Exploring the Efficacy of Learning Techniques in Model Extraction Attacks on Image Classifiers: A Comparative Study

In the rapidly evolving landscape of cybersecurity, model extraction attacks pose a significant challenge, undermining the integrity of machine learning models by enabling adversaries to replicate proprietary algorithms without direct access. This paper presents a comprehensive study on model extrac...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 9; p. 3785
Main Authors Han, Dong, Babaei, Reza, Zhao, Shangqing, Cheng, Samuel
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the rapidly evolving landscape of cybersecurity, model extraction attacks pose a significant challenge, undermining the integrity of machine learning models by enabling adversaries to replicate proprietary algorithms without direct access. This paper presents a comprehensive study on model extraction attacks towards image classification models, focusing on the efficacy of various Deep Q-network (DQN) extensions for enhancing the performance of surrogate models. The goal is to identify the most efficient approaches for choosing images that optimize adversarial benefits. Additionally, we explore synthetic data generation techniques, including the Jacobian-based method, Linf-projected Gradient Descent (LinfPGD), and Fast Gradient Sign Method (FGSM) aiming to facilitate the training of adversary models with enhanced performance. Our investigation also extends to the realm of data-free model extraction attacks, examining their feasibility and performance under constrained query budgets. Our investigation extends to the comparison of these methods under constrained query budgets, where the Prioritized Experience Replay (PER) technique emerges as the most effective, outperforming other DQN extensions and synthetic data generation methods. Through rigorous experimentation, including multiple trials to ensure statistical significance, this work provides valuable insights into optimizing model extraction attacks.
AbstractList In the rapidly evolving landscape of cybersecurity, model extraction attacks pose a significant challenge, undermining the integrity of machine learning models by enabling adversaries to replicate proprietary algorithms without direct access. This paper presents a comprehensive study on model extraction attacks towards image classification models, focusing on the efficacy of various Deep Q-network (DQN) extensions for enhancing the performance of surrogate models. The goal is to identify the most efficient approaches for choosing images that optimize adversarial benefits. Additionally, we explore synthetic data generation techniques, including the Jacobian-based method, Linf-projected Gradient Descent (LinfPGD), and Fast Gradient Sign Method (FGSM) aiming to facilitate the training of adversary models with enhanced performance. Our investigation also extends to the realm of data-free model extraction attacks, examining their feasibility and performance under constrained query budgets. Our investigation extends to the comparison of these methods under constrained query budgets, where the Prioritized Experience Replay (PER) technique emerges as the most effective, outperforming other DQN extensions and synthetic data generation methods. Through rigorous experimentation, including multiple trials to ensure statistical significance, this work provides valuable insights into optimizing model extraction attacks.
Audience Academic
Author Han, Dong
Babaei, Reza
Zhao, Shangqing
Cheng, Samuel
Author_xml – sequence: 1
  givenname: Dong
  surname: Han
  fullname: Han, Dong
– sequence: 2
  givenname: Reza
  surname: Babaei
  fullname: Babaei, Reza
– sequence: 3
  givenname: Shangqing
  surname: Zhao
  fullname: Zhao, Shangqing
– sequence: 4
  givenname: Samuel
  orcidid: 0000-0002-5439-1137
  surname: Cheng
  fullname: Cheng, Samuel
BookMark eNpNUcFuEzEQtVCRKKUnfsASR5Qy3vGud7lFUaCRgjhQziuvPU4dNuvFdlDz9zgNQvUcPPNm5ulp3lt2NYWJGHsv4A6xg096noWEDlVbv2LXFahmgVKoqxf5G3ab0h7K6wS2Aq5ZWj_NY4h-2vH8SHztnDfanHhwfEs6TufGA5nHyf8-UuJ-4t-CpZGvn3LUJvsw8WXO2vxKvKSbg94RX406Je88xfSZL_kqHGYddfZ_iP_IR3t6x147PSa6_fffsJ9f1g-r-8X2-9fNarldGGxEXpimrlFoQVUz1KICQCcskOmapmBohJPKmhoIB2mJACUCiqFukSqSMOAN21x4bdD7fo7-oOOpD9r3z0CIu17H7M1IPSgkRcaSlVK2FbQgoFRisA46JdrC9eHCNcdwvkTu9-EYpyK_Rygyq0ZBVabuLlM7XUj95ML5SiUsHbwpdjlf8KXqsG6aVtVl4eNlwcSQUiT3X6aA_uxq_8JV_AtKPJUw
Cites_doi 10.1109/ACCESS.2020.3008433
10.1109/TVCG.2023.3255820
10.1145/3512527.3531411
10.3389/fonc.2021.661123
10.1186/s42400-019-0027-x
10.1007/978-981-16-8059-5_20
10.1109/CVPR46437.2021.00474
10.24963/ijcai.2019/649
10.1371/journal.pone.0275971
10.1145/3447548.3467386
10.1007/s11633-019-1211-x
10.1145/3395352.3402619
10.1109/MSP.2012.2211477
10.1007/978-3-030-80387-2_14
10.1109/BIBM55620.2022.9994898
10.1016/j.est.2020.101489
10.1145/3559758
10.1109/CVPR.2018.00957
10.1109/PST55820.2022.9851981
10.1145/3433210.3453090
10.1609/aaai.v30i1.10295
10.1109/TPAMI.2021.3126733
10.3390/s23073762
10.21437/Interspeech.2020-1869
10.30564/jeis.v5i2.6063
10.1016/j.cosrev.2019.100199
10.1371/journal.pone.0231626
10.1007/978-3-030-58595-2_7
10.1145/3052973.3053009
10.1109/TPAMI.2022.3194988
10.1109/EuroSPW.2019.00032
10.1145/2666652.2666656
10.3390/app14051706
10.1109/CNS56114.2022.9947234
10.3389/fpubh.2022.879639
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app14093785
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_073e7ecded4448208010cde1bdf09718
A793566875
10_3390_app14093785
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-c65531a1e26b512003f1d0ec9661e23c1f47dc50e3b4dee0343031b583e2e40b3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:20:48 EDT 2025
Mon Jun 30 14:36:48 EDT 2025
Tue Jun 10 21:07:32 EDT 2025
Tue Jul 01 04:34:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c65531a1e26b512003f1d0ec9661e23c1f47dc50e3b4dee0343031b583e2e40b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5439-1137
OpenAccessLink https://doaj.org/article/073e7ecded4448208010cde1bdf09718
PQID 3053126702
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_073e7ecded4448208010cde1bdf09718
proquest_journals_3053126702
gale_infotracacademiconefile_A793566875
crossref_primary_10_3390_app14093785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Chen (ref_34) 2019; 2
Oikarinen (ref_35) 2021; 34
ref_14
ref_58
ref_13
ref_57
ref_12
ref_11
ref_55
ref_10
ref_54
Pitropakis (ref_27) 2019; 34
ref_53
ref_52
Zhang (ref_4) 2020; 31
ref_19
Han (ref_16) 2023; 5
ref_18
ref_17
ref_61
ref_60
Zhang (ref_41) 2022; 35
ref_25
ref_24
ref_23
ref_22
Zhu (ref_15) 2023; 41
ref_21
ref_20
ref_62
ref_29
ref_28
Soltani (ref_5) 2021; 11
ref_36
ref_33
ref_32
ref_31
ref_30
Xu (ref_26) 2020; 17
Gao (ref_56) 2022; 10
ref_39
ref_38
ref_37
Deng (ref_59) 2012; 29
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
Yang (ref_8) 2020; 33
ref_40
ref_1
ref_3
ref_2
ref_49
ref_48
ref_9
Zhang (ref_51) 2020; 8
ref_7
ref_6
References_xml – ident: ref_9
– volume: 8
  start-page: 128250
  year: 2020
  ident: ref_51
  article-title: A brute-force black-box method to attack machine learning-based systems in cybersecurity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008433
– ident: ref_3
  doi: 10.1109/TVCG.2023.3255820
– ident: ref_7
  doi: 10.1145/3512527.3531411
– ident: ref_32
– ident: ref_55
– volume: 11
  start-page: 661123
  year: 2021
  ident: ref_5
  article-title: Efficacy of location-based features for survival prediction of patients with glioblastoma depending on resection status
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.661123
– volume: 2
  start-page: 1
  year: 2019
  ident: ref_34
  article-title: Adversarial attack and defense in reinforcement learning-from AI security view
  publication-title: Cybersecurity
  doi: 10.1186/s42400-019-0027-x
– ident: ref_44
  doi: 10.1007/978-981-16-8059-5_20
– volume: 34
  start-page: 26156
  year: 2021
  ident: ref_35
  article-title: Robust deep reinforcement learning through adversarial loss
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_25
  doi: 10.1109/CVPR46437.2021.00474
– ident: ref_61
– ident: ref_23
– ident: ref_28
  doi: 10.24963/ijcai.2019/649
– ident: ref_30
  doi: 10.1371/journal.pone.0275971
– ident: ref_52
  doi: 10.1145/3447548.3467386
– ident: ref_31
– volume: 17
  start-page: 151
  year: 2020
  ident: ref_26
  article-title: Adversarial attacks and defenses in images, graphs and text: A review
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-019-1211-x
– ident: ref_10
– ident: ref_33
  doi: 10.1145/3395352.3402619
– volume: 29
  start-page: 141
  year: 2012
  ident: ref_59
  article-title: The mnist database of handwritten digit images for machine learning research
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2211477
– ident: ref_43
  doi: 10.1007/978-3-030-80387-2_14
– volume: 35
  start-page: 8402
  year: 2022
  ident: ref_41
  article-title: Projective ranking-based gnn evasion attacks
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: ref_62
– ident: ref_39
  doi: 10.1109/BIBM55620.2022.9994898
– ident: ref_17
– ident: ref_45
– volume: 31
  start-page: 101489
  year: 2020
  ident: ref_4
  article-title: Implementation of generative adversarial network-CLS combined with bidirectional long short-term memory for lithium-ion battery state prediction
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101489
– volume: 41
  start-page: 1
  year: 2023
  ident: ref_15
  article-title: Efficient query-based black-box attack against cross-modal hashing retrieval
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/3559758
– ident: ref_20
– ident: ref_53
– ident: ref_1
  doi: 10.1109/CVPR.2018.00957
– volume: 33
  start-page: 12288
  year: 2020
  ident: ref_8
  article-title: Learning black-box attackers with transferable priors and query feedback
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_24
– ident: ref_12
  doi: 10.1109/PST55820.2022.9851981
– ident: ref_11
– ident: ref_48
  doi: 10.1145/3433210.3453090
– ident: ref_40
– ident: ref_37
– ident: ref_18
– ident: ref_58
  doi: 10.1609/aaai.v30i1.10295
– ident: ref_21
– ident: ref_6
  doi: 10.1109/TPAMI.2021.3126733
– ident: ref_14
  doi: 10.3390/s23073762
– ident: ref_50
  doi: 10.21437/Interspeech.2020-1869
– volume: 5
  start-page: 45
  year: 2023
  ident: ref_16
  article-title: Enhancing Semantic Segmentation through Reinforced Active Learning: Combating Dataset Imbalances and Bolstering Annotation Efficiency
  publication-title: J. Electron. Inf. Syst.
  doi: 10.30564/jeis.v5i2.6063
– volume: 34
  start-page: 100199
  year: 2019
  ident: ref_27
  article-title: A taxonomy and survey of attacks against machine learning
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2019.100199
– ident: ref_47
  doi: 10.1371/journal.pone.0231626
– ident: ref_29
– ident: ref_54
– ident: ref_13
  doi: 10.1007/978-3-030-58595-2_7
– ident: ref_22
  doi: 10.1145/3052973.3053009
– ident: ref_46
  doi: 10.1109/TPAMI.2022.3194988
– ident: ref_49
  doi: 10.1109/EuroSPW.2019.00032
– ident: ref_42
  doi: 10.1145/2666652.2666656
– ident: ref_36
– ident: ref_19
– ident: ref_60
– ident: ref_2
  doi: 10.3390/app14051706
– ident: ref_38
  doi: 10.1109/CNS56114.2022.9947234
– volume: 10
  start-page: 879639
  year: 2022
  ident: ref_56
  article-title: Medical image segmentation algorithm for three-dimensional multimodal using deep reinforcement learning and big data analytics
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2022.879639
– ident: ref_57
SSID ssj0000913810
Score 2.2830029
Snippet In the rapidly evolving landscape of cybersecurity, model extraction attacks pose a significant challenge, undermining the integrity of machine learning models...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3785
SubjectTerms active learning
Algorithms
Classification
Comparative analysis
image classification
Intellectual property
Internet
Investigations
Learning strategies
Machine learning
Methods
model extraction attack
Neural networks
Performance evaluation
Privacy
Queries
reinforcement learning
Safety and security measures
security
synthetic data
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB4VcoFD1VAQKbSaAxJwsNj1rh_ppQooUVoJhCqQuK3s3TVCogmNjQT_nhl7E3Jpb34drHnP7Mw3AEfeumFOriDKlLeRlkURFa7wkYsZ71sLG7elgcurdHqrf90ld6HgVoe2yqVNbA21m1uukZ8plpY4zUT84-lvxFuj-HQ1rNDYgB6Z4JySr975-Or696rKwqiXuRTdYJ6i_J7PhRnjSWW8PXnNFbWI_f-yy62zmXyCjyFKxFHH1j588LMd2F7DDtyBftDKGk8CdPTpZ6hXLXVIgR2OGR-isK84rzAAqd7jzRK1tcaHGfIutEccvzSLbsIBR03DY_dIlz__kLHBdm3mQ8Urs7_jCC_e4cKRmxBfd-F2Mr65mEZhrUJkVSqbyKYJkbKQPk5Lcvek1pV0wltKfOiZsrLSmbOJ8KrUznuhNLk5WSa58rHXolR7sDmbz_w-IMVCjqehXExqrZNsmAtrbVkNtU0ykdoBHC0pbJ469AxDWQczwqwxYgDnTP3VJwx53T6YL-5N0CBDtshnJFreaUopY4p0paA7WbqKcbDyARwz7wwrJtOsCPMF9KcMcWVGZIkodqX8bACHS_aaoLG1eZevL_9_fQBbJMe6a3o8hM1m8ey_UmDSlN-C9L0BcPniTA
  priority: 102
  providerName: ProQuest
Title Exploring the Efficacy of Learning Techniques in Model Extraction Attacks on Image Classifiers: A Comparative Study
URI https://www.proquest.com/docview/3053126702
https://doaj.org/article/073e7ecded4448208010cde1bdf09718
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60XvQgPrE-yhwE9RDczW6S1luV1gcoIgrelmR3IwWtYiPYf-9Mkmou4sVbsoQwzHuSmW8A9r11vS6FgiBR3gZapmmQutQHLmS8by1sWH4auL6JLx701WP02Fj1xT1hFTxwxbhjUkGf0Bu901RJhJTgSEF3MnM5wx-VY74U8xrFVOmDe5Khq6qBPEV1Pf8PZmwnlfDW5EYIKpH6f_PHZZAZrsBynR1iv6JqFeb8eA2WGpiBa7BaW-MED2vI6KN1mHy30iEldDhgXIjUTvE1xxpA9QnvZ2itExyNkXegPePgs3ivJhuwXxQ8bo90eflCTgbLdZmjnFdln2Afz35gwpGbD6cb8DAc3J9dBPU6hcCqWBaBjSMyuFT6MM4ozJM559IJb6ngoTNlZa4TZyPhVaad90JpCm8yi7rKh16LTG1Ca_w69luAlAM5noJyIZmzjpJeV1hrs7ynbZSI2LZhf8Zh81ahZhiqNlgQpiGINpwy978fYajr8oAUwNQKYP5SgDYcsOwMGyTzLK3nCohShrYyffJAlLNSXdaG3Zl4TW2pE6PYC4VxIsLt_6BmBxZJy3XVErkLreL9w-9R2lJkHZjvDs87sHA6uLm965T6-gXQUewN
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiBZQQwvMoQg4WKx3148gIRRKQkIfp1TqbbF311UlSNrYqM2f4jcy40eaC9x6s3etlTUz-83sY74B2PfW9VNyBUGivA10mGVB5jIfOMl831pYWW8NHJ_E41P9_Sw624A_XS4MX6vsMLEGaje3vEf-QbG1yDgR8vPlVcBVo_h0tSuh0ZjFoV9e05Kt_DT5Svp9I-VoOD0YB21VgcCqOKwCG0c0UhZ6Gefk7ciqi9AJbynupzZlw0InzkbCq1w774XShPJhHqXKS69Frmjce3BfK9XnGZWOvq32dJhjMw1FkwZI_YJPoZlRSiVcq3nN8dX1Af7lBWrXNnoCj9uYFAeNEW3Bhp9tw6M1psJt2GoxoMR3LVH1-6dQri7wIYWROGQ2iswucV5gS9t6jtOOI7bEixly5bWfOLypFk0-BQ6qipP8kR4nvwjasC7SeVFwge6POMCDW3Jy5CuPy2dweififg6bs_nM7wBS5OU498pJAhEdJf1UWGvzoq9tlIjY9mC_k7C5bLg6DK1xWBFmTRE9-MLSX33CBNt1w3xxbtr5agj5fEKG7J2mBaykuDoU9BbmrmDWrbQHb1l3hmGAZZa12Qz0p0yoZQaEexQp02qwB3udek2LD6W5teYX_-9-DQ_G0-MjczQ5OdyFhzSDdHPdcg82q8Vv_5JCoip_Vdshwo-7Nvy_ZnMcfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVEJwQLSACBTYQxFwsLpf_ggSQmmbqKEQVaiVetvau-uqEiQlNoL8NX4dM_Y6zQVuvTl2ZFk7z29m1jNvAHa9dYMMXUGUKm8jLfI8yl3uIydJ71tzK5utgS_T5OhMfzqPzzfgT9cLQ2WVHSc2RO3mlvbI9xShRSYpl3tlKIs4ORx_vP4R0QQp-tLajdNoIXLsl78wfas-TA7R1q-lHI9OD46iMGEgsioRdWSTGO-aCy-TAj0fIrwUjnuLOQCeU1aUOnU25l4V2nnPlUbGF0WcKS-95oXC-96BzRSzIt6Dzf3R9OTraoeHFDczwdumQKUGnL5Jk76USmly85obbKYF_MsnNI5u_BAehAiVDVtIbcGGn23D_TXdwm3YCoxQsbdBtvrdI6hW5XwMg0o2Im2K3C7ZvGRBxPWSnXaKsRW7mjGaw_aNjX7Xi7a7gg3rmlr-GR5OviPRsWZk51VJ47rfsyE7uJEqZ1QAuXwMZ7ey4E-gN5vP_FNgGIc56sRyEilFx-kg49baohxoG6c8sX3Y7VbYXLfKHQYzHjKEWTNEH_Zp9Vd_Ibnt5sR8cWnC22uQB32KsPZOYzorMcoWHH-JwpWkwZX14Q3ZzhAp0JrlobcBn5TktcwQWRDjZswN-7DTmdcEtqjMDbaf_f_yK7iLoDefJ9Pj53APXyfd1l7uQK9e_PQvMD6qi5cBiAwubhv7fwFiyCIP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Efficacy+of+Learning+Techniques+in+Model+Extraction+Attacks+on+Image+Classifiers%3A+A+Comparative+Study&rft.jtitle=Applied+sciences&rft.au=Han%2C+Dong&rft.au=Babaei%2C+Reza&rft.au=Zhao%2C+Shangqing&rft.au=Cheng%2C+Samuel&rft.date=2024-05-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=9&rft.spage=3785&rft_id=info:doi/10.3390%2Fapp14093785&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app14093785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon