:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c734cab6cc8680eb820982e12dff31fcf7615656c7206024b75a0999a54c82d03
ORCID 0000-0002-1656-560X
0000-0003-1321-510X
0000-0002-8404-0530
OpenAccessLink https://doaj.org/article/264cf8428b314f2fa31a76f8132f7e54
PQID 2633143844
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_264cf8428b314f2fa31a76f8132f7e54
proquest_journals_2633143844
crossref_primary_10_3390_rs14040879
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Zhu (ref_4) 2017; 5
ref_14
ref_58
ref_13
ref_57
Hoos (ref_25) 2020; 109
ref_56
ref_55
Li (ref_42) 2018; 56
ref_54
ref_53
ref_51
Hu (ref_20) 2015; 7
ref_59
Kotaridis (ref_3) 2021; 173
Zheng (ref_36) 2020; 170
Zhuang (ref_17) 2021; 109
ref_60
Ji (ref_6) 2019; 57
Anantrasirichai (ref_10) 2019; 230
Hua (ref_30) 2022; 19
ref_24
ref_23
ref_21
ref_28
ref_27
ref_26
Han (ref_29) 2018; 145
Majd (ref_22) 2019; 12
ref_35
ref_34
ref_33
ref_31
Wang (ref_18) 2018; 312
Luo (ref_7) 2020; 167
ref_39
ref_38
ref_37
Saha (ref_9) 2021; 60
Baier (ref_11) 2022; 60
Tong (ref_19) 2020; 237
Everingham (ref_52) 2015; 111
Wang (ref_32) 2021; 60
ref_47
ref_46
ref_45
ref_44
ref_43
Saha (ref_8) 2020; 58
ref_41
ref_40
ref_1
ref_2
Lu (ref_16) 2015; 80
Kang (ref_15) 2021; 14
ref_49
Kaiser (ref_12) 2017; 55
ref_48
ref_5
References_xml – volume: 60
  start-page: 1
  year: 2022
  ident: ref_11
  article-title: Synthesizing Optical and SAR Imagery From Land Cover Maps and Auxiliary Raster Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3068532
  contributor:
    fullname: Baier
– ident: ref_5
– ident: ref_55
– ident: ref_26
– volume: 57
  start-page: 574
  year: 2019
  ident: ref_6
  article-title: Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2858817
  contributor:
    fullname: Ji
– volume: 230
  start-page: 111179
  year: 2019
  ident: ref_10
  article-title: A Deep Learning Approach to Detecting Volcano Deformation from Satellite Imagery Using Synthetic Datasets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.04.032
  contributor:
    fullname: Anantrasirichai
– ident: ref_51
  doi: 10.1109/CVPR46437.2021.00264
– ident: ref_27
  doi: 10.1109/ICCV.2019.00612
– ident: ref_58
– ident: ref_31
  doi: 10.3390/rs12213603
– volume: 12
  start-page: 2627
  year: 2019
  ident: ref_22
  article-title: Transferable Object-Based Framework Based on Deep Convolutional Neural Networks for Building Extraction
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2924582
  contributor:
    fullname: Majd
– ident: ref_13
  doi: 10.1109/IGARSS.2019.8898071
– ident: ref_56
– ident: ref_40
  doi: 10.3390/rs13030371
– ident: ref_47
  doi: 10.1109/WACV48630.2021.00141
– volume: 111
  start-page: 98
  year: 2015
  ident: ref_52
  article-title: The Pascal Visual Object Classes Challenge: A Retrospective
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
  contributor:
    fullname: Everingham
– ident: ref_37
  doi: 10.1109/MMSP.2018.8547095
– volume: 19
  start-page: 1
  year: 2022
  ident: ref_30
  article-title: Semantic Segmentation of Remote Sensing Images With Sparse Annotations
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3188257
  contributor:
    fullname: Hua
– ident: ref_41
– ident: ref_48
  doi: 10.1109/ICIP42928.2021.9506602
– volume: 145
  start-page: 23
  year: 2018
  ident: ref_29
  article-title: A Semi-Supervised Generative Framework with Deep Learning Features for High-Resolution Remote Sensing Image Scene Classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.004
  contributor:
    fullname: Han
– ident: ref_45
– ident: ref_49
  doi: 10.1007/978-3-030-58601-0_26
– ident: ref_28
– ident: ref_14
  doi: 10.3390/app11188670
– ident: ref_38
  doi: 10.1109/CVPR.2016.350
– ident: ref_24
  doi: 10.3390/rs10121970
– volume: 60
  start-page: 1
  year: 2021
  ident: ref_32
  article-title: RanPaste: Paste Consistency and Pseudo Label for Semisupervised Remote Sensing Image Semantic Segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Wang
– ident: ref_57
  doi: 10.1109/WACV.2017.58
– ident: ref_39
  doi: 10.5194/isprsannals-I-3-293-2012
– volume: 14
  start-page: 10548
  year: 2021
  ident: ref_15
  article-title: PiCoCo: Pixelwise Contrast and Consistency Learning for Semisupervised Building Footprint Segmentation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3119286
  contributor:
    fullname: Kang
– volume: 167
  start-page: 443
  year: 2020
  ident: ref_7
  article-title: Deeply Supervised Convolutional Neural Network for Shadow Detection Based on a Novel Aerial Shadow Imagery Dataset
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.07.016
  contributor:
    fullname: Luo
– volume: 109
  start-page: 373
  year: 2020
  ident: ref_25
  article-title: A Survey on Semi-Supervised Learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05855-6
  contributor:
    fullname: Hoos
– ident: ref_44
– ident: ref_34
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_35
  doi: 10.1109/CVPRW.2018.00034
– ident: ref_21
  doi: 10.1609/aaai.v30i1.9906
– volume: 60
  start-page: 1
  year: 2021
  ident: ref_9
  article-title: Self-Supervised Multisensor Change Detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Saha
– volume: 80
  start-page: 14
  year: 2015
  ident: ref_16
  article-title: Transfer Learning Using Computational Intelligence: A Survey
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.01.010
  contributor:
    fullname: Lu
– volume: 7
  start-page: 14680
  year: 2015
  ident: ref_20
  article-title: Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
  contributor:
    fullname: Hu
– ident: ref_23
  doi: 10.3390/rs12061049
– ident: ref_2
  doi: 10.3390/rs12040708
– volume: 237
  start-page: 111322
  year: 2020
  ident: ref_19
  article-title: Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111322
  contributor:
    fullname: Tong
– volume: 58
  start-page: 8780
  year: 2020
  ident: ref_8
  article-title: Unsupervised Deep Joint Segmentation of Multitemporal High-Resolution Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2990640
  contributor:
    fullname: Saha
– ident: ref_33
– ident: ref_54
– ident: ref_53
  doi: 10.1109/CVPRW.2018.00031
– volume: 173
  start-page: 309
  year: 2021
  ident: ref_3
  article-title: Remote Sensing Image Segmentation Advances: A Meta-Analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.01.020
  contributor:
    fullname: Kotaridis
– volume: 312
  start-page: 135
  year: 2018
  ident: ref_18
  article-title: Deep Visual Domain Adaptation: A Survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
  contributor:
    fullname: Wang
– ident: ref_46
– ident: ref_1
  doi: 10.3390/rs12050832
– volume: 109
  start-page: 43
  year: 2021
  ident: ref_17
  article-title: A Comprehensive Survey on Transfer Learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3004555
  contributor:
    fullname: Zhuang
– volume: 170
  start-page: 15
  year: 2020
  ident: ref_36
  article-title: Parsing Very High Resolution Urban Scene Images by Learning Deep ConvNets with Edge-Aware Loss
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.09.019
  contributor:
    fullname: Zheng
– volume: 56
  start-page: 3
  year: 2018
  ident: ref_42
  article-title: ST-IRGS: A Region-Based Self-Training Algorithm Applied to Hyperspectral Image Classification and Segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2713123
  contributor:
    fullname: Li
– ident: ref_59
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_50
  doi: 10.1109/CVPR42600.2020.01269
– volume: 55
  start-page: 6054
  year: 2017
  ident: ref_12
  article-title: Learning Aerial Image Segmentation From Online Maps
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2719738
  contributor:
    fullname: Kaiser
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_4
  article-title: Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
  contributor:
    fullname: Zhu
– ident: ref_43
– ident: ref_60
  doi: 10.3390/rs11070830
SSID ssj0000331904
Score 2.4653432
Snippet Inspired by the tremendous success of deep learning (DL) and the increased availability of remote sensing data, DL-based image semantic segmentation has...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 879
SubjectTerms Annotations
Benchmarks
Classification
Confidence
Consistency
consistency regularization
Datasets
Deep learning
hybrid perturbation
Image annotation
Image processing
Image segmentation
Labeling
Labels
Land cover
Methods
Perturbation
Regularization
Remote sensing
remote sensing semantic segmentation
Satellites
Semantic segmentation
Semantics
Semi-supervised learning
Training
transfer learning
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELcGexgv0zaGYHSTpfFqkdhO7PIyjW1dN6kIjSHxFsUXH_ShaWmLRP_73aUuICHtzbEdRbqz7yt3vxPiSDNGlc2i0gCZsn0DKhgdFESar9GXFrneeXRWDi_t76viKgXcFimtciMTO0HdTIFj5Me6NIZbdVv7ZXaruGsU_11NLTS2xMtcO8fOlx_8fIixZPRKP7NrVFJD3v3xfMFwMpnnzK0neqiD638mjTsVM3gjXifbUH5dM_OteBHbd-JValN-s9oV910Ly-HqPM5PZDceje_VKSmiRg5XXHslaYmUSFjH4SRZpPJ7jDN5ESdjdXE3Y8nAu-mZSDoGGlxPUvlRK6co_0TiXaTploMI8teEMS5W78Xl4Mffb0OVWicoMGW-VOCMhTqUAL70WQyk5_tex1w3iCZHQEeWDJly4HRWkpoOrqjZVqwLC143mdkT2-20jftCWrTRgUXytBobNPYLBMACY2jqHKw9EJ83hKxma4SMijwLJnf1SO4Dcco0ftjBqNbdxHR-XaVLUpFxBujJIQrEatRYm7x2JXrymNHFgj7V23CoSldtUT0ejA__Xz4UO5prF7qU657YXs7v4keyKJbhU3ds_gE-bcxs
  priority: 102
  providerName: ProQuest
Title ClassHyPer: ClassMix-Based Hybrid Perturbations for Deep Semi-Supervised Semantic Segmentation of Remote Sensing Imagery
URI https://www.proquest.com/docview/2633143844
https://doaj.org/article/264cf8428b314f2fa31a76f8132f7e54
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYYHLYLGrBpHayyBFerif2SuNzWjVKQQAhWiVsUv_htPTRUpZXaf89zElglDly4OY6jRO85_r5n-X1PiBMdNKog8kojRgr6BpUz2in03F-QTYFCvvPVdToaw-V9cr9R6iucCWvkgRvD9RiwkSyTZGdiIE2FiYssJctRFGU-aZRAo_5GMFWvwYanVgSNHqnhuL43fwxCMpENZ7Y2EKgW6n-1DtfgMvwsdltWKH82X7Mntny1Lz62Bcr_rQ_Eqi5eOVrf-PmprNtXk5UaMASVcrQOWVeSbzF8uGYHTjIXlb-9n8k7P52ou-UsrAlhNF-zMSfIjb_TNvGokg8kbz17zXN3FbYP5MU0qFusv4jx8OzPr5FqiyYoNGm8UJgZwMKliDa1kXeM8H2rfaxLIhMTUsYchkkcZjpKGaBdlhSBJRYJoNVlZL6K7eqh8t-EBAKfIRDHWCU4Tf2EECkh78oiRoCOOH42ZD5rtDFyjimCufP_5u6IQbDxy4igZ113sJfz1sv5W17uiKNnD-XtT_bID7GXwViA7-_xjkPxSYfchvpI9pHYXsyX_gczjoXrig92eN4VO4Oz65vbbj3VngBgTdbR
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYoHOgFAS2CklJL9Gqxsb2PcEFQSJdHUFVA4rZaz3poDtmEJEjJv2dm40ClSr15ba9WmrFnvpmdhxDfNdeospFXGiBStmNAOaOdAk_zJWaJRc537t0m-YO9eowfg8NtEsIqlzKxEdTVENhHfqQTY7hVt7Uno2fFXaP472poofFBrFlDupozxbs_33wsEb3SieyiKqkh6_5oPOFyMlHGkVt_6aGmXP8_0rhRMd1NsRGwoTxdMHNLrPh6W6yHNuV_5p_ErGlhmc9_-fGxbMa9_kydkSKqZD7n3CtJS6RE3MIPJwmRynPvR_LOD_rq7mXEkoF30zORtA80eBqE9KNaDlH-9sQ7T9M1OxHk5YBrXMw_i4fuxf2PXIXWCQqIDlMFqbFQugQgS7LIO9LznUz7tq4QTRsBU0IyBOUg1VFCatqlcclYsYwtZLqKzI5YrYe13xXSovUpWCRLq7JOYydGAIzRu6psg7V74nBJyGK0qJBRkGXB5C7eyb0nzpjGbzu4qnUzMRw_FeGSFATOADMyiByxGjWWpl2mCWZkMWPqY_pUa8mhIly1SfF-ML78f_mbWM_vezfFzeXt9b74qDmPoQm_bonV6fjFfyV0MXUHzRF6BeP1z04
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw0BqbBLyg8SUG27AEr1YT23FcXhBjK93GpokxaW9RfPGNPjQtbSet_5671N2QkHhzzo4i3Z3vK_chxEfNPapsFpUGyJTtG1DB6KAgErxG7yxyvfPZuRte2ZPr4jrlP81TWuVaJnaCupkAx8h72hnDo7qt7WFKi7g4HHye_lY8QYr_tKZxGo_EFmlFxxzuB9_u4y0Zvd7P7KpDqSFPvzebc2uZzHMW1186qWvd_49k7tTNYFs8S3ai_LIi7HOxEdsX4kkaWf5r-VLcdeMsh8uLOPsku_XZ6E4dkFJq5HDJdViStkihhFVMTpJ1Kg9jnMrLOB6py9spSwk-Tc-E3hHQ4macSpFaOUH5IxIdI4FbDijI4zH3u1i-EleDo59fhyqNUVBgXL5QUBoLdXAA3vksBtL5fa9jrhtEkyNgSVYNmXVQ6syRyg5lUbPdWBcWvG4y81pstpM2vhHSoo0lWCSvq7FBY79AACwwhqbOwdod8WGNyGq66pZRkZfB6K4e0L0jDhjH9ye4w3UHmMxuqnRhKjLUAD05R4HIjhprk9elQ0_eM5axoE_trilUpWs3rx6Y5O3_t9-Lx8Q91ffj89N34qnmkoYuE3tXbC5mt3GPDI1F2O846A9ybNOM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ClassHyPer%3A+ClassMix-Based+Hybrid+Perturbations+for+Deep+Semi-Supervised+Semantic+Segmentation+of+Remote+Sensing+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=He%2C+Yongjun&rft.au=Wang%2C+Jinfei&rft.au=Liao%2C+Chunhua&rft.au=Shan%2C+Bo&rft.date=2022-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=4&rft.spage=879&rft_id=info:doi/10.3390%2Frs14040879&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14040879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon