Recommendation Algorithm Based on Survival Action Rules

Survival analysis is widely used in fields such as medical research and reliability engineering to analyze data where not all subjects experience the event of interest by the end of the study. It requires dedicated methods capable of handling censored cases. This paper extends the collection of tech...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 7; p. 2939
Main Authors Hermansa, Marek, Sikora, Marek, Sikora, Beata, Wróbel, Łukasz
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2024
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app14072939

Cover

Abstract Survival analysis is widely used in fields such as medical research and reliability engineering to analyze data where not all subjects experience the event of interest by the end of the study. It requires dedicated methods capable of handling censored cases. This paper extends the collection of techniques applicable to censored data by introducing a novel algorithm for interpretable recommendations based on a set of survival action rules. Each action rule contains recommendations for changing the values of attributes describing examples. As a result of applying the action rules, an example is moved from a group characterized by a survival curve to another group with a significantly different survival rate. In practice, an example can be covered by several induced rules. To decide which attribute values should be changed, we propose a recommendation algorithm that analyzes all actions suggested by the rules covering the example. The efficiency of the algorithm has been evaluated on several benchmark datasets. We also present a qualitative analysis of the generated recommendations through a case study. The results indicate that the proposed method produces high-quality recommendations and leads to a significant change in the estimated survival time.
AbstractList Survival analysis is widely used in fields such as medical research and reliability engineering to analyze data where not all subjects experience the event of interest by the end of the study. It requires dedicated methods capable of handling censored cases. This paper extends the collection of techniques applicable to censored data by introducing a novel algorithm for interpretable recommendations based on a set of survival action rules. Each action rule contains recommendations for changing the values of attributes describing examples. As a result of applying the action rules, an example is moved from a group characterized by a survival curve to another group with a significantly different survival rate. In practice, an example can be covered by several induced rules. To decide which attribute values should be changed, we propose a recommendation algorithm that analyzes all actions suggested by the rules covering the example. The efficiency of the algorithm has been evaluated on several benchmark datasets. We also present a qualitative analysis of the generated recommendations through a case study. The results indicate that the proposed method produces high-quality recommendations and leads to a significant change in the estimated survival time.
Audience Academic
Author Wróbel, Łukasz
Hermansa, Marek
Sikora, Marek
Sikora, Beata
Author_xml – sequence: 1
  givenname: Marek
  orcidid: 0000-0001-6063-0600
  surname: Hermansa
  fullname: Hermansa, Marek
– sequence: 2
  givenname: Marek
  orcidid: 0000-0002-2393-9761
  surname: Sikora
  fullname: Sikora, Marek
– sequence: 3
  givenname: Beata
  orcidid: 0000-0001-9471-4706
  surname: Sikora
  fullname: Sikora, Beata
– sequence: 4
  givenname: Łukasz
  orcidid: 0000-0002-5715-6239
  surname: Wróbel
  fullname: Wróbel, Łukasz
BookMark eNpNUU1rwzAMNaODdV1P-wOFHUc7K3Li-tiVfUFh0G1nozhO55LEnZMU9u_ntWNUEkg8np6EdMkGjW8sY9fAZ4iK39FuB4LLRKE6Y8OEy2yKAuTgpL5g47bd8mgKcA58yOTaGl_Xtimoc76ZLKqND677rCf31NpiEqG3PuzdnqrJwhwo676y7RU7L6lq7fgvj9jH48P78nm6en16WS5WU4MZdFOToc3jJCiMIKUSkWdlAilJgwYwzYQsc6E45ZxnBMYWYIQyiUWwgorU4oi9HHULT1u9C66m8K09OX0AfNhoCp0zldUllZyQAHKRiyxWZGQu5mmM1KaQR62bo9Yu-K_etp3e-j40cX2NHCUqTDlE1uzI2lAUdU3pu0AmemFrZ-LJSxfxhVScg0ykig23xwYTfNsGW_6vCVz_fkaffAZ_ADJxgJs
Cites_doi 10.1109/ICMLA.2018.00013
10.1186/s12859-017-1693-x
10.1016/j.knosys.2019.02.019
10.1155/2013/873595
10.1016/j.jbi.2010.03.005
10.1002/sim.1655
10.3390/app14031270
10.1109/TKDE.2019.2945326
10.1007/978-1-4612-5931-2
10.1016/j.artmed.2009.08.001
10.1002/9780470870709
10.1109/JBHI.2020.2980204
10.1016/j.eswa.2005.04.031
10.1007/s10618-022-00831-6
10.1038/sj.bjc.6601119
10.1145/2939672.2939785
10.1080/09528130512331315855
10.1016/j.knosys.2020.105480
10.1007/11495772_3
10.1016/j.knosys.2023.110981
10.1142/S1469026821500127
10.1109/PHM.2008.4711414
10.1093/biomet/69.3.553
10.1093/biostatistics/kxj011
10.1109/TKDE.2007.250584
10.1007/978-3-030-58112-1_31
10.1111/j.2517-6161.1972.tb00899.x
10.1109/CEC.2018.8477913
10.2307/2531894
10.1145/2783258.2783281
10.15388/21-INFOR468
10.1214/aos/1013203451
10.3390/app122312393
10.1145/3214306
10.1002/9780470258019
10.1200/JCO.1994.12.10.2086
10.1002/int.20090
10.1213/ANE.0000000000003653
10.1080/01621459.1993.10476296
10.1007/978-3-540-68416-9
10.1016/j.bbmt.2010.04.001
10.1007/s10844-010-0121-8
10.1002/sim.4780140108
10.1016/j.artmed.2021.102036
10.1016/j.ins.2022.06.026
10.1007/978-3-319-48740-3_41
10.1214/08-AOAS169
10.1007/3-540-45372-5_70
10.1007/BF02589501
10.1080/01621459.1958.10501452
10.1093/jnci/dji042
10.1016/S0025-6196(12)60015-9
10.1146/annurev.publhealth.18.1.83
10.1038/sj.bjc.6601118
10.1093/bioinformatics/btq617
10.1080/09528130512331315864
10.1109/SKG.2017.00030
10.1016/j.knosys.2020.106164
10.1145/3450439.3451875
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app14072939
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_faf0a3a11b4b46a3aac7b4854855e51b
A790017279
10_3390_app14072939
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c361t-c63eb3811dc4a9924b6f215a7c3c135647fb490ab006a1ced1c49c2e31e4ad5e3
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:28:30 EDT 2025
Mon Jun 30 13:31:29 EDT 2025
Tue Jun 10 21:11:20 EDT 2025
Tue Jul 01 04:34:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c63eb3811dc4a9924b6f215a7c3c135647fb490ab006a1ced1c49c2e31e4ad5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2393-9761
0000-0002-5715-6239
0000-0001-6063-0600
0000-0001-9471-4706
OpenAccessLink https://www.proquest.com/docview/3037393501?pq-origsite=%requestingapplication%&accountid=15518
PQID 3037393501
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_faf0a3a11b4b46a3aac7b4854855e51b
proquest_journals_3037393501
gale_infotracacademiconefile_A790017279
crossref_primary_10_3390_app14072939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Kovalev (ref_55) 2020; 203
Kyle (ref_69) 1993; Volume 68
Friedman (ref_4) 2001; 29
Harrington (ref_9) 1982; 69
Schober (ref_11) 2018; 127
ref_58
Tolomei (ref_48) 2019; 33
Wachter (ref_51) 2018; 31
ref_56
Shashikumar (ref_27) 2021; 113
ref_54
ref_53
ref_52
Schumacher (ref_62) 1994; 12
Leung (ref_57) 1997; 18
ref_19
ref_16
Kaplan (ref_8) 1958; 53
Abnet (ref_72) 2005; 97
Tsay (ref_32) 2005; 17
ref_61
Pelckmans (ref_18) 2011; 27
ref_68
ref_67
ref_66
ref_64
ref_63
He (ref_35) 2005; 29
Larocque (ref_15) 2011; 5
ref_29
ref_28
Kovalev (ref_3) 2021; 32
Clark (ref_5) 2003; 89
Wohlrab (ref_59) 2011; 36
Yang (ref_44) 2007; 19
ref_71
ref_70
Suzuki (ref_75) 2005; 20
Ripley (ref_21) 2004; 23
Bewick (ref_6) 2004; 8
Hodges (ref_60) 1958; 3
ref_36
ref_34
ref_33
ref_31
LeBlanc (ref_14) 1993; 88
ref_74
ref_73
Wang (ref_12) 2019; 51
Porwolik (ref_65) 2010; 16
Chen (ref_26) 2013; 2013
Zhao (ref_30) 2020; 24
ref_39
ref_38
ref_37
Faraggi (ref_20) 1995; 14
Cox (ref_10) 1972; 34
Hashemi (ref_40) 2021; 20
Segal (ref_13) 1988; 44
ref_47
(ref_23) 2010; 43
ref_46
ref_45
Greco (ref_49) 2005; 17
ref_43
ref_42
ref_41
Hothorn (ref_25) 2005; 7
Sikora (ref_76) 2020; 194
(ref_22) 2009; 47
Bradburn (ref_7) 2003; 89
Sikora (ref_1) 2022; 607
Badura (ref_2) 2023; 280
Sikora (ref_17) 2019; 173
Ishwaran (ref_24) 2008; 2
References_xml – ident: ref_41
  doi: 10.1109/ICMLA.2018.00013
– ident: ref_16
  doi: 10.1186/s12859-017-1693-x
– volume: 173
  start-page: 1
  year: 2019
  ident: ref_17
  article-title: GuideR: A guided separate-and-conquer rule learning in classification, regression, and survival settings
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.02.019
– volume: 2013
  start-page: 873595
  year: 2013
  ident: ref_26
  article-title: A gradient boosting algorithm for survival analysis via direct optimization of concordance index
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2013/873595
– ident: ref_68
– volume: 43
  start-page: 613
  year: 2010
  ident: ref_23
  article-title: Learning bayesian networks from survival data using weighting censored instances
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2010.03.005
– volume: 23
  start-page: 825
  year: 2004
  ident: ref_21
  article-title: Non-linear survival analysis using neural networks
  publication-title: Stat. Med.
  doi: 10.1002/sim.1655
– ident: ref_42
  doi: 10.3390/app14031270
– volume: 33
  start-page: 1540
  year: 2019
  ident: ref_48
  article-title: Generating actionable interpretations from ensembles of decision trees
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2945326
– ident: ref_74
  doi: 10.1007/978-1-4612-5931-2
– volume: 47
  start-page: 199
  year: 2009
  ident: ref_22
  article-title: Impact of censoring on learning bayesian networks in survival modelling
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2009.08.001
– ident: ref_66
  doi: 10.1002/9780470870709
– ident: ref_71
– volume: 24
  start-page: 3308
  year: 2020
  ident: ref_30
  article-title: Deep neural networks for survival analysis using pseudo values
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2980204
– volume: 29
  start-page: 691
  year: 2005
  ident: ref_35
  article-title: Mining action rules from scratch
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.04.031
– ident: ref_53
  doi: 10.1007/s10618-022-00831-6
– ident: ref_58
– volume: 89
  start-page: 431
  year: 2003
  ident: ref_7
  article-title: Survival analysis Part II: Multivariate data analysis–an introduction to concepts and methods
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6601119
– ident: ref_73
  doi: 10.1145/2939672.2939785
– volume: 17
  start-page: 119
  year: 2005
  ident: ref_32
  article-title: Action rules discovery: System DEAR2, method and experiments
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/09528130512331315855
– volume: 194
  start-page: 105480
  year: 2020
  ident: ref_76
  article-title: RuleKit: A comprehensive suite for rule-based learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105480
– ident: ref_50
  doi: 10.1007/11495772_3
– volume: 280
  start-page: 110981
  year: 2023
  ident: ref_2
  article-title: Separate-and-conquer survival action rule learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110981
– volume: 20
  start-page: 2150012
  year: 2021
  ident: ref_40
  article-title: Ga2rm: A ga-based action rule mining method
  publication-title: Int. J. Comput. Intell. Appl.
  doi: 10.1142/S1469026821500127
– ident: ref_61
  doi: 10.1109/PHM.2008.4711414
– volume: 69
  start-page: 553
  year: 1982
  ident: ref_9
  article-title: A class of rank test procedures for censored survival data
  publication-title: Biometrika
  doi: 10.1093/biomet/69.3.553
– volume: 7
  start-page: 355
  year: 2005
  ident: ref_25
  article-title: Survival ensembles
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj011
– volume: 19
  start-page: 43
  year: 2007
  ident: ref_44
  article-title: Extracting actionable knowledge from decision trees
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.250584
– ident: ref_52
  doi: 10.1007/978-3-030-58112-1_31
– volume: 34
  start-page: 187
  year: 1972
  ident: ref_10
  article-title: Regression models and life-tables
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: ref_28
– ident: ref_39
  doi: 10.1109/CEC.2018.8477913
– volume: 44
  start-page: 35
  year: 1988
  ident: ref_13
  article-title: Regression trees for censored data
  publication-title: Biometrics
  doi: 10.2307/2531894
– ident: ref_34
– ident: ref_47
  doi: 10.1145/2783258.2783281
– volume: 32
  start-page: 817
  year: 2021
  ident: ref_3
  article-title: Counterfactual Explanation of Machine Learning Survival Models
  publication-title: Informatica
  doi: 10.15388/21-INFOR468
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_4
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– ident: ref_43
  doi: 10.3390/app122312393
– ident: ref_67
– volume: 51
  start-page: 1
  year: 2019
  ident: ref_12
  article-title: Machine learning for survival analysis: A survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3214306
– ident: ref_37
– ident: ref_64
  doi: 10.1002/9780470258019
– volume: 12
  start-page: 2086
  year: 1994
  ident: ref_62
  article-title: Randomized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German Breast Cancer Study Group
  publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol.
  doi: 10.1200/JCO.1994.12.10.2086
– ident: ref_63
– volume: 20
  start-page: 673
  year: 2005
  ident: ref_75
  article-title: Unified algorithm for undirected discovery of exception rules
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.20090
– volume: 127
  start-page: 792
  year: 2018
  ident: ref_11
  article-title: Survival analysis and interpretation of time-to-event data: The tortoise and the hare
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000003653
– volume: 88
  start-page: 457
  year: 1993
  ident: ref_14
  article-title: Survival trees by goodness of split
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476296
– ident: ref_38
  doi: 10.1007/978-3-540-68416-9
– volume: 16
  start-page: 1388
  year: 2010
  ident: ref_65
  article-title: Higher CD34(+) and CD3(+) cell doses in the graft promote long-term survival, and have no impact on the incidence of severe acute or chronic graft-versus-host disease after in vivo T cell-depleted unrelated donor hematopoietic stem cell transplantation in children
  publication-title: Biol. Blood Marrow Transpl.
  doi: 10.1016/j.bbmt.2010.04.001
– volume: 36
  start-page: 73
  year: 2011
  ident: ref_59
  article-title: A review and comparison of strategies for han1050 dling missing values in separate-and-conquer rule learning
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-010-0121-8
– volume: 14
  start-page: 73
  year: 1995
  ident: ref_20
  article-title: A neural network model for survival data
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780140108
– volume: 113
  start-page: 102036
  year: 2021
  ident: ref_27
  article-title: DeepAISE—An interpretable and recurrent neural survival model for early prediction of sepsis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102036
– volume: 607
  start-page: 849
  year: 2022
  ident: ref_1
  article-title: Scari: Separate and conquer algorithm for action rules and recommendations induction
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.06.026
– ident: ref_29
– ident: ref_33
– ident: ref_54
– volume: 5
  start-page: 44
  year: 2011
  ident: ref_15
  article-title: A review of survival trees
  publication-title: Stat. Surv.
– ident: ref_45
  doi: 10.1007/978-3-319-48740-3_41
– volume: 2
  start-page: 841
  year: 2008
  ident: ref_24
  article-title: Random survival forests
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS169
– ident: ref_31
  doi: 10.1007/3-540-45372-5_70
– volume: 3
  start-page: 469
  year: 1958
  ident: ref_60
  article-title: The significance probability of the Smirnov two-sample test
  publication-title: Arkiv Mat.
  doi: 10.1007/BF02589501
– volume: 8
  start-page: 1
  year: 2004
  ident: ref_6
  article-title: Statistics review: Survival analysis
  publication-title: Crit. Care
– volume: 53
  start-page: 457
  year: 1958
  ident: ref_8
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1958.10501452
– volume: 97
  start-page: 301
  year: 2005
  ident: ref_72
  article-title: Zinc concentration in esophageal biopsy specimens measured by x-ray fluorescence and esophageal cancer risk
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/dji042
– ident: ref_36
– volume: 31
  start-page: 841
  year: 2018
  ident: ref_51
  article-title: Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR (6 October 2017)
  publication-title: Harv. J. Law Technol.
– ident: ref_70
– ident: ref_19
– volume: Volume 68
  start-page: 26
  year: 1993
  ident: ref_69
  article-title: ”Benign” monoclonal gammopathy—After 20 to 35 years of follow-up
  publication-title: Mayo Clinic Proceedings
  doi: 10.1016/S0025-6196(12)60015-9
– volume: 18
  start-page: 83
  year: 1997
  ident: ref_57
  article-title: Censoring issues in survival analysis
  publication-title: Annu. Rev. Public Health
  doi: 10.1146/annurev.publhealth.18.1.83
– volume: 89
  start-page: 232
  year: 2003
  ident: ref_5
  article-title: Survival Analysis Part I: Basic concepts and first analyses
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6601118
– volume: 27
  start-page: 87
  year: 2011
  ident: ref_18
  article-title: Improved performance on high-dimensional survival data by application of Survival-SVM
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq617
– volume: 17
  start-page: 103
  year: 2005
  ident: ref_49
  article-title: Measuring expected effects of interventions based on decision rules
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/09528130512331315864
– ident: ref_46
  doi: 10.1109/SKG.2017.00030
– volume: 203
  start-page: 106164
  year: 2020
  ident: ref_55
  article-title: SurvLIME: A method for explaining machine learning survival models
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106164
– ident: ref_56
  doi: 10.1145/3450439.3451875
SSID ssj0000913810
Score 2.27992
Snippet Survival analysis is widely used in fields such as medical research and reliability engineering to analyze data where not all subjects experience the event of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2939
SubjectTerms Algorithms
Analysis
Case studies
Classification
Conflict resolution
Data analysis
Datasets
Decision trees
Machine learning
Neural networks
recommendations
Statistical methods
survival action rules
Survival analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQLSAKBWWoBAwRcezE8dgiqgoJBqBSN8uvwNAH6oPfz13ioiyIhS2youR0l3t8se87QvrCpo5D0Ra7wvGY57yIjUBuvMRoWUoPKRn_dzw95-MJf5xm08aoLzwTVtMD14q7K3WZaKYpNdzwHK60FYYXGZKa-IwajL6JTBpgqorBkiJ1Vd2QxwDX434wRTIwiWPBGymoYur_LR5XSWZ0RA5DdRgNaqnaZM8vOuSgwRnYIe3gjevoJlBG3x4TgShyPvdhQlI0mL0vAfV_zKMhZCkXwdLrFoLCFz686mSIXrYzvz4hk9HD2_04DiMRYstyuoltzgD9FpQ6y7UE7GTyEpK2FpZZyrKci9JwmWh0Jk2td9RyaVPPqOfaZZ6dktZiufBnJMoKYcpCagAsjkMRoV3KrEuLxLjEC226pL_TkvqsmS8UIAZUpmoos0uGqMGfW5CuuloAI6pgRPWXEbvkGvWv0Kk2K2116A0ASZGeSg2ErMCqgNf1diZSwdvWCtIwEvtlCT3_D2kuyH4KpUt9PqdHWpvV1l9C6bExV9VX9g2mVdWl
  priority: 102
  providerName: Directory of Open Access Journals
Title Recommendation Algorithm Based on Survival Action Rules
URI https://www.proquest.com/docview/3037393501
https://doaj.org/article/faf0a3a11b4b46a3aac7b4854855e51b
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xuNADKo-qPLrKAQl6iBrHTuwcqmq3YosqsUJQJG6WX4EDuwu7WX4_M1kH9kJvkRPFydjz-GzPNwAn0uVeYNCWeuVFKkqhUiuJGy-zpqqrgC6Z1jsuR-XFrfh7V9ytwajLhaFjlZ1NbA21nzpaI_-BppbI24qM_Xp6TqlqFO2udiU0TCyt4H-2FGPrsIkmWeG83xycj66u31ZdiAVTsWyZqMcR79M-MSOSsIrKha-4ppbB_yM73Tqf4WfYjlFj0l8O8w6shckufFrhEtyFnail8-QsUkl_3wNJ6HI8DrFyUtJ_vMd_ah7GyQC9l0-w6WaBxuKFXt5mOCTXi8cw34fb4fm_3xdpLJWQOl6yJnUlR1SsGPNOmAoxlS1rdOZGOu4YL0ohayuqzJCSGeaCZ05ULg-cBWF8EfgX2JhMJ-ErJIWStlaVQSDjBQYXxufc-Vxl1mdBGnsAJ52U9NOSEUMjkiBh6hVhHsCAJPj2CNFYtw3T2b2OWqFrU2eGG8assKLEK-OkFaogxppQMOzrlOSvSdmamXEm5gzglxJtle7LqgWxErs77oZIRy2c6_c5c_j_20ewlWOwsjyRcwwbzWwRvmGw0dgerKvhn16cR70Wsr8CPH_U1w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QE4IFpAFArkUAQcIuLYieNDhXah1Za2K1RaqTfXXymH7m7ZzYL4c_w2ZrJO2QvceoucyI7G45l5tucNwI50uRcYtKW-8iIVpahSK4kbL7NG1SqgS6b9juNROTwTn8-L8zX43eXC0LXKzia2htpPHe2Rv0dTS-RtRcY-XH9PqWoUna52JTRMLK3gd1uKsZjYcRh-_UQIN989-ITz_TrP9_dOPw7TWGUgdbxkTepKjoCyYsw7YRTCEVvW6AeNdNwxXpRC1laozJB-GuaCZ04olwfOgjC-CBz7vQPrgjJce7A-2Bt9ObnZ5SHWzYply8RAzlVG59KMSMkUlSdfcYVtxYB_-YXW2e0_hAcxSk36S7XagLUw2YT7K9yFm7ARrcI8eRupq989AklodjwOsVJT0r-6RBk238bJAL2lT7Dp6wKN0w_qvM2oSE4WV2H-GM5uRWhPoDeZTsJTSIpK2rpSBoGTFxjMGJ9z5_Mqsz4L0tgt2OmkpK-XDBwakQsJU68IcwsGJMGbT4g2u22Yzi51XIW6NnVmuGHMCitKfDJOWlEVxJATCoZjvSH5a1rczcw4E3MU8E-JJkv3pWpBs8Thtrsp0nHVz_VfHX32_9ev4O7w9PhIHx2MDp_DvRwDpeVtoG3oNbNFeIGBTmNfRm1K4OK2FfgPulkQQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggGgBUSiQQxFwiBrHThwfKrRLu2oprKpCpd5cf6UcurtlNwviL_KrmMk6ZS9w6y1yIjsaj2fm2Z43ADvS5V5g0Jb6yotUlKJKrSRuvMwaVauALpn2Oz6PysMz8fG8OF-D310uDF2r7Gxia6j91NEe-S6aWiJvKzK2W8drESf7w_fX31OqIEUnrV05DRPLLPi9lm4sJnkch18_Ec7N9472ce5f5_nw4OuHwzRWHEgdL1mTupIjuKwY804YhdDEljX6RCMdd4wXpZC1FSozpKuGueCZE8rlgbMgjC8Cx37vwLpELyl6sD44GJ2c3uz4EANnxbJlkiDnKqMzakYEZYpKla-4xbZ6wL98ROv4hg_hQYxYk_5SxTZgLUw24f4Kj-EmbEQLMU_eRhrrd49AErIdj0Os2pT0ry5Rhs23cTJAz-kTbPqyQEP1gzpvsyuS08VVmD-Gs1sR2hPoTaaT8BSSopK2rpRBEOUFBjbG59z5vMqsz4I0dgt2Oinp6yUbh0YUQ8LUK8LcggFJ8OYTotBuG6azSx1XpK5NnRluGLPCihKfjJNWVAWx5YSC4VhvSP6aFnozM87EfAX8U6LM0n2pWgAtcbjtbop0tABz_Vdfn_3_9Su4i4qsPx2Njp_DvRxjpuXFoG3oNbNFeIExT2NfRmVK4OK29fcPF5sUbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recommendation+Algorithm+Based+on+Survival+Action+Rules&rft.jtitle=Applied+sciences&rft.au=Hermansa%2C+Marek&rft.au=Sikora%2C+Marek&rft.au=Sikora%2C+Beata&rft.au=Wr%C3%B3bel%2C+%C5%81ukasz&rft.date=2024-04-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=7&rft.spage=2939&rft_id=info:doi/10.3390%2Fapp14072939&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app14072939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon