Recommendation Algorithm Based on Survival Action Rules
Survival analysis is widely used in fields such as medical research and reliability engineering to analyze data where not all subjects experience the event of interest by the end of the study. It requires dedicated methods capable of handling censored cases. This paper extends the collection of tech...
Saved in:
Published in | Applied sciences Vol. 14; no. 7; p. 2939 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app14072939 |
Cover
Abstract | Survival analysis is widely used in fields such as medical research and reliability engineering to analyze data where not all subjects experience the event of interest by the end of the study. It requires dedicated methods capable of handling censored cases. This paper extends the collection of techniques applicable to censored data by introducing a novel algorithm for interpretable recommendations based on a set of survival action rules. Each action rule contains recommendations for changing the values of attributes describing examples. As a result of applying the action rules, an example is moved from a group characterized by a survival curve to another group with a significantly different survival rate. In practice, an example can be covered by several induced rules. To decide which attribute values should be changed, we propose a recommendation algorithm that analyzes all actions suggested by the rules covering the example. The efficiency of the algorithm has been evaluated on several benchmark datasets. We also present a qualitative analysis of the generated recommendations through a case study. The results indicate that the proposed method produces high-quality recommendations and leads to a significant change in the estimated survival time. |
---|---|
AbstractList | Survival analysis is widely used in fields such as medical research and reliability engineering to analyze data where not all subjects experience the event of interest by the end of the study. It requires dedicated methods capable of handling censored cases. This paper extends the collection of techniques applicable to censored data by introducing a novel algorithm for interpretable recommendations based on a set of survival action rules. Each action rule contains recommendations for changing the values of attributes describing examples. As a result of applying the action rules, an example is moved from a group characterized by a survival curve to another group with a significantly different survival rate. In practice, an example can be covered by several induced rules. To decide which attribute values should be changed, we propose a recommendation algorithm that analyzes all actions suggested by the rules covering the example. The efficiency of the algorithm has been evaluated on several benchmark datasets. We also present a qualitative analysis of the generated recommendations through a case study. The results indicate that the proposed method produces high-quality recommendations and leads to a significant change in the estimated survival time. |
Audience | Academic |
Author | Wróbel, Łukasz Hermansa, Marek Sikora, Marek Sikora, Beata |
Author_xml | – sequence: 1 givenname: Marek orcidid: 0000-0001-6063-0600 surname: Hermansa fullname: Hermansa, Marek – sequence: 2 givenname: Marek orcidid: 0000-0002-2393-9761 surname: Sikora fullname: Sikora, Marek – sequence: 3 givenname: Beata orcidid: 0000-0001-9471-4706 surname: Sikora fullname: Sikora, Beata – sequence: 4 givenname: Łukasz orcidid: 0000-0002-5715-6239 surname: Wróbel fullname: Wróbel, Łukasz |
BookMark | eNpNUU1rwzAMNaODdV1P-wOFHUc7K3Li-tiVfUFh0G1nozhO55LEnZMU9u_ntWNUEkg8np6EdMkGjW8sY9fAZ4iK39FuB4LLRKE6Y8OEy2yKAuTgpL5g47bd8mgKcA58yOTaGl_Xtimoc76ZLKqND677rCf31NpiEqG3PuzdnqrJwhwo676y7RU7L6lq7fgvj9jH48P78nm6en16WS5WU4MZdFOToc3jJCiMIKUSkWdlAilJgwYwzYQsc6E45ZxnBMYWYIQyiUWwgorU4oi9HHULT1u9C66m8K09OX0AfNhoCp0zldUllZyQAHKRiyxWZGQu5mmM1KaQR62bo9Yu-K_etp3e-j40cX2NHCUqTDlE1uzI2lAUdU3pu0AmemFrZ-LJSxfxhVScg0ykig23xwYTfNsGW_6vCVz_fkaffAZ_ADJxgJs |
Cites_doi | 10.1109/ICMLA.2018.00013 10.1186/s12859-017-1693-x 10.1016/j.knosys.2019.02.019 10.1155/2013/873595 10.1016/j.jbi.2010.03.005 10.1002/sim.1655 10.3390/app14031270 10.1109/TKDE.2019.2945326 10.1007/978-1-4612-5931-2 10.1016/j.artmed.2009.08.001 10.1002/9780470870709 10.1109/JBHI.2020.2980204 10.1016/j.eswa.2005.04.031 10.1007/s10618-022-00831-6 10.1038/sj.bjc.6601119 10.1145/2939672.2939785 10.1080/09528130512331315855 10.1016/j.knosys.2020.105480 10.1007/11495772_3 10.1016/j.knosys.2023.110981 10.1142/S1469026821500127 10.1109/PHM.2008.4711414 10.1093/biomet/69.3.553 10.1093/biostatistics/kxj011 10.1109/TKDE.2007.250584 10.1007/978-3-030-58112-1_31 10.1111/j.2517-6161.1972.tb00899.x 10.1109/CEC.2018.8477913 10.2307/2531894 10.1145/2783258.2783281 10.15388/21-INFOR468 10.1214/aos/1013203451 10.3390/app122312393 10.1145/3214306 10.1002/9780470258019 10.1200/JCO.1994.12.10.2086 10.1002/int.20090 10.1213/ANE.0000000000003653 10.1080/01621459.1993.10476296 10.1007/978-3-540-68416-9 10.1016/j.bbmt.2010.04.001 10.1007/s10844-010-0121-8 10.1002/sim.4780140108 10.1016/j.artmed.2021.102036 10.1016/j.ins.2022.06.026 10.1007/978-3-319-48740-3_41 10.1214/08-AOAS169 10.1007/3-540-45372-5_70 10.1007/BF02589501 10.1080/01621459.1958.10501452 10.1093/jnci/dji042 10.1016/S0025-6196(12)60015-9 10.1146/annurev.publhealth.18.1.83 10.1038/sj.bjc.6601118 10.1093/bioinformatics/btq617 10.1080/09528130512331315864 10.1109/SKG.2017.00030 10.1016/j.knosys.2020.106164 10.1145/3450439.3451875 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app14072939 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_faf0a3a11b4b46a3aac7b4854855e51b A790017279 10_3390_app14072939 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c361t-c63eb3811dc4a9924b6f215a7c3c135647fb490ab006a1ced1c49c2e31e4ad5e3 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:28:30 EDT 2025 Mon Jun 30 13:31:29 EDT 2025 Tue Jun 10 21:11:20 EDT 2025 Tue Jul 01 04:34:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-c63eb3811dc4a9924b6f215a7c3c135647fb490ab006a1ced1c49c2e31e4ad5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2393-9761 0000-0002-5715-6239 0000-0001-6063-0600 0000-0001-9471-4706 |
OpenAccessLink | https://www.proquest.com/docview/3037393501?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 3037393501 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_faf0a3a11b4b46a3aac7b4854855e51b proquest_journals_3037393501 gale_infotracacademiconefile_A790017279 crossref_primary_10_3390_app14072939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Kovalev (ref_55) 2020; 203 Kyle (ref_69) 1993; Volume 68 Friedman (ref_4) 2001; 29 Harrington (ref_9) 1982; 69 Schober (ref_11) 2018; 127 ref_58 Tolomei (ref_48) 2019; 33 Wachter (ref_51) 2018; 31 ref_56 Shashikumar (ref_27) 2021; 113 ref_54 ref_53 ref_52 Schumacher (ref_62) 1994; 12 Leung (ref_57) 1997; 18 ref_19 ref_16 Kaplan (ref_8) 1958; 53 Abnet (ref_72) 2005; 97 Tsay (ref_32) 2005; 17 ref_61 Pelckmans (ref_18) 2011; 27 ref_68 ref_67 ref_66 ref_64 ref_63 He (ref_35) 2005; 29 Larocque (ref_15) 2011; 5 ref_29 ref_28 Kovalev (ref_3) 2021; 32 Clark (ref_5) 2003; 89 Wohlrab (ref_59) 2011; 36 Yang (ref_44) 2007; 19 ref_71 ref_70 Suzuki (ref_75) 2005; 20 Ripley (ref_21) 2004; 23 Bewick (ref_6) 2004; 8 Hodges (ref_60) 1958; 3 ref_36 ref_34 ref_33 ref_31 LeBlanc (ref_14) 1993; 88 ref_74 ref_73 Wang (ref_12) 2019; 51 Porwolik (ref_65) 2010; 16 Chen (ref_26) 2013; 2013 Zhao (ref_30) 2020; 24 ref_39 ref_38 ref_37 Faraggi (ref_20) 1995; 14 Cox (ref_10) 1972; 34 Hashemi (ref_40) 2021; 20 Segal (ref_13) 1988; 44 ref_47 (ref_23) 2010; 43 ref_46 ref_45 Greco (ref_49) 2005; 17 ref_43 ref_42 ref_41 Hothorn (ref_25) 2005; 7 Sikora (ref_76) 2020; 194 (ref_22) 2009; 47 Bradburn (ref_7) 2003; 89 Sikora (ref_1) 2022; 607 Badura (ref_2) 2023; 280 Sikora (ref_17) 2019; 173 Ishwaran (ref_24) 2008; 2 |
References_xml | – ident: ref_41 doi: 10.1109/ICMLA.2018.00013 – ident: ref_16 doi: 10.1186/s12859-017-1693-x – volume: 173 start-page: 1 year: 2019 ident: ref_17 article-title: GuideR: A guided separate-and-conquer rule learning in classification, regression, and survival settings publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.02.019 – volume: 2013 start-page: 873595 year: 2013 ident: ref_26 article-title: A gradient boosting algorithm for survival analysis via direct optimization of concordance index publication-title: Comput. Math. Methods Med. doi: 10.1155/2013/873595 – ident: ref_68 – volume: 43 start-page: 613 year: 2010 ident: ref_23 article-title: Learning bayesian networks from survival data using weighting censored instances publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2010.03.005 – volume: 23 start-page: 825 year: 2004 ident: ref_21 article-title: Non-linear survival analysis using neural networks publication-title: Stat. Med. doi: 10.1002/sim.1655 – ident: ref_42 doi: 10.3390/app14031270 – volume: 33 start-page: 1540 year: 2019 ident: ref_48 article-title: Generating actionable interpretations from ensembles of decision trees publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2945326 – ident: ref_74 doi: 10.1007/978-1-4612-5931-2 – volume: 47 start-page: 199 year: 2009 ident: ref_22 article-title: Impact of censoring on learning bayesian networks in survival modelling publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2009.08.001 – ident: ref_66 doi: 10.1002/9780470870709 – ident: ref_71 – volume: 24 start-page: 3308 year: 2020 ident: ref_30 article-title: Deep neural networks for survival analysis using pseudo values publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2980204 – volume: 29 start-page: 691 year: 2005 ident: ref_35 article-title: Mining action rules from scratch publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.04.031 – ident: ref_53 doi: 10.1007/s10618-022-00831-6 – ident: ref_58 – volume: 89 start-page: 431 year: 2003 ident: ref_7 article-title: Survival analysis Part II: Multivariate data analysis–an introduction to concepts and methods publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6601119 – ident: ref_73 doi: 10.1145/2939672.2939785 – volume: 17 start-page: 119 year: 2005 ident: ref_32 article-title: Action rules discovery: System DEAR2, method and experiments publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/09528130512331315855 – volume: 194 start-page: 105480 year: 2020 ident: ref_76 article-title: RuleKit: A comprehensive suite for rule-based learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105480 – ident: ref_50 doi: 10.1007/11495772_3 – volume: 280 start-page: 110981 year: 2023 ident: ref_2 article-title: Separate-and-conquer survival action rule learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110981 – volume: 20 start-page: 2150012 year: 2021 ident: ref_40 article-title: Ga2rm: A ga-based action rule mining method publication-title: Int. J. Comput. Intell. Appl. doi: 10.1142/S1469026821500127 – ident: ref_61 doi: 10.1109/PHM.2008.4711414 – volume: 69 start-page: 553 year: 1982 ident: ref_9 article-title: A class of rank test procedures for censored survival data publication-title: Biometrika doi: 10.1093/biomet/69.3.553 – volume: 7 start-page: 355 year: 2005 ident: ref_25 article-title: Survival ensembles publication-title: Biostatistics doi: 10.1093/biostatistics/kxj011 – volume: 19 start-page: 43 year: 2007 ident: ref_44 article-title: Extracting actionable knowledge from decision trees publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.250584 – ident: ref_52 doi: 10.1007/978-3-030-58112-1_31 – volume: 34 start-page: 187 year: 1972 ident: ref_10 article-title: Regression models and life-tables publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: ref_28 – ident: ref_39 doi: 10.1109/CEC.2018.8477913 – volume: 44 start-page: 35 year: 1988 ident: ref_13 article-title: Regression trees for censored data publication-title: Biometrics doi: 10.2307/2531894 – ident: ref_34 – ident: ref_47 doi: 10.1145/2783258.2783281 – volume: 32 start-page: 817 year: 2021 ident: ref_3 article-title: Counterfactual Explanation of Machine Learning Survival Models publication-title: Informatica doi: 10.15388/21-INFOR468 – volume: 29 start-page: 1189 year: 2001 ident: ref_4 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – ident: ref_43 doi: 10.3390/app122312393 – ident: ref_67 – volume: 51 start-page: 1 year: 2019 ident: ref_12 article-title: Machine learning for survival analysis: A survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3214306 – ident: ref_37 – ident: ref_64 doi: 10.1002/9780470258019 – volume: 12 start-page: 2086 year: 1994 ident: ref_62 article-title: Randomized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German Breast Cancer Study Group publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. doi: 10.1200/JCO.1994.12.10.2086 – ident: ref_63 – volume: 20 start-page: 673 year: 2005 ident: ref_75 article-title: Unified algorithm for undirected discovery of exception rules publication-title: Int. J. Intell. Syst. doi: 10.1002/int.20090 – volume: 127 start-page: 792 year: 2018 ident: ref_11 article-title: Survival analysis and interpretation of time-to-event data: The tortoise and the hare publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000003653 – volume: 88 start-page: 457 year: 1993 ident: ref_14 article-title: Survival trees by goodness of split publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476296 – ident: ref_38 doi: 10.1007/978-3-540-68416-9 – volume: 16 start-page: 1388 year: 2010 ident: ref_65 article-title: Higher CD34(+) and CD3(+) cell doses in the graft promote long-term survival, and have no impact on the incidence of severe acute or chronic graft-versus-host disease after in vivo T cell-depleted unrelated donor hematopoietic stem cell transplantation in children publication-title: Biol. Blood Marrow Transpl. doi: 10.1016/j.bbmt.2010.04.001 – volume: 36 start-page: 73 year: 2011 ident: ref_59 article-title: A review and comparison of strategies for han1050 dling missing values in separate-and-conquer rule learning publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-010-0121-8 – volume: 14 start-page: 73 year: 1995 ident: ref_20 article-title: A neural network model for survival data publication-title: Stat. Med. doi: 10.1002/sim.4780140108 – volume: 113 start-page: 102036 year: 2021 ident: ref_27 article-title: DeepAISE—An interpretable and recurrent neural survival model for early prediction of sepsis publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2021.102036 – volume: 607 start-page: 849 year: 2022 ident: ref_1 article-title: Scari: Separate and conquer algorithm for action rules and recommendations induction publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.06.026 – ident: ref_29 – ident: ref_33 – ident: ref_54 – volume: 5 start-page: 44 year: 2011 ident: ref_15 article-title: A review of survival trees publication-title: Stat. Surv. – ident: ref_45 doi: 10.1007/978-3-319-48740-3_41 – volume: 2 start-page: 841 year: 2008 ident: ref_24 article-title: Random survival forests publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS169 – ident: ref_31 doi: 10.1007/3-540-45372-5_70 – volume: 3 start-page: 469 year: 1958 ident: ref_60 article-title: The significance probability of the Smirnov two-sample test publication-title: Arkiv Mat. doi: 10.1007/BF02589501 – volume: 8 start-page: 1 year: 2004 ident: ref_6 article-title: Statistics review: Survival analysis publication-title: Crit. Care – volume: 53 start-page: 457 year: 1958 ident: ref_8 article-title: Nonparametric estimation from incomplete observations publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1958.10501452 – volume: 97 start-page: 301 year: 2005 ident: ref_72 article-title: Zinc concentration in esophageal biopsy specimens measured by x-ray fluorescence and esophageal cancer risk publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/dji042 – ident: ref_36 – volume: 31 start-page: 841 year: 2018 ident: ref_51 article-title: Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR (6 October 2017) publication-title: Harv. J. Law Technol. – ident: ref_70 – ident: ref_19 – volume: Volume 68 start-page: 26 year: 1993 ident: ref_69 article-title: ”Benign” monoclonal gammopathy—After 20 to 35 years of follow-up publication-title: Mayo Clinic Proceedings doi: 10.1016/S0025-6196(12)60015-9 – volume: 18 start-page: 83 year: 1997 ident: ref_57 article-title: Censoring issues in survival analysis publication-title: Annu. Rev. Public Health doi: 10.1146/annurev.publhealth.18.1.83 – volume: 89 start-page: 232 year: 2003 ident: ref_5 article-title: Survival Analysis Part I: Basic concepts and first analyses publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6601118 – volume: 27 start-page: 87 year: 2011 ident: ref_18 article-title: Improved performance on high-dimensional survival data by application of Survival-SVM publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq617 – volume: 17 start-page: 103 year: 2005 ident: ref_49 article-title: Measuring expected effects of interventions based on decision rules publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/09528130512331315864 – ident: ref_46 doi: 10.1109/SKG.2017.00030 – volume: 203 start-page: 106164 year: 2020 ident: ref_55 article-title: SurvLIME: A method for explaining machine learning survival models publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106164 – ident: ref_56 doi: 10.1145/3450439.3451875 |
SSID | ssj0000913810 |
Score | 2.27992 |
Snippet | Survival analysis is widely used in fields such as medical research and reliability engineering to analyze data where not all subjects experience the event of... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 2939 |
SubjectTerms | Algorithms Analysis Case studies Classification Conflict resolution Data analysis Datasets Decision trees Machine learning Neural networks recommendations Statistical methods survival action rules Survival analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQLSAKBWWoBAwRcezE8dgiqgoJBqBSN8uvwNAH6oPfz13ioiyIhS2youR0l3t8se87QvrCpo5D0Ra7wvGY57yIjUBuvMRoWUoPKRn_dzw95-MJf5xm08aoLzwTVtMD14q7K3WZaKYpNdzwHK60FYYXGZKa-IwajL6JTBpgqorBkiJ1Vd2QxwDX434wRTIwiWPBGymoYur_LR5XSWZ0RA5DdRgNaqnaZM8vOuSgwRnYIe3gjevoJlBG3x4TgShyPvdhQlI0mL0vAfV_zKMhZCkXwdLrFoLCFz686mSIXrYzvz4hk9HD2_04DiMRYstyuoltzgD9FpQ6y7UE7GTyEpK2FpZZyrKci9JwmWh0Jk2td9RyaVPPqOfaZZ6dktZiufBnJMoKYcpCagAsjkMRoV3KrEuLxLjEC226pL_TkvqsmS8UIAZUpmoos0uGqMGfW5CuuloAI6pgRPWXEbvkGvWv0Kk2K2116A0ASZGeSg2ErMCqgNf1diZSwdvWCtIwEvtlCT3_D2kuyH4KpUt9PqdHWpvV1l9C6bExV9VX9g2mVdWl priority: 102 providerName: Directory of Open Access Journals |
Title | Recommendation Algorithm Based on Survival Action Rules |
URI | https://www.proquest.com/docview/3037393501 https://doaj.org/article/faf0a3a11b4b46a3aac7b4854855e51b |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xuNADKo-qPLrKAQl6iBrHTuwcqmq3YosqsUJQJG6WX4EDuwu7WX4_M1kH9kJvkRPFydjz-GzPNwAn0uVeYNCWeuVFKkqhUiuJGy-zpqqrgC6Z1jsuR-XFrfh7V9ytwajLhaFjlZ1NbA21nzpaI_-BppbI24qM_Xp6TqlqFO2udiU0TCyt4H-2FGPrsIkmWeG83xycj66u31ZdiAVTsWyZqMcR79M-MSOSsIrKha-4ppbB_yM73Tqf4WfYjlFj0l8O8w6shckufFrhEtyFnail8-QsUkl_3wNJ6HI8DrFyUtJ_vMd_ah7GyQC9l0-w6WaBxuKFXt5mOCTXi8cw34fb4fm_3xdpLJWQOl6yJnUlR1SsGPNOmAoxlS1rdOZGOu4YL0ohayuqzJCSGeaCZ05ULg-cBWF8EfgX2JhMJ-ErJIWStlaVQSDjBQYXxufc-Vxl1mdBGnsAJ52U9NOSEUMjkiBh6hVhHsCAJPj2CNFYtw3T2b2OWqFrU2eGG8assKLEK-OkFaogxppQMOzrlOSvSdmamXEm5gzglxJtle7LqgWxErs77oZIRy2c6_c5c_j_20ewlWOwsjyRcwwbzWwRvmGw0dgerKvhn16cR70Wsr8CPH_U1w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QE4IFpAFArkUAQcIuLYieNDhXah1Za2K1RaqTfXXymH7m7ZzYL4c_w2ZrJO2QvceoucyI7G45l5tucNwI50uRcYtKW-8iIVpahSK4kbL7NG1SqgS6b9juNROTwTn8-L8zX43eXC0LXKzia2htpPHe2Rv0dTS-RtRcY-XH9PqWoUna52JTRMLK3gd1uKsZjYcRh-_UQIN989-ITz_TrP9_dOPw7TWGUgdbxkTepKjoCyYsw7YRTCEVvW6AeNdNwxXpRC1laozJB-GuaCZ04olwfOgjC-CBz7vQPrgjJce7A-2Bt9ObnZ5SHWzYply8RAzlVG59KMSMkUlSdfcYVtxYB_-YXW2e0_hAcxSk36S7XagLUw2YT7K9yFm7ARrcI8eRupq989AklodjwOsVJT0r-6RBk238bJAL2lT7Dp6wKN0w_qvM2oSE4WV2H-GM5uRWhPoDeZTsJTSIpK2rpSBoGTFxjMGJ9z5_Mqsz4L0tgt2OmkpK-XDBwakQsJU68IcwsGJMGbT4g2u22Yzi51XIW6NnVmuGHMCitKfDJOWlEVxJATCoZjvSH5a1rczcw4E3MU8E-JJkv3pWpBs8Thtrsp0nHVz_VfHX32_9ev4O7w9PhIHx2MDp_DvRwDpeVtoG3oNbNFeIGBTmNfRm1K4OK2FfgPulkQQA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggGgBUSiQQxFwiBrHThwfKrRLu2oprKpCpd5cf6UcurtlNwviL_KrmMk6ZS9w6y1yIjsaj2fm2Z43ADvS5V5g0Jb6yotUlKJKrSRuvMwaVauALpn2Oz6PysMz8fG8OF-D310uDF2r7Gxia6j91NEe-S6aWiJvKzK2W8drESf7w_fX31OqIEUnrV05DRPLLPi9lm4sJnkch18_Ec7N9472ce5f5_nw4OuHwzRWHEgdL1mTupIjuKwY804YhdDEljX6RCMdd4wXpZC1FSozpKuGueCZE8rlgbMgjC8Cx37vwLpELyl6sD44GJ2c3uz4EANnxbJlkiDnKqMzakYEZYpKla-4xbZ6wL98ROv4hg_hQYxYk_5SxTZgLUw24f4Kj-EmbEQLMU_eRhrrd49AErIdj0Os2pT0ry5Rhs23cTJAz-kTbPqyQEP1gzpvsyuS08VVmD-Gs1sR2hPoTaaT8BSSopK2rpRBEOUFBjbG59z5vMqsz4I0dgt2Oinp6yUbh0YUQ8LUK8LcggFJ8OYTotBuG6azSx1XpK5NnRluGLPCihKfjJNWVAWx5YSC4VhvSP6aFnozM87EfAX8U6LM0n2pWgAtcbjtbop0tABz_Vdfn_3_9Su4i4qsPx2Njp_DvRxjpuXFoG3oNbNFeIExT2NfRmVK4OK29fcPF5sUbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recommendation+Algorithm+Based+on+Survival+Action+Rules&rft.jtitle=Applied+sciences&rft.au=Hermansa%2C+Marek&rft.au=Sikora%2C+Marek&rft.au=Sikora%2C+Beata&rft.au=Wr%C3%B3bel%2C+%C5%81ukasz&rft.date=2024-04-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=7&rft.spage=2939&rft_id=info:doi/10.3390%2Fapp14072939&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app14072939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |