Beyond repeated-measures analysis of variance: advanced statistical methods for the analysis of longitudinal data in anesthesia research
Research in the field of anesthesiology relies heavily on longitudinal designs for answering questions about long-term efficacy and safety of various anesthetic and pain regimens. Yet, anesthesiology research is lagging in the use of advanced statistical methods for analyzing longitudinal data. The...
Saved in:
Published in | Regional anesthesia and pain medicine Vol. 37; no. 1; p. 99 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2012
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Research in the field of anesthesiology relies heavily on longitudinal designs for answering questions about long-term efficacy and safety of various anesthetic and pain regimens. Yet, anesthesiology research is lagging in the use of advanced statistical methods for analyzing longitudinal data. The goal of this article was to increase awareness of the advantages of modern statistical methods and promote their use in anesthesia research.
Here we introduce 2 modern and advanced statistical methods for analyzing longitudinal data: the generalized estimating equations (GEE) and mixed-effects models (MEM). These methods were compared with the conventional repeated-measures analysis of variance (RM-ANOVA) through a clinical example with 2 types of end points (continuous and binary). In addition, we compared GEE and MEM to RM-ANOVA through a simulation study with varying sample sizes, varying number of repeated measures, and scenarios with and without missing data.
In the clinical study, the 3 methods are found to be similar in terms of statistical estimation, whereas the parameter interpretations are somewhat different. The simulation study shows that the methods of GEE and MEM are more efficient in that they are able to achieve higher power with smaller sample size or lower number of repeated measurements in both complete and missing data scenarios.
Based on their advantages over RM-ANOVA, GEE and MEM should be strongly considered for the analysis of longitudinal data. In particular, GEE should be used to explore overall average effects, and MEM should be used when subject-specific effects (in addition to overall average effects) are of primary interest. |
---|---|
AbstractList | Research in the field of anesthesiology relies heavily on longitudinal designs for answering questions about long-term efficacy and safety of various anesthetic and pain regimens. Yet, anesthesiology research is lagging in the use of advanced statistical methods for analyzing longitudinal data. The goal of this article was to increase awareness of the advantages of modern statistical methods and promote their use in anesthesia research.
Here we introduce 2 modern and advanced statistical methods for analyzing longitudinal data: the generalized estimating equations (GEE) and mixed-effects models (MEM). These methods were compared with the conventional repeated-measures analysis of variance (RM-ANOVA) through a clinical example with 2 types of end points (continuous and binary). In addition, we compared GEE and MEM to RM-ANOVA through a simulation study with varying sample sizes, varying number of repeated measures, and scenarios with and without missing data.
In the clinical study, the 3 methods are found to be similar in terms of statistical estimation, whereas the parameter interpretations are somewhat different. The simulation study shows that the methods of GEE and MEM are more efficient in that they are able to achieve higher power with smaller sample size or lower number of repeated measurements in both complete and missing data scenarios.
Based on their advantages over RM-ANOVA, GEE and MEM should be strongly considered for the analysis of longitudinal data. In particular, GEE should be used to explore overall average effects, and MEM should be used when subject-specific effects (in addition to overall average effects) are of primary interest. |
Author | Mazumdar, Madhu Memtsoudis, Stavros G Ma, Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Ma fullname: Ma, Yan email: may@hss.edu organization: Research Division, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY 10021, USA. may@hss.edu – sequence: 2 givenname: Madhu surname: Mazumdar fullname: Mazumdar, Madhu – sequence: 3 givenname: Stavros G surname: Memtsoudis fullname: Memtsoudis, Stavros G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22189576$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUMlOwzAQtRCILvAHCPkHUrwkTsKtVGxSJTjAuRrbY2qUOFXsVsof8NmkAg6cZt42T5oZOQ1dQEKuOFtwVpc3y-XrgmnGJUpeCYnalPkJmfJCiqxSBZ-QWYyfjLGqzNU5mQjBq7oo1ZR83eHQBUt73CEktFmLEPc9RgoBmiH6SDtHD9B7CAZvKdjDcbE0Jkg-Jm-goS2mbWcjdV1P0xb_RZsufPi0t37kqIUE1IfRgHE0Rg9jcUTozfaCnDloIl7-zjl5f7h_Wz1l65fH59VynRmpeMpM4RxXruamqLgxpTBcSxRM5kyISjMxklzXeS5qJbg8IpZrLUvlwKpRn5Prn7u7vW7Rbna9b6EfNn8vEd_dhmfj |
CitedBy_id | crossref_primary_10_1111_puar_13602 crossref_primary_10_1002_pri_2031 crossref_primary_10_1016_j_pmrj_2015_04_009 crossref_primary_10_1097_AAP_0b013e31824c6846 crossref_primary_10_1016_j_hrtlng_2023_10_008 crossref_primary_10_1007_s10508_015_0505_5 crossref_primary_10_1016_j_spinee_2020_04_003 crossref_primary_10_1186_s13293_020_00336_1 crossref_primary_10_1002_jor_23006 crossref_primary_10_1111_opo_12399 crossref_primary_10_1093_pm_pnv010 crossref_primary_10_18632_oncotarget_20670 crossref_primary_10_1097_JOM_0000000000002577 crossref_primary_10_1093_bja_aev217 crossref_primary_10_1016_j_jbiomech_2024_112396 crossref_primary_10_2106_JBJS_N_00698 crossref_primary_10_4097_kjae_2015_68_4_340 crossref_primary_10_1093_pm_pnv018 crossref_primary_10_1213_ANE_0000000000000985 crossref_primary_10_1038_s41598_018_25570_x crossref_primary_10_1111_dmcn_14569 crossref_primary_10_1093_pm_pnaa309 crossref_primary_10_1016_j_biopsych_2015_03_023 crossref_primary_10_1016_j_jamda_2016_12_084 crossref_primary_10_1080_09602011_2024_2424982 crossref_primary_10_3390_v12101122 crossref_primary_10_21814_diacritica_733 crossref_primary_10_1007_s10071_023_01755_4 crossref_primary_10_1111_1440_1681_12456 crossref_primary_10_1016_j_brs_2015_12_001 crossref_primary_10_1007_s00394_015_1108_6 crossref_primary_10_1155_2021_7266263 crossref_primary_10_1136_bmjopen_2020_038952 crossref_primary_10_1002_ohn_263 crossref_primary_10_1016_j_ergon_2023_103520 crossref_primary_10_1016_j_ijnurstu_2020_103638 crossref_primary_10_1097_AAP_0000000000000110 crossref_primary_10_1097_ALN_0000000000003600 crossref_primary_10_1016_j_jash_2014_05_017 crossref_primary_10_1371_journal_pone_0263386 crossref_primary_10_1016_j_specom_2017_01_006 crossref_primary_10_1016_j_arth_2015_06_034 crossref_primary_10_1007_s12630_018_1149_4 crossref_primary_10_4187_respcare_05556 crossref_primary_10_1016_j_neuron_2019_05_042 crossref_primary_10_1016_j_aap_2017_07_013 crossref_primary_10_1111_geb_13090 crossref_primary_10_1016_j_midw_2021_103104 crossref_primary_10_1007_s00216_022_04460_2 crossref_primary_10_1016_j_brat_2024_104560 crossref_primary_10_2519_jospt_2018_7913 crossref_primary_10_1007_s12041_021_01309_y crossref_primary_10_3390_mti1040022 crossref_primary_10_1016_j_ijnurstu_2020_103527 crossref_primary_10_1016_j_jclinane_2020_109807 crossref_primary_10_1007_s11420_015_9434_z crossref_primary_10_1016_j_nepr_2022_103412 crossref_primary_10_3348_kjr_2023_0393 crossref_primary_10_1088_0967_3334_37_2_257 crossref_primary_10_1016_j_jsxm_2019_06_006 crossref_primary_10_1016_j_jclinane_2022_111008 crossref_primary_10_1007_s11896_022_09519_5 crossref_primary_10_1371_journal_pone_0227247 crossref_primary_10_1097_AAP_0000000000000332 crossref_primary_10_1111_ped_13021 crossref_primary_10_1007_s00520_022_07263_4 crossref_primary_10_1016_j_msksp_2023_102781 crossref_primary_10_1186_s41927_020_00157_0 crossref_primary_10_1213_ANE_0000000000003892 crossref_primary_10_1080_14992027_2017_1370137 crossref_primary_10_1097_AAP_0000000000000418 crossref_primary_10_1097_NOR_0000000000000382 crossref_primary_10_1371_journal_pone_0114664 crossref_primary_10_1080_08952841_2020_1774225 crossref_primary_10_1016_j_cortex_2017_09_026 crossref_primary_10_1016_j_resuscitation_2024_110150 crossref_primary_10_1016_j_exger_2020_110914 crossref_primary_10_1097_EJA_0000000000000860 crossref_primary_10_1302_0301_620X_95B5_30406 crossref_primary_10_7717_peerj_7620 crossref_primary_10_1016_j_jclinane_2016_11_012 crossref_primary_10_1038_s41598_021_88904_2 crossref_primary_10_1021_acs_molpharmaceut_0c01014 crossref_primary_10_1016_j_apergo_2023_104200 crossref_primary_10_1289_EHP7164 crossref_primary_10_1016_j_humov_2023_103149 crossref_primary_10_23736_S1973_9087_21_06831_3 crossref_primary_10_3233_NRE_182641 crossref_primary_10_1016_j_bjane_2017_08_003 crossref_primary_10_1097_EJA_0000000000001046 crossref_primary_10_3390_ijerph19042332 crossref_primary_10_3389_fendo_2021_765916 crossref_primary_10_1371_journal_pone_0118586 crossref_primary_10_1016_j_clinph_2014_06_026 crossref_primary_10_1186_s13550_021_00790_x crossref_primary_10_1089_omi_2015_0047 crossref_primary_10_1016_j_gerinurse_2023_10_008 crossref_primary_10_1016_j_jss_2016_06_083 crossref_primary_10_1038_s41598_022_17549_6 crossref_primary_10_1152_ajprenal_00536_2014 crossref_primary_10_1111_jocn_16485 crossref_primary_10_1002_sim_6817 crossref_primary_10_1038_tpj_2014_85 crossref_primary_10_2106_JBJS_18_00195 crossref_primary_10_1249_MSS_0000000000001396 crossref_primary_10_1136_bmjopen_2021_054952 crossref_primary_10_1007_s00167_016_4120_3 crossref_primary_10_3389_fnins_2017_00425 crossref_primary_10_1007_s44186_022_00027_y crossref_primary_10_1016_j_apjon_2023_100261 crossref_primary_10_3389_fphys_2024_1409304 crossref_primary_10_1016_j_jretconser_2021_102731 crossref_primary_10_1016_j_jsams_2016_08_012 crossref_primary_10_1016_j_bandc_2017_02_001 crossref_primary_10_1016_j_sjpain_2013_08_001 crossref_primary_10_1016_j_ijnurstu_2017_10_021 crossref_primary_10_3344_kjp_23114 crossref_primary_10_3389_fspor_2021_689805 crossref_primary_10_1111_jan_16466 crossref_primary_10_1016_j_physbeh_2018_07_028 crossref_primary_10_1186_s12889_019_7045_1 crossref_primary_10_1007_s00421_018_3802_6 crossref_primary_10_1371_journal_pone_0215563 crossref_primary_10_1016_j_jep_2025_119437 crossref_primary_10_1111_iej_14102 crossref_primary_10_1002_ecs2_3936 crossref_primary_10_1016_j_bjan_2017_07_005 crossref_primary_10_1371_journal_pone_0213026 crossref_primary_10_1371_journal_pone_0248122 crossref_primary_10_1093_pm_pny004 crossref_primary_10_1038_s41598_024_62952_w crossref_primary_10_1016_j_injury_2025_112298 crossref_primary_10_12968_bjcn_2021_26_2_84 crossref_primary_10_7717_peerj_11156 crossref_primary_10_1177_03635465251313808 crossref_primary_10_1186_s12879_019_4438_9 crossref_primary_10_1016_j_jad_2024_01_018 crossref_primary_10_1093_jpepsy_jsae070 crossref_primary_10_2196_53825 crossref_primary_10_1186_s12931_018_0922_9 crossref_primary_10_3390_jcm10071425 crossref_primary_10_1111_jonm_12812 crossref_primary_10_2147_JPR_S506708 crossref_primary_10_1016_j_anclin_2018_04_003 crossref_primary_10_3390_brainsci14080779 crossref_primary_10_3928_19404921_20191024_02 crossref_primary_10_1007_s00520_017_4004_1 crossref_primary_10_1186_s13075_016_1147_2 crossref_primary_10_1016_j_bbi_2023_07_016 crossref_primary_10_1016_j_jclinepi_2022_09_008 crossref_primary_10_1186_s13102_025_01057_x crossref_primary_10_1177_17479541231226413 crossref_primary_10_2196_27639 crossref_primary_10_3390_e21010061 crossref_primary_10_1177_0269215519880295 crossref_primary_10_1186_s13063_020_4055_3 crossref_primary_10_1186_s12912_019_0344_0 crossref_primary_10_1002_jeab_129 crossref_primary_10_1213_ANE_0000000000003511 crossref_primary_10_1007_s11684_021_0908_8 crossref_primary_10_1016_j_bbr_2019_112082 crossref_primary_10_1007_s00264_014_2527_3 crossref_primary_10_12968_ijtr_2019_0066 crossref_primary_10_1097_SHK_0000000000001113 crossref_primary_10_1016_j_psychres_2017_11_045 crossref_primary_10_3390_brainsci14080798 crossref_primary_10_1371_journal_pone_0288953 crossref_primary_10_1111_ajco_12477 crossref_primary_10_3390_ijerph19063509 crossref_primary_10_1186_s12872_024_03881_4 crossref_primary_10_1186_s12903_024_04780_y crossref_primary_10_5435_JAAOSGlobal_D_21_00287 crossref_primary_10_1007_s00737_020_01090_4 crossref_primary_10_1097_SAP_0000000000002983 crossref_primary_10_1111_psyp_12732 crossref_primary_10_3390_jcm8050606 crossref_primary_10_1038_srep15297 crossref_primary_10_1016_j_archger_2014_05_008 crossref_primary_10_1016_j_pbb_2024_173951 crossref_primary_10_1007_s40520_023_02506_8 crossref_primary_10_1186_s12883_015_0344_y crossref_primary_10_4103_joacp_joacp_13_22 crossref_primary_10_1186_s13550_019_0481_1 crossref_primary_10_1093_bja_aev166 crossref_primary_10_1111_jvh_13323 crossref_primary_10_3171_2013_4_JNS122102 crossref_primary_10_3389_fspor_2021_719097 crossref_primary_10_3389_fneur_2018_00211 crossref_primary_10_1007_s10067_015_2977_z crossref_primary_10_6061_clinics_2019_e833 crossref_primary_10_1038_s41598_020_73235_5 crossref_primary_10_1177_00236772221140669 crossref_primary_10_1186_s13293_021_00371_6 crossref_primary_10_1016_j_aap_2017_01_011 crossref_primary_10_1007_s00213_023_06356_0 crossref_primary_10_1093_abm_kaac055 crossref_primary_10_1161_CIRCULATIONAHA_117_030312 crossref_primary_10_7717_peerj_9401 crossref_primary_10_1111_1460_6984_12074 crossref_primary_10_7717_peerj_11867 crossref_primary_10_1016_j_jclinepi_2021_12_007 crossref_primary_10_23736_S0375_9393_18_12266_8 crossref_primary_10_1016_j_bja_2018_04_041 crossref_primary_10_1016_j_ajic_2022_10_015 crossref_primary_10_1590_1678_460x202148072 crossref_primary_10_1111_nicc_13244 crossref_primary_10_1111_papr_12892 crossref_primary_10_4085_1062_6050_46_16 crossref_primary_10_1007_s00702_016_1537_2 crossref_primary_10_1016_j_joms_2023_01_010 crossref_primary_10_3389_fnmol_2025_1488261 crossref_primary_10_1109_TNSRE_2020_3044947 crossref_primary_10_1016_j_gerinurse_2021_08_009 crossref_primary_10_1161_CIRCULATIONAHA_118_035849 crossref_primary_10_1080_03610918_2020_1869983 crossref_primary_10_1093_ejo_cjab069 crossref_primary_10_1080_10864415_2021_1967005 crossref_primary_10_2478_stattrans_2022_0043 crossref_primary_10_1016_j_jagp_2019_05_017 crossref_primary_10_1111_phn_12690 crossref_primary_10_1097_ALN_0000000000001228 crossref_primary_10_1016_j_ijdevneu_2017_09_001 crossref_primary_10_3758_s13415_016_0480_x crossref_primary_10_3389_fpsyt_2024_1492332 crossref_primary_10_1016_j_exger_2022_112022 crossref_primary_10_1097_AAP_0000000000000274 crossref_primary_10_1016_j_jand_2019_09_013 crossref_primary_10_1007_s12671_022_01829_3 crossref_primary_10_1111_ejn_15858 crossref_primary_10_2519_jospt_2018_7794 crossref_primary_10_1371_journal_pone_0237133 crossref_primary_10_1007_s10750_015_2455_2 crossref_primary_10_1080_03075079_2017_1401060 crossref_primary_10_1016_j_jelekin_2022_102717 crossref_primary_10_3233_JAD_220215 crossref_primary_10_1016_j_jpsychires_2015_06_008 crossref_primary_10_1371_journal_pone_0196778 crossref_primary_10_3138_jmvfh_2023_0091 crossref_primary_10_1177_15347354211040827 crossref_primary_10_1073_pnas_2026676118 crossref_primary_10_1016_j_ijnurstu_2022_104217 crossref_primary_10_1016_j_psychres_2017_12_046 crossref_primary_10_1016_j_psychres_2020_112759 crossref_primary_10_1111_cns_12976 crossref_primary_10_1021_acschemneuro_2c00251 crossref_primary_10_1016_j_resplu_2023_100487 crossref_primary_10_1097_ALN_0000000000000119 crossref_primary_10_1111_aas_12509 crossref_primary_10_1016_j_ijpsycho_2022_01_008 crossref_primary_10_1213_ANE_0b013e318265bacd crossref_primary_10_1021_acsmeasuresciau_3c00025 crossref_primary_10_1111_ijcp_13443 crossref_primary_10_3389_fpsyg_2018_02369 crossref_primary_10_1186_s12891_022_05566_5 crossref_primary_10_1007_s11136_018_1888_2 crossref_primary_10_4103_ija_ija_667_22 crossref_primary_10_18632_oncotarget_16269 crossref_primary_10_1097_AAP_0000000000000254 crossref_primary_10_1016_j_humov_2019_102507 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1097/AAP.0b013e31823ebc74 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1532-8651 |
ExternalDocumentID | 22189576 |
Genre | Research Support, U.S. Gov't, P.H.S Comparative Study Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: UL1 RR024996 – fundername: AHRQ HHS grantid: RFA-HS-05-14 – fundername: NCRR NIH HHS grantid: UL1-RR024996 |
GroupedDBID | --- --K .GJ .Z2 026 0R~ 123 1B1 1~5 29P 4.4 4G. 53G 5RE 5VS 7-5 7RV 7X7 88E 88I 8AF 8AO 8FI 8FJ 8FW 8R4 8R5 AAEDT AAHLL AAKAS AALRI AAQFI AAQXK AARTV AAWTL AAXUO ABBUW ABJNI ABMAC ABUWG ABWVN ABXVJ ABZAD ACDDN ACEWG ACGFO ACGFS ACGOD ACRPL ACWDW ACWRI ACXNZ ADBBV ADMUD ADNMO ADZCM AE3 AE6 AENEX AERUA AFKRA AFTRI AGINI AGQPQ AHMBA AITUG AIZYK AJNYG AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS AZFZN AZQEC BENPR BKEYQ BPHCQ BQLVK BVXVI CAG CCPQU CGR COF CS3 CUY CVF CXRWF DU5 DWQXO E.X EBS ECM EIF EJD EO8 EO9 EX3 F5P FDB FEDTE FGOYB FL- FYUFA G-Q GNUQQ HAJ HCIFZ HMCUK HVGLF HZ~ IHE IN~ JK8 K8S KD2 L-C M18 M1P M2P M2Q M41 N9A NAPCQ NPM NQ- NXWIF O9- OCUKA OHYEH ORVUJ OUVQU OVD OXXIT P2P PCD PHGZM PHGZT PMFND PQQKQ PROAC PSQYO Q2X R2- RIG RMJ ROL RPZ RWL S0X S4S SDG SDP SEW SJN SSZ TAE TEORI UHS UKHRP V2I W3M WOW X3V X3W ZGI ZXP |
ID | FETCH-LOGICAL-c361t-c5ff16f91c581cc72c1b3e20340228b021cc1b9442962131cc104bb376fad6b02 |
IngestDate | Sat May 31 02:07:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c361t-c5ff16f91c581cc72c1b3e20340228b021cc1b9442962131cc104bb376fad6b02 |
PMID | 22189576 |
ParticipantIDs | pubmed_primary_22189576 |
PublicationCentury | 2000 |
PublicationDate | 2012 Jan-Feb |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012 Jan-Feb |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Regional anesthesia and pain medicine |
PublicationTitleAlternate | Reg Anesth Pain Med |
PublicationYear | 2012 |
SSID | ssj0008746 |
Score | 2.4740348 |
Snippet | Research in the field of anesthesiology relies heavily on longitudinal designs for answering questions about long-term efficacy and safety of various... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 99 |
SubjectTerms | Analysis of Variance Anesthesiology - statistics & numerical data Arthroplasty, Replacement, Knee - adverse effects Biomedical Research - statistics & numerical data Computer Simulation Data Interpretation, Statistical Humans Longitudinal Studies Models, Statistical Pain, Postoperative - diagnosis Pain, Postoperative - etiology Pain, Postoperative - prevention & control Randomized Controlled Trials as Topic Research Design - statistics & numerical data Time Factors Tourniquets Treatment Outcome |
Title | Beyond repeated-measures analysis of variance: advanced statistical methods for the analysis of longitudinal data in anesthesia research |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22189576 |
Volume | 37 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS91AEF6OLZS-lFZtrW1lH_om0Wx2s0n6digtIkRKUdAnyd6q4LnAuTz4C_wp_kxnbyc5x2OxfQnJbjaEzMfszGTmG4S-yrQoDC9VkhlCE0ZVnpScqoSJTChRFlmjbIFzfcKPztjxeX7e6913spZmU3Egb9fWlfyPVGEM5GqrZP9BsouHwgCcg3zhCBKG47NkvCg_GYNG1SoZ-ICfpV1uqUbm4A1b0bqy5vjH39YROYpmVzxim0hPFgmH3cU3I9vPaKZc7yybTWrjIw2oR7hxct3sB66gq66N-1v_8fHFzn2OjqCBtav_8mtnvF60GK2b29lA-bTvulFXs8WEHkwnI3iVic9Oa-awwYfWYCFs4fI_YthCR1ULupgHutmgiz0BzBLmvGL1XZQe6XvPI9zv_2oDuhnVQvrOPx0IjAcOAxlYNFXuO878fXaFhTtObaAN8Edsg1UbFQo7flkwHssyq-Jw3etY0unwiBUHxhkyp2_Rm-CB4L6H0zvU08NN9KoOctlCdx5V-BGqcAQGHhkcUfUNR0zhDqZwwBQGTGGAwNLSLqawxRS-HuIWKzhiahud_fxx-v0oCf06Ekk5mSYyN4ZwUxGZl0TKIpNEUJ2llFmSJQHWpISRioEJxDNC7VXKhIAtzjSKw_x79GI4GuodhAkxOq1SacD3Y4bSspCc2pqFkqWKUvYRffDf8HLsSVku49fdfXLmE3rdAvEzemlAC-gvYFJOxZ6T5wOBInyE |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+repeated-measures+analysis+of+variance%3A+advanced+statistical+methods+for+the+analysis+of+longitudinal+data+in+anesthesia+research&rft.jtitle=Regional+anesthesia+and+pain+medicine&rft.au=Ma%2C+Yan&rft.au=Mazumdar%2C+Madhu&rft.au=Memtsoudis%2C+Stavros+G&rft.date=2012-01-01&rft.eissn=1532-8651&rft.volume=37&rft.issue=1&rft.spage=99&rft_id=info:doi/10.1097%2FAAP.0b013e31823ebc74&rft_id=info%3Apmid%2F22189576&rft_id=info%3Apmid%2F22189576&rft.externalDocID=22189576 |