Exploring the Efficacy of Learning Techniques in Model Extraction Attacks on Image Classifiers: A Comparative Study
In the rapidly evolving landscape of cybersecurity, model extraction attacks pose a significant challenge, undermining the integrity of machine learning models by enabling adversaries to replicate proprietary algorithms without direct access. This paper presents a comprehensive study on model extrac...
Saved in:
Published in | Applied sciences Vol. 14; no. 9; p. 3785 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the rapidly evolving landscape of cybersecurity, model extraction attacks pose a significant challenge, undermining the integrity of machine learning models by enabling adversaries to replicate proprietary algorithms without direct access. This paper presents a comprehensive study on model extraction attacks towards image classification models, focusing on the efficacy of various Deep Q-network (DQN) extensions for enhancing the performance of surrogate models. The goal is to identify the most efficient approaches for choosing images that optimize adversarial benefits. Additionally, we explore synthetic data generation techniques, including the Jacobian-based method, Linf-projected Gradient Descent (LinfPGD), and Fast Gradient Sign Method (FGSM) aiming to facilitate the training of adversary models with enhanced performance. Our investigation also extends to the realm of data-free model extraction attacks, examining their feasibility and performance under constrained query budgets. Our investigation extends to the comparison of these methods under constrained query budgets, where the Prioritized Experience Replay (PER) technique emerges as the most effective, outperforming other DQN extensions and synthetic data generation methods. Through rigorous experimentation, including multiple trials to ensure statistical significance, this work provides valuable insights into optimizing model extraction attacks. |
---|---|
AbstractList | In the rapidly evolving landscape of cybersecurity, model extraction attacks pose a significant challenge, undermining the integrity of machine learning models by enabling adversaries to replicate proprietary algorithms without direct access. This paper presents a comprehensive study on model extraction attacks towards image classification models, focusing on the efficacy of various Deep Q-network (DQN) extensions for enhancing the performance of surrogate models. The goal is to identify the most efficient approaches for choosing images that optimize adversarial benefits. Additionally, we explore synthetic data generation techniques, including the Jacobian-based method, Linf-projected Gradient Descent (LinfPGD), and Fast Gradient Sign Method (FGSM) aiming to facilitate the training of adversary models with enhanced performance. Our investigation also extends to the realm of data-free model extraction attacks, examining their feasibility and performance under constrained query budgets. Our investigation extends to the comparison of these methods under constrained query budgets, where the Prioritized Experience Replay (PER) technique emerges as the most effective, outperforming other DQN extensions and synthetic data generation methods. Through rigorous experimentation, including multiple trials to ensure statistical significance, this work provides valuable insights into optimizing model extraction attacks. |
Audience | Academic |
Author | Han, Dong Babaei, Reza Zhao, Shangqing Cheng, Samuel |
Author_xml | – sequence: 1 givenname: Dong surname: Han fullname: Han, Dong – sequence: 2 givenname: Reza surname: Babaei fullname: Babaei, Reza – sequence: 3 givenname: Shangqing surname: Zhao fullname: Zhao, Shangqing – sequence: 4 givenname: Samuel orcidid: 0000-0002-5439-1137 surname: Cheng fullname: Cheng, Samuel |
BookMark | eNpNUcFuEzEQtVCRKKUnfsASR5Qy3vGud7lFUaCRgjhQziuvPU4dNuvFdlDz9zgNQvUcPPNm5ulp3lt2NYWJGHsv4A6xg096noWEDlVbv2LXFahmgVKoqxf5G3ab0h7K6wS2Aq5ZWj_NY4h-2vH8SHztnDfanHhwfEs6TufGA5nHyf8-UuJ-4t-CpZGvn3LUJvsw8WXO2vxKvKSbg94RX406Je88xfSZL_kqHGYddfZ_iP_IR3t6x147PSa6_fffsJ9f1g-r-8X2-9fNarldGGxEXpimrlFoQVUz1KICQCcskOmapmBohJPKmhoIB2mJACUCiqFukSqSMOAN21x4bdD7fo7-oOOpD9r3z0CIu17H7M1IPSgkRcaSlVK2FbQgoFRisA46JdrC9eHCNcdwvkTu9-EYpyK_Rygyq0ZBVabuLlM7XUj95ML5SiUsHbwpdjlf8KXqsG6aVtVl4eNlwcSQUiT3X6aA_uxq_8JV_AtKPJUw |
Cites_doi | 10.1109/ACCESS.2020.3008433 10.1109/TVCG.2023.3255820 10.1145/3512527.3531411 10.3389/fonc.2021.661123 10.1186/s42400-019-0027-x 10.1007/978-981-16-8059-5_20 10.1109/CVPR46437.2021.00474 10.24963/ijcai.2019/649 10.1371/journal.pone.0275971 10.1145/3447548.3467386 10.1007/s11633-019-1211-x 10.1145/3395352.3402619 10.1109/MSP.2012.2211477 10.1007/978-3-030-80387-2_14 10.1109/BIBM55620.2022.9994898 10.1016/j.est.2020.101489 10.1145/3559758 10.1109/CVPR.2018.00957 10.1109/PST55820.2022.9851981 10.1145/3433210.3453090 10.1609/aaai.v30i1.10295 10.1109/TPAMI.2021.3126733 10.3390/s23073762 10.21437/Interspeech.2020-1869 10.30564/jeis.v5i2.6063 10.1016/j.cosrev.2019.100199 10.1371/journal.pone.0231626 10.1007/978-3-030-58595-2_7 10.1145/3052973.3053009 10.1109/TPAMI.2022.3194988 10.1109/EuroSPW.2019.00032 10.1145/2666652.2666656 10.3390/app14051706 10.1109/CNS56114.2022.9947234 10.3389/fpubh.2022.879639 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app14093785 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_073e7ecded4448208010cde1bdf09718 A793566875 10_3390_app14093785 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-c65531a1e26b512003f1d0ec9661e23c1f47dc50e3b4dee0343031b583e2e40b3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:20:48 EDT 2025 Mon Jun 30 14:36:48 EDT 2025 Tue Jun 10 21:07:32 EDT 2025 Tue Jul 01 04:34:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-c65531a1e26b512003f1d0ec9661e23c1f47dc50e3b4dee0343031b583e2e40b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5439-1137 |
OpenAccessLink | https://doaj.org/article/073e7ecded4448208010cde1bdf09718 |
PQID | 3053126702 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_073e7ecded4448208010cde1bdf09718 proquest_journals_3053126702 gale_infotracacademiconefile_A793566875 crossref_primary_10_3390_app14093785 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Chen (ref_34) 2019; 2 Oikarinen (ref_35) 2021; 34 ref_14 ref_58 ref_13 ref_57 ref_12 ref_11 ref_55 ref_10 ref_54 Pitropakis (ref_27) 2019; 34 ref_53 ref_52 Zhang (ref_4) 2020; 31 ref_19 Han (ref_16) 2023; 5 ref_18 ref_17 ref_61 ref_60 Zhang (ref_41) 2022; 35 ref_25 ref_24 ref_23 ref_22 Zhu (ref_15) 2023; 41 ref_21 ref_20 ref_62 ref_29 ref_28 Soltani (ref_5) 2021; 11 ref_36 ref_33 ref_32 ref_31 ref_30 Xu (ref_26) 2020; 17 Gao (ref_56) 2022; 10 ref_39 ref_38 ref_37 Deng (ref_59) 2012; 29 ref_47 ref_46 ref_45 ref_44 ref_43 ref_42 Yang (ref_8) 2020; 33 ref_40 ref_1 ref_3 ref_2 ref_49 ref_48 ref_9 Zhang (ref_51) 2020; 8 ref_7 ref_6 |
References_xml | – ident: ref_9 – volume: 8 start-page: 128250 year: 2020 ident: ref_51 article-title: A brute-force black-box method to attack machine learning-based systems in cybersecurity publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008433 – ident: ref_3 doi: 10.1109/TVCG.2023.3255820 – ident: ref_7 doi: 10.1145/3512527.3531411 – ident: ref_32 – ident: ref_55 – volume: 11 start-page: 661123 year: 2021 ident: ref_5 article-title: Efficacy of location-based features for survival prediction of patients with glioblastoma depending on resection status publication-title: Front. Oncol. doi: 10.3389/fonc.2021.661123 – volume: 2 start-page: 1 year: 2019 ident: ref_34 article-title: Adversarial attack and defense in reinforcement learning-from AI security view publication-title: Cybersecurity doi: 10.1186/s42400-019-0027-x – ident: ref_44 doi: 10.1007/978-981-16-8059-5_20 – volume: 34 start-page: 26156 year: 2021 ident: ref_35 article-title: Robust deep reinforcement learning through adversarial loss publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_25 doi: 10.1109/CVPR46437.2021.00474 – ident: ref_61 – ident: ref_23 – ident: ref_28 doi: 10.24963/ijcai.2019/649 – ident: ref_30 doi: 10.1371/journal.pone.0275971 – ident: ref_52 doi: 10.1145/3447548.3467386 – ident: ref_31 – volume: 17 start-page: 151 year: 2020 ident: ref_26 article-title: Adversarial attacks and defenses in images, graphs and text: A review publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-019-1211-x – ident: ref_10 – ident: ref_33 doi: 10.1145/3395352.3402619 – volume: 29 start-page: 141 year: 2012 ident: ref_59 article-title: The mnist database of handwritten digit images for machine learning research publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2211477 – ident: ref_43 doi: 10.1007/978-3-030-80387-2_14 – volume: 35 start-page: 8402 year: 2022 ident: ref_41 article-title: Projective ranking-based gnn evasion attacks publication-title: IEEE Trans. Knowl. Data Eng. – ident: ref_62 – ident: ref_39 doi: 10.1109/BIBM55620.2022.9994898 – ident: ref_17 – ident: ref_45 – volume: 31 start-page: 101489 year: 2020 ident: ref_4 article-title: Implementation of generative adversarial network-CLS combined with bidirectional long short-term memory for lithium-ion battery state prediction publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101489 – volume: 41 start-page: 1 year: 2023 ident: ref_15 article-title: Efficient query-based black-box attack against cross-modal hashing retrieval publication-title: ACM Trans. Inf. Syst. doi: 10.1145/3559758 – ident: ref_20 – ident: ref_53 – ident: ref_1 doi: 10.1109/CVPR.2018.00957 – volume: 33 start-page: 12288 year: 2020 ident: ref_8 article-title: Learning black-box attackers with transferable priors and query feedback publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_24 – ident: ref_12 doi: 10.1109/PST55820.2022.9851981 – ident: ref_11 – ident: ref_48 doi: 10.1145/3433210.3453090 – ident: ref_40 – ident: ref_37 – ident: ref_18 – ident: ref_58 doi: 10.1609/aaai.v30i1.10295 – ident: ref_21 – ident: ref_6 doi: 10.1109/TPAMI.2021.3126733 – ident: ref_14 doi: 10.3390/s23073762 – ident: ref_50 doi: 10.21437/Interspeech.2020-1869 – volume: 5 start-page: 45 year: 2023 ident: ref_16 article-title: Enhancing Semantic Segmentation through Reinforced Active Learning: Combating Dataset Imbalances and Bolstering Annotation Efficiency publication-title: J. Electron. Inf. Syst. doi: 10.30564/jeis.v5i2.6063 – volume: 34 start-page: 100199 year: 2019 ident: ref_27 article-title: A taxonomy and survey of attacks against machine learning publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2019.100199 – ident: ref_47 doi: 10.1371/journal.pone.0231626 – ident: ref_29 – ident: ref_54 – ident: ref_13 doi: 10.1007/978-3-030-58595-2_7 – ident: ref_22 doi: 10.1145/3052973.3053009 – ident: ref_46 doi: 10.1109/TPAMI.2022.3194988 – ident: ref_49 doi: 10.1109/EuroSPW.2019.00032 – ident: ref_42 doi: 10.1145/2666652.2666656 – ident: ref_36 – ident: ref_19 – ident: ref_60 – ident: ref_2 doi: 10.3390/app14051706 – ident: ref_38 doi: 10.1109/CNS56114.2022.9947234 – volume: 10 start-page: 879639 year: 2022 ident: ref_56 article-title: Medical image segmentation algorithm for three-dimensional multimodal using deep reinforcement learning and big data analytics publication-title: Front. Public Health doi: 10.3389/fpubh.2022.879639 – ident: ref_57 |
SSID | ssj0000913810 |
Score | 2.2830029 |
Snippet | In the rapidly evolving landscape of cybersecurity, model extraction attacks pose a significant challenge, undermining the integrity of machine learning models... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 3785 |
SubjectTerms | active learning Algorithms Classification Comparative analysis image classification Intellectual property Internet Investigations Learning strategies Machine learning Methods model extraction attack Neural networks Performance evaluation Privacy Queries reinforcement learning Safety and security measures security synthetic data |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB4VcoFD1VAQKbSaAxJwsNj1rh_ppQooUVoJhCqQuK3s3TVCogmNjQT_nhl7E3Jpb34drHnP7Mw3AEfeumFOriDKlLeRlkURFa7wkYsZ71sLG7elgcurdHqrf90ld6HgVoe2yqVNbA21m1uukZ8plpY4zUT84-lvxFuj-HQ1rNDYgB6Z4JySr975-Or696rKwqiXuRTdYJ6i_J7PhRnjSWW8PXnNFbWI_f-yy62zmXyCjyFKxFHH1j588LMd2F7DDtyBftDKGk8CdPTpZ6hXLXVIgR2OGR-isK84rzAAqd7jzRK1tcaHGfIutEccvzSLbsIBR03DY_dIlz__kLHBdm3mQ8Urs7_jCC_e4cKRmxBfd-F2Mr65mEZhrUJkVSqbyKYJkbKQPk5Lcvek1pV0wltKfOiZsrLSmbOJ8KrUznuhNLk5WSa58rHXolR7sDmbz_w-IMVCjqehXExqrZNsmAtrbVkNtU0ykdoBHC0pbJ469AxDWQczwqwxYgDnTP3VJwx53T6YL-5N0CBDtshnJFreaUopY4p0paA7WbqKcbDyARwz7wwrJtOsCPMF9KcMcWVGZIkodqX8bACHS_aaoLG1eZevL_9_fQBbJMe6a3o8hM1m8ey_UmDSlN-C9L0BcPniTA priority: 102 providerName: ProQuest |
Title | Exploring the Efficacy of Learning Techniques in Model Extraction Attacks on Image Classifiers: A Comparative Study |
URI | https://www.proquest.com/docview/3053126702 https://doaj.org/article/073e7ecded4448208010cde1bdf09718 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60XvQgPrE-yhwE9RDczW6S1luV1gcoIgrelmR3IwWtYiPYf-9Mkmou4sVbsoQwzHuSmW8A9r11vS6FgiBR3gZapmmQutQHLmS8by1sWH4auL6JLx701WP02Fj1xT1hFTxwxbhjUkGf0Bu901RJhJTgSEF3MnM5wx-VY74U8xrFVOmDe5Khq6qBPEV1Pf8PZmwnlfDW5EYIKpH6f_PHZZAZrsBynR1iv6JqFeb8eA2WGpiBa7BaW-MED2vI6KN1mHy30iEldDhgXIjUTvE1xxpA9QnvZ2itExyNkXegPePgs3ivJhuwXxQ8bo90eflCTgbLdZmjnFdln2Afz35gwpGbD6cb8DAc3J9dBPU6hcCqWBaBjSMyuFT6MM4ozJM559IJb6ngoTNlZa4TZyPhVaad90JpCm8yi7rKh16LTG1Ca_w69luAlAM5noJyIZmzjpJeV1hrs7ynbZSI2LZhf8Zh81ahZhiqNlgQpiGINpwy978fYajr8oAUwNQKYP5SgDYcsOwMGyTzLK3nCohShrYyffJAlLNSXdaG3Zl4TW2pE6PYC4VxIsLt_6BmBxZJy3XVErkLreL9w-9R2lJkHZjvDs87sHA6uLm965T6-gXQUewN |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiBZQQwvMoQg4WKx3148gIRRKQkIfp1TqbbF311UlSNrYqM2f4jcy40eaC9x6s3etlTUz-83sY74B2PfW9VNyBUGivA10mGVB5jIfOMl831pYWW8NHJ_E41P9_Sw624A_XS4MX6vsMLEGaje3vEf-QbG1yDgR8vPlVcBVo_h0tSuh0ZjFoV9e05Kt_DT5Svp9I-VoOD0YB21VgcCqOKwCG0c0UhZ6Gefk7ciqi9AJbynupzZlw0InzkbCq1w774XShPJhHqXKS69Frmjce3BfK9XnGZWOvq32dJhjMw1FkwZI_YJPoZlRSiVcq3nN8dX1Af7lBWrXNnoCj9uYFAeNEW3Bhp9tw6M1psJt2GoxoMR3LVH1-6dQri7wIYWROGQ2iswucV5gS9t6jtOOI7bEixly5bWfOLypFk0-BQ6qipP8kR4nvwjasC7SeVFwge6POMCDW3Jy5CuPy2dweififg6bs_nM7wBS5OU498pJAhEdJf1UWGvzoq9tlIjY9mC_k7C5bLg6DK1xWBFmTRE9-MLSX33CBNt1w3xxbtr5agj5fEKG7J2mBaykuDoU9BbmrmDWrbQHb1l3hmGAZZa12Qz0p0yoZQaEexQp02qwB3udek2LD6W5teYX_-9-DQ_G0-MjczQ5OdyFhzSDdHPdcg82q8Vv_5JCoip_Vdshwo-7Nvy_ZnMcfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVEJwQLSACBTYQxFwsLpf_ggSQmmbqKEQVaiVetvau-uqEiQlNoL8NX4dM_Y6zQVuvTl2ZFk7z29m1jNvAHa9dYMMXUGUKm8jLfI8yl3uIydJ71tzK5utgS_T5OhMfzqPzzfgT9cLQ2WVHSc2RO3mlvbI9xShRSYpl3tlKIs4ORx_vP4R0QQp-tLajdNoIXLsl78wfas-TA7R1q-lHI9OD46iMGEgsioRdWSTGO-aCy-TAj0fIrwUjnuLOQCeU1aUOnU25l4V2nnPlUbGF0WcKS-95oXC-96BzRSzIt6Dzf3R9OTraoeHFDczwdumQKUGnL5Jk76USmly85obbKYF_MsnNI5u_BAehAiVDVtIbcGGn23D_TXdwm3YCoxQsbdBtvrdI6hW5XwMg0o2Im2K3C7ZvGRBxPWSnXaKsRW7mjGaw_aNjX7Xi7a7gg3rmlr-GR5OviPRsWZk51VJ47rfsyE7uJEqZ1QAuXwMZ7ey4E-gN5vP_FNgGIc56sRyEilFx-kg49baohxoG6c8sX3Y7VbYXLfKHQYzHjKEWTNEH_Zp9Vd_Ibnt5sR8cWnC22uQB32KsPZOYzorMcoWHH-JwpWkwZX14Q3ZzhAp0JrlobcBn5TktcwQWRDjZswN-7DTmdcEtqjMDbaf_f_yK7iLoDefJ9Pj53APXyfd1l7uQK9e_PQvMD6qi5cBiAwubhv7fwFiyCIP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Efficacy+of+Learning+Techniques+in+Model+Extraction+Attacks+on+Image+Classifiers%3A+A+Comparative+Study&rft.jtitle=Applied+sciences&rft.au=Han%2C+Dong&rft.au=Babaei%2C+Reza&rft.au=Zhao%2C+Shangqing&rft.au=Cheng%2C+Samuel&rft.date=2024-05-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=9&rft.spage=3785&rft_id=info:doi/10.3390%2Fapp14093785&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app14093785 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |