ClassHyPer: ClassMix-Based Hybrid Perturbations for Deep Semi-Supervised Semantic Segmentation of Remote Sensing Imagery
Inspired by the tremendous success of deep learning (DL) and the increased availability of remote sensing data, DL-based image semantic segmentation has attracted growing interest in the remote sensing community. The ideal scenario of DL application requires a vast number of annotation data with the...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 4; p. 879 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inspired by the tremendous success of deep learning (DL) and the increased availability of remote sensing data, DL-based image semantic segmentation has attracted growing interest in the remote sensing community. The ideal scenario of DL application requires a vast number of annotation data with the same feature distribution as the area of interest. However, obtaining such enormous training sets that suit the data distribution of the target area is highly time-consuming and costly. Consistency-regularization-based semi-supervised learning (SSL) methods have gained growing popularity thanks to their ease of implementation and remarkable performance. However, there have been limited applications of SSL in remote sensing. This study comprehensively analyzed several advanced SSL methods based on consistency regularization from the perspective of data- and model-level perturbation. Then, an end-to-end SSL approach based on a hybrid perturbation paradigm was introduced to improve the DL model’s performance with a limited number of labels. The proposed method integrates the semantic boundary information to generate more meaningful mixing images when performing data-level perturbation. Additionally, by using implicit pseudo-supervision based on model-level perturbation, it eliminates the need to set extra threshold parameters in training. Furthermore, it can be flexibly paired with the DL model in an end-to-end manner, as opposed to the separated training stages used in the traditional pseudo-labeling. Experimental results for five remote sensing benchmark datasets in the application of segmentation of roads, buildings, and land cover demonstrated the effectiveness and robustness of the proposed approach. It is particularly encouraging that the ratio of accuracy obtained using the proposed method with 5% labels to that using the purely supervised method with 100% labels was more than 89% on all benchmark datasets. |
---|---|
AbstractList | Inspired by the tremendous success of deep learning (DL) and the increased availability of remote sensing data, DL-based image semantic segmentation has attracted growing interest in the remote sensing community. The ideal scenario of DL application requires a vast number of annotation data with the same feature distribution as the area of interest. However, obtaining such enormous training sets that suit the data distribution of the target area is highly time-consuming and costly. Consistency-regularization-based semi-supervised learning (SSL) methods have gained growing popularity thanks to their ease of implementation and remarkable performance. However, there have been limited applications of SSL in remote sensing. This study comprehensively analyzed several advanced SSL methods based on consistency regularization from the perspective of data- and model-level perturbation. Then, an end-to-end SSL approach based on a hybrid perturbation paradigm was introduced to improve the DL model’s performance with a limited number of labels. The proposed method integrates the semantic boundary information to generate more meaningful mixing images when performing data-level perturbation. Additionally, by using implicit pseudo-supervision based on model-level perturbation, it eliminates the need to set extra threshold parameters in training. Furthermore, it can be flexibly paired with the DL model in an end-to-end manner, as opposed to the separated training stages used in the traditional pseudo-labeling. Experimental results for five remote sensing benchmark datasets in the application of segmentation of roads, buildings, and land cover demonstrated the effectiveness and robustness of the proposed approach. It is particularly encouraging that the ratio of accuracy obtained using the proposed method with 5% labels to that using the purely supervised method with 100% labels was more than 89% on all benchmark datasets. |
Author | Shan, Bo Wang, Jinfei Zhou, Xin He, Yongjun Liao, Chunhua |
Author_xml | – sequence: 1 givenname: Yongjun orcidid: 0000-0002-1656-560X surname: He fullname: He, Yongjun – sequence: 2 givenname: Jinfei orcidid: 0000-0002-8404-0530 surname: Wang fullname: Wang, Jinfei – sequence: 3 givenname: Chunhua surname: Liao fullname: Liao, Chunhua – sequence: 4 givenname: Bo surname: Shan fullname: Shan, Bo – sequence: 5 givenname: Xin orcidid: 0000-0003-1321-510X surname: Zhou fullname: Zhou, Xin |
BookMark | eNpNUdtOwzAMjRBIDNgLXxCJN6RCbk1T3mBcNgkE4vJcpakzZVqbkXRo-3uyDQF-8bF9fGzZR2i_8x0gdErJBecluQyRCiKIKso9NGCkYJlgJdv_hw_RMMYZScY5LYkYoNVormMcr18gXOEtfnKr7EZHaPB4XQfX4FTql6HWvfNdxNYHfAuwwG_QuuxtuYDw5TbsFOuudyaBaQtdv-Vjb_ErtL6HlO6i66Z40uophPUJOrB6HmH444_Rx_3d-2icPT4_TEbXj5nhkvaZKbgwupbGKKkI1IqRUjGgrLGWU2tsIWkuc2kKRiRhoi5yTcqy1LkwijWEH6PJTrfxelYtgmt1WFdeu2qb8GFa6ZDWnkPFpDBWCaZqToVlVnOqC2kV5cwWkIukdbbTWgT_uYTYVzO_DF1aP_WmiwquxIZ1vmOZ4GMMYH-nUlJtHlX9PYp_Az5hhoM |
CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2024_04_010 crossref_primary_10_1109_TGRS_2023_3321041 crossref_primary_10_1139_geomat_2021_0013 crossref_primary_10_3390_rs15020478 crossref_primary_10_1007_s12524_023_01667_3 crossref_primary_10_1109_JSTARS_2023_3298994 crossref_primary_10_1007_s12524_022_01604_w crossref_primary_10_3390_s24051708 crossref_primary_10_1109_TGRS_2024_3388199 crossref_primary_10_3390_rs14081786 crossref_primary_10_3390_rs16122056 crossref_primary_10_1109_TIP_2022_3222904 crossref_primary_10_1016_j_isprsjprs_2023_12_009 crossref_primary_10_1109_JSTARS_2024_3378348 crossref_primary_10_1016_j_isprsjprs_2023_03_012 crossref_primary_10_1016_j_isprsjprs_2024_03_012 crossref_primary_10_3390_rs15040986 crossref_primary_10_1109_JSTARS_2022_3215730 crossref_primary_10_1109_TGRS_2023_3264232 crossref_primary_10_1109_TGRS_2023_3285752 crossref_primary_10_1109_TGRS_2022_3224477 |
Cites_doi | 10.1109/TGRS.2021.3068532 10.1109/TGRS.2018.2858817 10.1016/j.rse.2019.04.032 10.1109/CVPR46437.2021.00264 10.1109/ICCV.2019.00612 10.3390/rs12213603 10.1109/JSTARS.2019.2924582 10.1109/IGARSS.2019.8898071 10.3390/rs13030371 10.1109/WACV48630.2021.00141 10.1007/s11263-014-0733-5 10.1109/MMSP.2018.8547095 10.1109/LGRS.2022.3188257 10.1109/ICIP42928.2021.9506602 10.1016/j.isprsjprs.2017.11.004 10.1007/978-3-030-58601-0_26 10.3390/app11188670 10.1109/CVPR.2016.350 10.3390/rs10121970 10.1109/WACV.2017.58 10.5194/isprsannals-I-3-293-2012 10.1109/JSTARS.2021.3119286 10.1016/j.isprsjprs.2020.07.016 10.1007/s10994-019-05855-6 10.1109/CVPR.2015.7298965 10.1109/CVPRW.2018.00034 10.1609/aaai.v30i1.9906 10.1016/j.knosys.2015.01.010 10.3390/rs71114680 10.3390/rs12061049 10.3390/rs12040708 10.1016/j.rse.2019.111322 10.1109/TGRS.2020.2990640 10.1109/CVPRW.2018.00031 10.1016/j.isprsjprs.2021.01.020 10.1016/j.neucom.2018.05.083 10.3390/rs12050832 10.1109/JPROC.2020.3004555 10.1016/j.isprsjprs.2020.09.019 10.1109/TGRS.2017.2713123 10.1109/CVPR.2009.5206848 10.1109/CVPR42600.2020.01269 10.1109/TGRS.2017.2719738 10.1109/MGRS.2017.2762307 10.3390/rs11070830 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs14040879 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_264cf8428b314f2fa31a76f8132f7e54 10_3390_rs14040879 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c361t-c734cab6cc8680eb820982e12dff31fcf7615656c7206024b75a0999a54c82d03 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:10:43 EDT 2024 Sat Nov 09 04:03:34 EST 2024 Thu Sep 26 20:59:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-c734cab6cc8680eb820982e12dff31fcf7615656c7206024b75a0999a54c82d03 |
ORCID | 0000-0002-1656-560X 0000-0003-1321-510X 0000-0002-8404-0530 |
OpenAccessLink | https://doaj.org/article/264cf8428b314f2fa31a76f8132f7e54 |
PQID | 2633143844 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_264cf8428b314f2fa31a76f8132f7e54 proquest_journals_2633143844 crossref_primary_10_3390_rs14040879 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Zhu (ref_4) 2017; 5 ref_14 ref_58 ref_13 ref_57 Hoos (ref_25) 2020; 109 ref_56 ref_55 Li (ref_42) 2018; 56 ref_54 ref_53 ref_51 Hu (ref_20) 2015; 7 ref_59 Kotaridis (ref_3) 2021; 173 Zheng (ref_36) 2020; 170 Zhuang (ref_17) 2021; 109 ref_60 Ji (ref_6) 2019; 57 Anantrasirichai (ref_10) 2019; 230 Hua (ref_30) 2022; 19 ref_24 ref_23 ref_21 ref_28 ref_27 ref_26 Han (ref_29) 2018; 145 Majd (ref_22) 2019; 12 ref_35 ref_34 ref_33 ref_31 Wang (ref_18) 2018; 312 Luo (ref_7) 2020; 167 ref_39 ref_38 ref_37 Saha (ref_9) 2021; 60 Baier (ref_11) 2022; 60 Tong (ref_19) 2020; 237 Everingham (ref_52) 2015; 111 Wang (ref_32) 2021; 60 ref_47 ref_46 ref_45 ref_44 ref_43 Saha (ref_8) 2020; 58 ref_41 ref_40 ref_1 ref_2 Lu (ref_16) 2015; 80 Kang (ref_15) 2021; 14 ref_49 Kaiser (ref_12) 2017; 55 ref_48 ref_5 |
References_xml | – volume: 60 start-page: 1 year: 2022 ident: ref_11 article-title: Synthesizing Optical and SAR Imagery From Land Cover Maps and Auxiliary Raster Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3068532 contributor: fullname: Baier – ident: ref_5 – ident: ref_55 – ident: ref_26 – volume: 57 start-page: 574 year: 2019 ident: ref_6 article-title: Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2858817 contributor: fullname: Ji – volume: 230 start-page: 111179 year: 2019 ident: ref_10 article-title: A Deep Learning Approach to Detecting Volcano Deformation from Satellite Imagery Using Synthetic Datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.04.032 contributor: fullname: Anantrasirichai – ident: ref_51 doi: 10.1109/CVPR46437.2021.00264 – ident: ref_27 doi: 10.1109/ICCV.2019.00612 – ident: ref_58 – ident: ref_31 doi: 10.3390/rs12213603 – volume: 12 start-page: 2627 year: 2019 ident: ref_22 article-title: Transferable Object-Based Framework Based on Deep Convolutional Neural Networks for Building Extraction publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2924582 contributor: fullname: Majd – ident: ref_13 doi: 10.1109/IGARSS.2019.8898071 – ident: ref_56 – ident: ref_40 doi: 10.3390/rs13030371 – ident: ref_47 doi: 10.1109/WACV48630.2021.00141 – volume: 111 start-page: 98 year: 2015 ident: ref_52 article-title: The Pascal Visual Object Classes Challenge: A Retrospective publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 contributor: fullname: Everingham – ident: ref_37 doi: 10.1109/MMSP.2018.8547095 – volume: 19 start-page: 1 year: 2022 ident: ref_30 article-title: Semantic Segmentation of Remote Sensing Images With Sparse Annotations publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3188257 contributor: fullname: Hua – ident: ref_41 – ident: ref_48 doi: 10.1109/ICIP42928.2021.9506602 – volume: 145 start-page: 23 year: 2018 ident: ref_29 article-title: A Semi-Supervised Generative Framework with Deep Learning Features for High-Resolution Remote Sensing Image Scene Classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.004 contributor: fullname: Han – ident: ref_45 – ident: ref_49 doi: 10.1007/978-3-030-58601-0_26 – ident: ref_28 – ident: ref_14 doi: 10.3390/app11188670 – ident: ref_38 doi: 10.1109/CVPR.2016.350 – ident: ref_24 doi: 10.3390/rs10121970 – volume: 60 start-page: 1 year: 2021 ident: ref_32 article-title: RanPaste: Paste Consistency and Pseudo Label for Semisupervised Remote Sensing Image Semantic Segmentation publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Wang – ident: ref_57 doi: 10.1109/WACV.2017.58 – ident: ref_39 doi: 10.5194/isprsannals-I-3-293-2012 – volume: 14 start-page: 10548 year: 2021 ident: ref_15 article-title: PiCoCo: Pixelwise Contrast and Consistency Learning for Semisupervised Building Footprint Segmentation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3119286 contributor: fullname: Kang – volume: 167 start-page: 443 year: 2020 ident: ref_7 article-title: Deeply Supervised Convolutional Neural Network for Shadow Detection Based on a Novel Aerial Shadow Imagery Dataset publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.07.016 contributor: fullname: Luo – volume: 109 start-page: 373 year: 2020 ident: ref_25 article-title: A Survey on Semi-Supervised Learning publication-title: Mach. Learn. doi: 10.1007/s10994-019-05855-6 contributor: fullname: Hoos – ident: ref_44 – ident: ref_34 doi: 10.1109/CVPR.2015.7298965 – ident: ref_35 doi: 10.1109/CVPRW.2018.00034 – ident: ref_21 doi: 10.1609/aaai.v30i1.9906 – volume: 60 start-page: 1 year: 2021 ident: ref_9 article-title: Self-Supervised Multisensor Change Detection publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Saha – volume: 80 start-page: 14 year: 2015 ident: ref_16 article-title: Transfer Learning Using Computational Intelligence: A Survey publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.01.010 contributor: fullname: Lu – volume: 7 start-page: 14680 year: 2015 ident: ref_20 article-title: Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 contributor: fullname: Hu – ident: ref_23 doi: 10.3390/rs12061049 – ident: ref_2 doi: 10.3390/rs12040708 – volume: 237 start-page: 111322 year: 2020 ident: ref_19 article-title: Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111322 contributor: fullname: Tong – volume: 58 start-page: 8780 year: 2020 ident: ref_8 article-title: Unsupervised Deep Joint Segmentation of Multitemporal High-Resolution Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2990640 contributor: fullname: Saha – ident: ref_33 – ident: ref_54 – ident: ref_53 doi: 10.1109/CVPRW.2018.00031 – volume: 173 start-page: 309 year: 2021 ident: ref_3 article-title: Remote Sensing Image Segmentation Advances: A Meta-Analysis publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.01.020 contributor: fullname: Kotaridis – volume: 312 start-page: 135 year: 2018 ident: ref_18 article-title: Deep Visual Domain Adaptation: A Survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 contributor: fullname: Wang – ident: ref_46 – ident: ref_1 doi: 10.3390/rs12050832 – volume: 109 start-page: 43 year: 2021 ident: ref_17 article-title: A Comprehensive Survey on Transfer Learning publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.3004555 contributor: fullname: Zhuang – volume: 170 start-page: 15 year: 2020 ident: ref_36 article-title: Parsing Very High Resolution Urban Scene Images by Learning Deep ConvNets with Edge-Aware Loss publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.09.019 contributor: fullname: Zheng – volume: 56 start-page: 3 year: 2018 ident: ref_42 article-title: ST-IRGS: A Region-Based Self-Training Algorithm Applied to Hyperspectral Image Classification and Segmentation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2713123 contributor: fullname: Li – ident: ref_59 doi: 10.1109/CVPR.2009.5206848 – ident: ref_50 doi: 10.1109/CVPR42600.2020.01269 – volume: 55 start-page: 6054 year: 2017 ident: ref_12 article-title: Learning Aerial Image Segmentation From Online Maps publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2719738 contributor: fullname: Kaiser – volume: 5 start-page: 8 year: 2017 ident: ref_4 article-title: Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 contributor: fullname: Zhu – ident: ref_43 – ident: ref_60 doi: 10.3390/rs11070830 |
SSID | ssj0000331904 |
Score | 2.4653432 |
Snippet | Inspired by the tremendous success of deep learning (DL) and the increased availability of remote sensing data, DL-based image semantic segmentation has... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 879 |
SubjectTerms | Annotations Benchmarks Classification Confidence Consistency consistency regularization Datasets Deep learning hybrid perturbation Image annotation Image processing Image segmentation Labeling Labels Land cover Methods Perturbation Regularization Remote sensing remote sensing semantic segmentation Satellites Semantic segmentation Semantics Semi-supervised learning Training transfer learning |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELcGexgv0zaGYHSTpfFqkdhO7PIyjW1dN6kIjSHxFsUXH_ShaWmLRP_73aUuICHtzbEdRbqz7yt3vxPiSDNGlc2i0gCZsn0DKhgdFESar9GXFrneeXRWDi_t76viKgXcFimtciMTO0HdTIFj5Me6NIZbdVv7ZXaruGsU_11NLTS2xMtcO8fOlx_8fIixZPRKP7NrVFJD3v3xfMFwMpnnzK0neqiD638mjTsVM3gjXifbUH5dM_OteBHbd-JValN-s9oV910Ly-HqPM5PZDceje_VKSmiRg5XXHslaYmUSFjH4SRZpPJ7jDN5ESdjdXE3Y8nAu-mZSDoGGlxPUvlRK6co_0TiXaTploMI8teEMS5W78Xl4Mffb0OVWicoMGW-VOCMhTqUAL70WQyk5_tex1w3iCZHQEeWDJly4HRWkpoOrqjZVqwLC143mdkT2-20jftCWrTRgUXytBobNPYLBMACY2jqHKw9EJ83hKxma4SMijwLJnf1SO4Dcco0ftjBqNbdxHR-XaVLUpFxBujJIQrEatRYm7x2JXrymNHFgj7V23CoSldtUT0ejA__Xz4UO5prF7qU657YXs7v4keyKJbhU3ds_gE-bcxs priority: 102 providerName: ProQuest |
Title | ClassHyPer: ClassMix-Based Hybrid Perturbations for Deep Semi-Supervised Semantic Segmentation of Remote Sensing Imagery |
URI | https://www.proquest.com/docview/2633143844 https://doaj.org/article/264cf8428b314f2fa31a76f8132f7e54 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYYHLYLGrBpHayyBFerif2SuNzWjVKQQAhWiVsUv_htPTRUpZXaf89zElglDly4OY6jRO85_r5n-X1PiBMdNKog8kojRgr6BpUz2in03F-QTYFCvvPVdToaw-V9cr9R6iucCWvkgRvD9RiwkSyTZGdiIE2FiYssJctRFGU-aZRAo_5GMFWvwYanVgSNHqnhuL43fwxCMpENZ7Y2EKgW6n-1DtfgMvwsdltWKH82X7Mntny1Lz62Bcr_rQ_Eqi5eOVrf-PmprNtXk5UaMASVcrQOWVeSbzF8uGYHTjIXlb-9n8k7P52ou-UsrAlhNF-zMSfIjb_TNvGokg8kbz17zXN3FbYP5MU0qFusv4jx8OzPr5FqiyYoNGm8UJgZwMKliDa1kXeM8H2rfaxLIhMTUsYchkkcZjpKGaBdlhSBJRYJoNVlZL6K7eqh8t-EBAKfIRDHWCU4Tf2EECkh78oiRoCOOH42ZD5rtDFyjimCufP_5u6IQbDxy4igZ113sJfz1sv5W17uiKNnD-XtT_bID7GXwViA7-_xjkPxSYfchvpI9pHYXsyX_gczjoXrig92eN4VO4Oz65vbbj3VngBgTdbR |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYoHOgFAS2CklJL9Gqxsb2PcEFQSJdHUFVA4rZaz3poDtmEJEjJv2dm40ClSr15ba9WmrFnvpmdhxDfNdeospFXGiBStmNAOaOdAk_zJWaJRc537t0m-YO9eowfg8NtEsIqlzKxEdTVENhHfqQTY7hVt7Uno2fFXaP472poofFBrFlDupozxbs_33wsEb3SieyiKqkh6_5oPOFyMlHGkVt_6aGmXP8_0rhRMd1NsRGwoTxdMHNLrPh6W6yHNuV_5p_ErGlhmc9_-fGxbMa9_kydkSKqZD7n3CtJS6RE3MIPJwmRynPvR_LOD_rq7mXEkoF30zORtA80eBqE9KNaDlH-9sQ7T9M1OxHk5YBrXMw_i4fuxf2PXIXWCQqIDlMFqbFQugQgS7LIO9LznUz7tq4QTRsBU0IyBOUg1VFCatqlcclYsYwtZLqKzI5YrYe13xXSovUpWCRLq7JOYydGAIzRu6psg7V74nBJyGK0qJBRkGXB5C7eyb0nzpjGbzu4qnUzMRw_FeGSFATOADMyiByxGjWWpl2mCWZkMWPqY_pUa8mhIly1SfF-ML78f_mbWM_vezfFzeXt9b74qDmPoQm_bonV6fjFfyV0MXUHzRF6BeP1z04 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw0BqbBLyg8SUG27AEr1YT23FcXhBjK93GpokxaW9RfPGNPjQtbSet_5671N2QkHhzzo4i3Z3vK_chxEfNPapsFpUGyJTtG1DB6KAgErxG7yxyvfPZuRte2ZPr4jrlP81TWuVaJnaCupkAx8h72hnDo7qt7WFKi7g4HHye_lY8QYr_tKZxGo_EFmlFxxzuB9_u4y0Zvd7P7KpDqSFPvzebc2uZzHMW1186qWvd_49k7tTNYFs8S3ai_LIi7HOxEdsX4kkaWf5r-VLcdeMsh8uLOPsku_XZ6E4dkFJq5HDJdViStkihhFVMTpJ1Kg9jnMrLOB6py9spSwk-Tc-E3hHQ4macSpFaOUH5IxIdI4FbDijI4zH3u1i-EleDo59fhyqNUVBgXL5QUBoLdXAA3vksBtL5fa9jrhtEkyNgSVYNmXVQ6syRyg5lUbPdWBcWvG4y81pstpM2vhHSoo0lWCSvq7FBY79AACwwhqbOwdod8WGNyGq66pZRkZfB6K4e0L0jDhjH9ye4w3UHmMxuqnRhKjLUAD05R4HIjhprk9elQ0_eM5axoE_trilUpWs3rx6Y5O3_t9-Lx8Q91ffj89N34qnmkoYuE3tXbC5mt3GPDI1F2O846A9ybNOM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ClassHyPer%3A+ClassMix-Based+Hybrid+Perturbations+for+Deep+Semi-Supervised+Semantic+Segmentation+of+Remote+Sensing+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=He%2C+Yongjun&rft.au=Wang%2C+Jinfei&rft.au=Liao%2C+Chunhua&rft.au=Shan%2C+Bo&rft.date=2022-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=4&rft.spage=879&rft_id=info:doi/10.3390%2Frs14040879&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14040879 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |