Elimination of Fusarium mycotoxin deoxynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives

Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high contamination level and frequency. Applying microbial antagonists to inhibit fungal DON synthesis and detoxification of DON into low toxic metabolites ar...

Full description

Saved in:
Bibliographic Details
Published inTrends in food science & technology Vol. 124; pp. 96 - 107
Main Authors Tian, Ye, Zhang, Dachuan, Cai, Pengli, Lin, Huikang, Ying, Hao, Hu, Qian-Nan, Wu, Aibo
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Ltd 01.06.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high contamination level and frequency. Applying microbial antagonists to inhibit fungal DON synthesis and detoxification of DON into low toxic metabolites are biological approaches to eliminate DON via an environment friendly manner. Therefore, it is essential to review the latest research work on Fusarium biocontrol and DON bio-detoxification. We summarized recent reported microbial and enzymatic methods for DON elimination. The microbial antagonists on Fusarium control and DON detoxification microbes/enzymes, as well as their control mechanisms were systematically reviewed. In addition, we highlighted the potentials of biological methods for DON elimination and discussed novel approaches for DON detoxification enzymes discovery guided by computational strategy. Successful cases of controlling DON producing fungi by microbial antagonists and detoxifying DON by microbes and enzymes were reported in the past several years, which would provide new opportunities to eliminate mycotoxin DON and promote large-scale usage of bio control-based methods. On the other hand, registration and technical difficulties in practical application should be comprehensively considered and solved in future. Additionally, we proposed a conceptual framework of combining the computational tools with multi omics approaches for DON detoxification enzymes discovery, which could provide a new foundation for future mycotoxin detoxification research. •DON is a food contaminant with high contamination level and frequency.•Microbial antagonists exhibit potentials on F. graminearum control.•Microbes and enzymes are desirable to dispose DON contaminated cereal grains.•Application of computational strategy towards DON detoxification enzyme screen is highlighted.
AbstractList Background: Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high contamination level and frequency. Applying microbial antagonists to inhibit fungal DON synthesis and detoxification of DON into low toxic metabolites are biological approaches to eliminate DON via an environment friendly manner. Therefore, it is essential to review the latest research work on Fusarium biocontrol and DON bio-detoxification. Scope and approach: We summarized recent reported microbial and enzymatic methods for DON elimination. The microbial antagonists on Fusarium control and DON detoxification microbes/enzymes, as well as their control mechanisms were systematically reviewed. In addition, we highlighted the potentials of biological methods for DON elimination and discussed novel approaches for DON detoxification enzymes discovery guided by computational strategy. Key finding and conclusion: Successful cases of controlling DON producing fungi by microbial antagonists and detoxifying DON by microbes and enzymes were reported in the past several years, which would provide new opportunities to eliminate mycotoxin DON and promote large-scale usage of bio control-based methods. On the other hand, registration and technical difficulties in practical application should be comprehensively considered and solved in future. Additionally, we proposed a conceptual framework of combining the computational tools with multi omics approaches for DON detoxification enzymes discovery, which could provide a new foundation for future mycotoxin detoxification research.
Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high contamination level and frequency. Applying microbial antagonists to inhibit fungal DON synthesis and detoxification of DON into low toxic metabolites are biological approaches to eliminate DON via an environment friendly manner. Therefore, it is essential to review the latest research work on Fusarium biocontrol and DON bio-detoxification. We summarized recent reported microbial and enzymatic methods for DON elimination. The microbial antagonists on Fusarium control and DON detoxification microbes/enzymes, as well as their control mechanisms were systematically reviewed. In addition, we highlighted the potentials of biological methods for DON elimination and discussed novel approaches for DON detoxification enzymes discovery guided by computational strategy. Successful cases of controlling DON producing fungi by microbial antagonists and detoxifying DON by microbes and enzymes were reported in the past several years, which would provide new opportunities to eliminate mycotoxin DON and promote large-scale usage of bio control-based methods. On the other hand, registration and technical difficulties in practical application should be comprehensively considered and solved in future. Additionally, we proposed a conceptual framework of combining the computational tools with multi omics approaches for DON detoxification enzymes discovery, which could provide a new foundation for future mycotoxin detoxification research.
Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high contamination level and frequency. Applying microbial antagonists to inhibit fungal DON synthesis and detoxification of DON into low toxic metabolites are biological approaches to eliminate DON via an environment friendly manner. Therefore, it is essential to review the latest research work on Fusarium biocontrol and DON bio-detoxification. We summarized recent reported microbial and enzymatic methods for DON elimination. The microbial antagonists on Fusarium control and DON detoxification microbes/enzymes, as well as their control mechanisms were systematically reviewed. In addition, we highlighted the potentials of biological methods for DON elimination and discussed novel approaches for DON detoxification enzymes discovery guided by computational strategy. Successful cases of controlling DON producing fungi by microbial antagonists and detoxifying DON by microbes and enzymes were reported in the past several years, which would provide new opportunities to eliminate mycotoxin DON and promote large-scale usage of bio control-based methods. On the other hand, registration and technical difficulties in practical application should be comprehensively considered and solved in future. Additionally, we proposed a conceptual framework of combining the computational tools with multi omics approaches for DON detoxification enzymes discovery, which could provide a new foundation for future mycotoxin detoxification research. •DON is a food contaminant with high contamination level and frequency.•Microbial antagonists exhibit potentials on F. graminearum control.•Microbes and enzymes are desirable to dispose DON contaminated cereal grains.•Application of computational strategy towards DON detoxification enzyme screen is highlighted.
Author Wu, Aibo
Hu, Qian-Nan
Lin, Huikang
Tian, Ye
Cai, Pengli
Ying, Hao
Zhang, Dachuan
Author_xml – sequence: 1
  givenname: Ye
  surname: Tian
  fullname: Tian, Ye
– sequence: 2
  givenname: Dachuan
  surname: Zhang
  fullname: Zhang, Dachuan
– sequence: 3
  givenname: Pengli
  orcidid: 0000-0002-7910-6558
  surname: Cai
  fullname: Cai, Pengli
– sequence: 4
  givenname: Huikang
  surname: Lin
  fullname: Lin, Huikang
– sequence: 5
  givenname: Hao
  surname: Ying
  fullname: Ying, Hao
– sequence: 6
  givenname: Qian-Nan
  surname: Hu
  fullname: Hu, Qian-Nan
  email: qnhu@sibs.ac.cn
– sequence: 7
  givenname: Aibo
  surname: Wu
  fullname: Wu, Aibo
  email: abwu@sibs.ac.cn
BookMark eNp9kU9v1DAQxS1UJLaFL8DJEpdySOp_cRLEBS0tRaroBc6W15mgWSX2Yjurbu98b7xdTj30NJrR741m3jsnZz54IOQ9ZzVnXF9t64xjqgUTomaqZky8IivetX0lWSPPyIr1QlVCKPWGnKe0ZayMm2ZF_l5POKO3GYOnYaQ3S7IRl5nOBxdyeEBPBwgPB497O4EPE738ev_jI92jpTO6GDZoJ2r9QME_Huayx9GUo83wGyF9ouslRvC5zGxe0hM4LnmJQHcQ0w5cxj2kt-T1aKcE7_7XC_Lr5vrn-ra6u__2ff3lrnJS81w5PirZN1oMvO-l7mQvh845PTSNhNK7TddJXZ630vWjdoMYVddYuWk1gNC9vCCXp727GP4skLKZMTmYJushLMkIrTlTWveqoB-eoduwRF-uK1TbCNW2kheqO1HFiZQijMZhfjKzeICT4cwc8zFbc8zHHPMxTJlyYpGKZ9JdxNnGw8uizycRFJf2CNEkh-AdDBiLl2YI-JL8H3M3rZI
CitedBy_id crossref_primary_10_1093_bib_bbae089
crossref_primary_10_3390_toxics12070526
crossref_primary_10_1016_j_foodcont_2024_110335
crossref_primary_10_36253_phyto_15152
crossref_primary_10_1016_j_snb_2023_134192
crossref_primary_10_3390_foods12163071
crossref_primary_10_1021_acs_jafc_3c07179
crossref_primary_10_3390_molecules27238146
crossref_primary_10_1016_j_cofs_2023_101074
crossref_primary_10_1111_1541_4337_13203
crossref_primary_10_1016_j_scitotenv_2023_167028
crossref_primary_10_3390_microorganisms11051165
crossref_primary_10_1007_s00203_024_04208_9
crossref_primary_10_3390_foods11172693
crossref_primary_10_1016_j_jhazmat_2023_132806
crossref_primary_10_1016_j_foodres_2024_114275
crossref_primary_10_1016_j_fgb_2024_103899
crossref_primary_10_1016_j_foodchem_2022_135228
crossref_primary_10_1016_j_foodcont_2023_110027
crossref_primary_10_3389_fmicb_2024_1359947
crossref_primary_10_1007_s11540_024_09742_z
crossref_primary_10_1016_j_foodcont_2024_110640
crossref_primary_10_1021_acs_jafc_3c09100
crossref_primary_10_3390_toxins14090591
crossref_primary_10_18470_1992_1098_2023_4_104_113
crossref_primary_10_1016_j_foodchem_2025_143706
crossref_primary_10_3389_fvets_2025_1493496
crossref_primary_10_1016_j_talanta_2024_125806
crossref_primary_10_3390_jof10090606
crossref_primary_10_1093_af_vfac079
crossref_primary_10_3390_toxins15120702
crossref_primary_10_1016_j_mtnano_2023_100330
crossref_primary_10_1016_j_ijbiomac_2024_129512
crossref_primary_10_3390_microorganisms12010173
crossref_primary_10_1002_ps_8200
crossref_primary_10_1016_j_fm_2024_104676
crossref_primary_10_1007_s00604_024_06676_8
crossref_primary_10_3390_foods13111746
crossref_primary_10_1021_acs_jafc_3c03194
crossref_primary_10_1016_j_foodchem_2025_142947
crossref_primary_10_1021_acscatal_3c04461
crossref_primary_10_3390_foods12132555
crossref_primary_10_1021_acs_jafc_3c01403
crossref_primary_10_1021_acs_jafc_4c04055
crossref_primary_10_1016_j_ijbiomac_2024_130484
crossref_primary_10_1016_j_jclepro_2024_144024
crossref_primary_10_1080_10408398_2023_2294166
crossref_primary_10_1016_j_foodchem_2024_142064
crossref_primary_10_1021_acs_jafc_4c06999
crossref_primary_10_1016_j_tifs_2024_104513
crossref_primary_10_1016_j_ecoenv_2023_115395
crossref_primary_10_1016_j_foodcont_2022_109472
crossref_primary_10_3390_biotech12020032
crossref_primary_10_1186_s40538_025_00744_8
crossref_primary_10_1016_j_foodchem_2023_137609
crossref_primary_10_1080_10408398_2023_2220402
crossref_primary_10_1016_j_mcat_2025_114827
crossref_primary_10_1007_s10658_023_02736_6
crossref_primary_10_3390_foods13132057
crossref_primary_10_1016_j_foodchem_2024_140550
crossref_primary_10_3390_foods13213373
Cites_doi 10.1016/j.biocontrol.2017.06.011
10.3390/toxins12040258
10.1002/prot.10465
10.1093/bioinformatics/btaa937
10.1080/07391102.2018.1478751
10.1007/s00253-010-2857-z
10.1007/s10822-012-9584-8
10.1111/1541-4337.12594
10.1128/AEM.01075-17
10.1016/j.tifs.2020.05.026
10.3390/plants9060762
10.3390/toxins8110335
10.1038/s41467-020-17844-8
10.1021/acs.jcim.9b00220
10.1080/17460441.2016.1190706
10.1016/j.bpj.2020.05.020
10.3389/fpls.2020.574775
10.1104/pp.16.00371
10.1016/j.aquaculture.2009.02.037
10.1074/jbc.M307552200
10.1093/bioinformatics/bty535
10.3389/fmicb.2019.02172
10.1016/j.tifs.2021.06.045
10.3390/toxins12060363
10.1038/s41467-018-05683-7
10.1021/acs.jcim.8b00545
10.1128/AEM.03227-12
10.1021/acs.jcim.6b00355
10.3390/toxins11050295
10.1080/10408398.2019.1571479
10.1021/acs.jcim.0c00489
10.3389/fmicb.2016.00572
10.1007/s11274-011-0785-4
10.1002/prot.26019
10.1093/bioinformatics/btab054
10.1038/s41598-017-08799-w
10.1016/j.tifs.2019.12.021
10.1021/acscatal.9b04321
10.1093/jxb/erx109
10.1021/acs.jctc.9b00366
10.3389/fmicb.2016.00395
10.1126/science.aba5435
10.18632/oncotarget.22800
10.1094/MPMI-11-19-0310-R
10.1080/19440049.2011.576402
10.1038/s41589-019-0446-8
10.1016/j.biocontrol.2020.104329
10.1016/j.tifs.2018.11.003
10.1016/j.cropro.2018.07.006
10.1080/19440049.2018.1461254
10.1002/jobm.200310353
10.3390/toxins13030198
10.1111/1751-7915.12874
10.1016/j.fct.2020.111276
10.1186/s13321-019-0394-z
10.1016/j.fct.2017.12.066
10.3390/toxins9120383
10.1007/s12550-015-0224-8
10.1007/s00253-011-3401-5
10.1111/j.1469-8137.2007.02333.x
10.1016/j.foodcont.2022.108834
10.3389/fmicb.2018.01573
10.3390/toxins13080552
10.3389/fmicb.2021.658421
10.1111/ppa.12785
10.1186/s40168-021-01077-y
10.1080/19440040903571747
10.1111/jam.14634
10.1016/j.tifs.2021.02.038
10.1016/j.ijbiomac.2022.01.055
10.1099/mic.0.052639-0
10.1080/02652030110091154
10.1016/j.cels.2020.03.002
10.1146/annurev-phyto-082718-100318
10.3390/toxins8100277
10.1073/pnas.1821905116
10.1111/mpp.12048
10.1111/lam.12790
10.1021/acs.biochem.7b01007
10.1007/s10526-020-10062-7
10.1094/PHYTO-04-18-0123-R
10.3389/fmicb.2019.02356
10.3390/toxins12030184
10.1016/j.foodchem.2018.10.011
10.1111/1541-4337.12545
10.1111/1750-3841.15106
10.1093/bioinformatics/btaa524
10.3390/cells9102319
10.1111/1541-4337.12567
10.1016/j.plgene.2016.11.005
10.1016/j.foodchem.2020.126703
10.3390/toxins12120790
10.1007/s00253-020-10673-1
10.1021/acscentsci.0c00229
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2022
DBID AAYXX
CITATION
7QO
7QR
7ST
7T7
8FD
C1K
F28
FR3
P64
SOI
7S9
L.6
DOI 10.1016/j.tifs.2022.04.002
DatabaseName CrossRef
Biotechnology Research Abstracts
Chemoreception Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Biotechnology Research Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-3053
EndPage 107
ExternalDocumentID 10_1016_j_tifs_2022_04_002
S0924224422001248
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
WH7
WUQ
XFK
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QO
7QR
7ST
7T7
8FD
C1K
EFKBS
F28
FR3
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c361t-c1f439562d199368393d8cc6d553e368cb8836002a3c9f6cd2f485a3b76ee2693
IEDL.DBID .~1
ISSN 0924-2244
IngestDate Fri Jul 11 10:06:21 EDT 2025
Wed Aug 13 02:39:29 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
Tue Jul 01 04:02:42 EDT 2025
Fri Feb 23 02:39:21 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Food safety
Deoxynivalenol
Microbial antagonist
Mycotoxin
Detoxification
Biocontrol
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c1f439562d199368393d8cc6d553e368cb8836002a3c9f6cd2f485a3b76ee2693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7910-6558
PQID 2675247731
PQPubID 2045388
PageCount 12
ParticipantIDs proquest_miscellaneous_2661046694
proquest_journals_2675247731
crossref_citationtrail_10_1016_j_tifs_2022_04_002
crossref_primary_10_1016_j_tifs_2022_04_002
elsevier_sciencedirect_doi_10_1016_j_tifs_2022_04_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Trends in food science & technology
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ikunaga, Sato, Grond, Numaziri, Yoshida, Yamaya, Hiradate, Hasegawa, Toshima, Koitabashi, Ito, Karlovsky, Tsushima (bib41) 2011; 89
He, Shi, Yang, Huang, Yuan, Yi, Wu, Li, Gao, Zhang, Liao (bib34) 2020; 12
Das, Shimshi, Raz, Nitoker Eliaz, Mhashal, Ansbacher, Major (bib16) 2019; 15
de Castro, Soares, Pereira, Silva, Silva, Mancini, Caetano, da Cunha, Ramalho (bib7) 2019; 37
Ito, Sato, Ishizaka, Yoshida, Koitabashi, Yoshida, Tsushima (bib43) 2013; 79
Karlovsky (bib44) 2011; 91
Wang, Wang, Ji, Xu, Yu, Shi, Xu (bib89) 2019; 276
Das, Scholes, Sen, Orengo (bib15) 2021; 37
Pasquet, Changenet, Macadré, Boex-Fontvieille, Soulhat, Bouchabké-Coussa, Dalmais, Atanasova-Pénichon, Bendahmane, Saindrenan, Dufresne (bib64) 2016; 172
McGann (bib57) 2012; 26
Afsah‐Hejri, Hajeb, Ehsani (bib1) 2020; 19
Deng, You, Nepovimova, Wang, Musilek, Wu, Wu, Kuca (bib19) 2021; 110
Mishra, Srivastava, Dewangan, Divakar, Kumar Rath (bib58) 2020; 60
Basinska-Barczak, Blaszczyk, Szentner (bib3) 2020; 9
He, Zhang, Yi, Tang, Yuan, Guo, Wu, Qu, Li, Liao (bib38) 2017; 7
Wang, Xu, Sun, Xu, Chai, Berg, Cernava, Ma, Chen (bib92) 2021; 9
Schweiger, Steiner, Ametz, Siegwart, Wiesenberger, Berthiller, Lemmens, Jia, Adam, Muehlbauer, Kreil, Buerstmayr (bib73) 2013; 14
Pereira, Caffarena, Dos Santos (bib65) 2016; 56
Zhang, Qin, Guo, Zhang, Ma, Ji, Zhao (bib100) 2020; 140
Mousavi Khaneghah, Farhadi, Nematollahi, Vasseghian, Fakhri (bib60) 2020; 102
Pan, Mionetto, Tiscornia, Bettucci (bib63) 2015; 31
Verdonk, Cole, Hartshorn, Murray, Taylor (bib83) 2003; 52
Ryu, Kim, Lee (bib69) 2019; 116
Chen, Heng, Qin, Bian (bib8) 2018; 13
Legrand, Picot, Cobo-Díaz, Chen, Le Floch (bib47) 2017; 113
Lee, Lee, Kim (bib46) 2016; 11
Guo, Ji, Wang, Sun (bib30) 2020; 19
Wang, Sun, Ge, Zhao, Hou, Wang, Lyu, Chen, Xu, Guo, Li, Su, Li, Wang, Bo, Fang, Zhuang, Cheng, Wu, Kong (bib88) 2020; 368
Wang, Hou, Guo, Zhang, Sun, Wei, Shen (bib86) 2020; 12
Huang, Fang, Tian, Chen, Lin, Guo, Li, Fan, Song, Chen, Ahati, Wang, Zhao, Martin, Chen (bib39) 2020; 16
Shah, Ali, Yahya, Zhu, Wang, Si, Rahman, Ma (bib74) 2018; 67
Awad, Ghareeb, Bohm, Zentek (bib2) 2010; 27
Sarrocco, Esteban, Vicente, Bernardi, Plainchamp, Domenichini, Puntoni, Baroncelli, Vannacci, Dufresne (bib70) 2020
Tkatchenko (bib80) 2020; 11
Matarese, Sarrocco, Gruber, Seidl-Seiboth, Vannacci (bib55) 2012; 158
Cuzick, Urban, Hammond-Kosack (bib14) 2008; 177
Zhang, Chen, Hu, Jia, Ma, Tang, Wang (bib99) 2020
Hanif, Zhang, Li, Li, Xu, Zubair, Zhang, Jia, Zhao, Liang, Majid, Yan, Farzand, Wu, Gu, Gao (bib32) 2019; 11
Duan, Lupyan, Wang (bib20) 2020; 119
Yan, Liu, Liu, Yao, Liu, Wu, Gong (bib97) 2020
Nesic, Habschied, Mastanjevic (bib61) 2021; 13
Wang, Liao, Peng, Chen, Zhang, Nüssler, Shi, Liu, Yang (bib87) 2019; 83
Zhai, Zhong, Gao, Lu, Bie, Zhao, Zhang, Lu (bib98) 2019; 10
Gao, Mu, Wen, Sun, Chen, Deng (bib25) 2018; 112
He, Yuan, Zhang, Guo, Gong, Zhang, Wu, Huang, Qu, Li, Liao (bib37) 2016; 8
Wu, Wang, Nepovimova, Wang, Yang, Li, Zhang, Kuca (bib95) 2017; 8
Hu, Li, Min, Yu, Liu, Huang, Zhang, Yang, Dai, Chen, Guo (bib40) 2022; 200
Li, Wang, Huang, Chen, Wang (bib51) 2017; 9
Dellafiora, Gonaus, Streit, Galaverna, Moll, Vogtentanz, Schatzmayr, Dall'Asta, Prasad (bib17) 2020; 12
Gentile, Agrawal, Hsing, Ton, Ban, Norinder, Gleave, Cherkasov (bib26) 2020; 6
Leite, Freitas, Silva, Barbosa, Ramos (bib48) 2021; 115
Palazzini, Yerkovich, Alberione, Chiotta, Chulze (bib62) 2017; 9
Sarrocco, Valenti, Manfredini, Esteban, Bernardi, Puntoni, Baroncelli, Haidukowski, Moretti, Vannacci (bib71) 2019; 109
He, Wu, Liu, Jiang, Yu, Qiu, Wang, Zhang, Ma (bib36) 2020; 11
Su, Yang, Du, Feng, Liu, Li, Wang (bib77) 2019; 59
Carere, Hassan, Lepp, Zhou (bib6) 2018; 9
Lu, Luo, Ruan, Wang, Yang (bib54) 2021
Fuchs, Binder, Heidler, Krska (bib23) 2002; 19
Islam, Zhou, Young, Goodwin, Pauls (bib42) 2012; 28
Vanhoutte, De Tender, Demeyere, Abdallah, Ommeslag, Vermeir, Saeger, Debode, Meyer, Croubels, Audenaert, De Gelder (bib82) 2021; 13
Cantoro, Palazzini, Yerkovich, Miralles, Chulze (bib4) 2021; 66
Li, Wan, Shu, Jiang, Zhao, Zeng (bib52) 2020; 10
Yang, Li, Wu, Liu, Li, Luo, Hu, Wang, Wu (bib96) 2020; 96
Colombo, Kunova, Pizzatti, Saracchi, Cortesi, Pasquali (bib13) 2019; 10
Mou, Eakes, Cooper, Foster, Standaert, Podar, Doktycz, Parks (bib59) 2021; 89
Mazurenko, Prokop, Damborsky (bib56) 2019; 10
Li, Zhu, de Lange, Zhou, He, Yu, Gong, Young (bib53) 2011; 28
Tian, Tan, Liu, Liao, Sun, Wang, Wu (bib78) 2016; 7
Gimeno, Kagi, Drakopoulos, Banziger, Lehmann, Forrer, Keller, Vogelgsang (bib27) 2020; 129
Sayyari, Faeste, Hansen, Uhlig, Framstad, Schatzmayr, Sivertsen (bib72) 2018; 35
Visani, Hughes, Hassoun (bib84) 2021
Zhang, Zhang, Qin, Wang, Wang, Bin, Xie, Zheng, Luo (bib101) 2021; 12
Feizollahi, Roopesh (bib22) 2021
Chen, Tan, Wang, Zhong, Liu, Yang, Luo, Chen, Jiang, Zheng (bib10) 2020; 36
Ren, Hu, Wang, Du, Zong (bib68) 2020; 12
Kemp, Vaughan, McCormick, Brown, Bakker (bib45) 2020; 149
Wang, Wang, Man, Lee, Shi, Xu (bib90) 2020; 104
Demissie, Witte, Robinson, Sproule, Foote, Johnston, Harris, Overy, Loewen (bib18) 2020; 33
Claeys, Romano, De Ruyck, Wilson, Fervers, Korenjak, Zavadil, Gunter, De Saeger, De Boevre, Huybrechts (bib12) 2020; 19
Chen, Wang, Yang, Wen, Sun, Chai, Ma (bib11) 2018; 9
Guan, He, Young, Zhu, Li, Ji, Zhou (bib29) 2009; 290
Li, Michlmayr, Schweiger, Malachova, Shin, Huang, Dong, Wiesenberger, McCormick, Lemmens, Fruhmann, Hametner, Berthiller, Adam, Muehlbauer (bib49) 2017; 68
Poppenberger, Berthiller, Lucyshyn, Sieberer, Schuhmacher, Krska, Kuchler, Glossl, Luschnig, Adam (bib66) 2003; 278
Gong, Li, Yuan, Song, Yao, He, Zhang, Liao (bib28) 2015; 10
Carere, Hassan, Lepp, Zhou (bib5) 2018; 11
Wetterhorn, Gabardi, Michlmayr, Malachova, Busman, McCormick, Berthiller, Adam, Rayment (bib94) 2017; 56
Tsubaki, Tomii, Sese (bib81) 2019; 35
Liu, Mao, Hu, Tron, Lin, Wang, Sun (bib50) 2020; 85
Wang, Wu, Li, Jia, Su, Hao, Yang (bib91) 2019; 11
He, Shi, Yang, Huang, Zhao, Wu, Dong, Li, Zhang, Liao (bib35) 2020; 321
Sood, Kapoor, Kumar, Sheteiwy, Ramakrishnan, Landi, Araniti, Sharma (bib75) 2020; 9
Volkl, Vogler, Schollenberger, Karlovsky (bib85) 2004; 44
Qin, Zhang, Liu, Guo, Tang, Zhang, Ma, Ji, Zhao (bib67) 2022
Wang, Zhang, Zhao, Han, Liu, Zhang (bib93) 2017; 65
Tian, Tan, Liu, Yan, Liao, Chen, de Saeger, Yang, Zhang, Wu (bib79) 2016; 8
Gu, Yang, Yuan, Shi, Wu, Lou, Huo, Wu, Borriss, Gao (bib31) 2017; 83
Fang, Huang, Zhang, Wang, Zhang, Li, Yan, Zhang, Yan, Xu (bib21) 2019; 59
Stumbriene, Gudiukaite, Semaskiene, Svegzda, Jonaviciene, Suproniene (bib76) 2018; 113
Gado, Beckham, Payne (bib24) 2020; 60
He, Hassan, Perilla, Li, Boland, Zhou (bib33) 2016; 7
Chen, Kistler, Ma (bib9) 2019; 57
Vanhoutte (10.1016/j.tifs.2022.04.002_bib82) 2021; 13
Das (10.1016/j.tifs.2022.04.002_bib16) 2019; 15
Tian (10.1016/j.tifs.2022.04.002_bib79) 2016; 8
Wang (10.1016/j.tifs.2022.04.002_bib88) 2020; 368
Guan (10.1016/j.tifs.2022.04.002_bib29) 2009; 290
Wang (10.1016/j.tifs.2022.04.002_bib91) 2019; 11
Sarrocco (10.1016/j.tifs.2022.04.002_bib71) 2019; 109
Deng (10.1016/j.tifs.2022.04.002_bib19) 2021; 110
Chen (10.1016/j.tifs.2022.04.002_bib11) 2018; 9
Zhang (10.1016/j.tifs.2022.04.002_bib100) 2020; 140
Colombo (10.1016/j.tifs.2022.04.002_bib13) 2019; 10
Pasquet (10.1016/j.tifs.2022.04.002_bib64) 2016; 172
Mazurenko (10.1016/j.tifs.2022.04.002_bib56) 2019; 10
Guo (10.1016/j.tifs.2022.04.002_bib30) 2020; 19
Tian (10.1016/j.tifs.2022.04.002_bib78) 2016; 7
Visani (10.1016/j.tifs.2022.04.002_bib84) 2021
Tkatchenko (10.1016/j.tifs.2022.04.002_bib80) 2020; 11
Karlovsky (10.1016/j.tifs.2022.04.002_bib44) 2011; 91
Mishra (10.1016/j.tifs.2022.04.002_bib58) 2020; 60
Palazzini (10.1016/j.tifs.2022.04.002_bib62) 2017; 9
McGann (10.1016/j.tifs.2022.04.002_bib57) 2012; 26
Su (10.1016/j.tifs.2022.04.002_bib77) 2019; 59
Ren (10.1016/j.tifs.2022.04.002_bib68) 2020; 12
Gu (10.1016/j.tifs.2022.04.002_bib31) 2017; 83
Lee (10.1016/j.tifs.2022.04.002_bib46) 2016; 11
Duan (10.1016/j.tifs.2022.04.002_bib20) 2020; 119
Carere (10.1016/j.tifs.2022.04.002_bib6) 2018; 9
He (10.1016/j.tifs.2022.04.002_bib38) 2017; 7
Yan (10.1016/j.tifs.2022.04.002_bib97) 2020
Sayyari (10.1016/j.tifs.2022.04.002_bib72) 2018; 35
Awad (10.1016/j.tifs.2022.04.002_bib2) 2010; 27
Mou (10.1016/j.tifs.2022.04.002_bib59) 2021; 89
Gong (10.1016/j.tifs.2022.04.002_bib28) 2015; 10
Kemp (10.1016/j.tifs.2022.04.002_bib45) 2020; 149
Sarrocco (10.1016/j.tifs.2022.04.002_bib70) 2020
Wang (10.1016/j.tifs.2022.04.002_bib90) 2020; 104
Wang (10.1016/j.tifs.2022.04.002_bib89) 2019; 276
Li (10.1016/j.tifs.2022.04.002_bib52) 2020; 10
Li (10.1016/j.tifs.2022.04.002_bib53) 2011; 28
Li (10.1016/j.tifs.2022.04.002_bib51) 2017; 9
Carere (10.1016/j.tifs.2022.04.002_bib5) 2018; 11
Mousavi Khaneghah (10.1016/j.tifs.2022.04.002_bib60) 2020; 102
Chen (10.1016/j.tifs.2022.04.002_bib10) 2020; 36
Li (10.1016/j.tifs.2022.04.002_bib49) 2017; 68
Chen (10.1016/j.tifs.2022.04.002_bib9) 2019; 57
Wang (10.1016/j.tifs.2022.04.002_bib86) 2020; 12
Nesic (10.1016/j.tifs.2022.04.002_bib61) 2021; 13
Stumbriene (10.1016/j.tifs.2022.04.002_bib76) 2018; 113
Zhai (10.1016/j.tifs.2022.04.002_bib98) 2019; 10
He (10.1016/j.tifs.2022.04.002_bib37) 2016; 8
Islam (10.1016/j.tifs.2022.04.002_bib42) 2012; 28
Shah (10.1016/j.tifs.2022.04.002_bib74) 2018; 67
Ikunaga (10.1016/j.tifs.2022.04.002_bib41) 2011; 89
Poppenberger (10.1016/j.tifs.2022.04.002_bib66) 2003; 278
Qin (10.1016/j.tifs.2022.04.002_bib67) 2022
Pereira (10.1016/j.tifs.2022.04.002_bib65) 2016; 56
Fang (10.1016/j.tifs.2022.04.002_bib21) 2019; 59
Claeys (10.1016/j.tifs.2022.04.002_bib12) 2020; 19
Dellafiora (10.1016/j.tifs.2022.04.002_bib17) 2020; 12
Wang (10.1016/j.tifs.2022.04.002_bib93) 2017; 65
Basinska-Barczak (10.1016/j.tifs.2022.04.002_bib3) 2020; 9
Zhang (10.1016/j.tifs.2022.04.002_bib101) 2021; 12
Gao (10.1016/j.tifs.2022.04.002_bib25) 2018; 112
Wetterhorn (10.1016/j.tifs.2022.04.002_bib94) 2017; 56
Wu (10.1016/j.tifs.2022.04.002_bib95) 2017; 8
He (10.1016/j.tifs.2022.04.002_bib35) 2020; 321
Zhang (10.1016/j.tifs.2022.04.002_bib99) 2020
Matarese (10.1016/j.tifs.2022.04.002_bib55) 2012; 158
Demissie (10.1016/j.tifs.2022.04.002_bib18) 2020; 33
Ryu (10.1016/j.tifs.2022.04.002_bib69) 2019; 116
Chen (10.1016/j.tifs.2022.04.002_bib8) 2018; 13
Feizollahi (10.1016/j.tifs.2022.04.002_bib22) 2021
Liu (10.1016/j.tifs.2022.04.002_bib50) 2020; 85
He (10.1016/j.tifs.2022.04.002_bib34) 2020; 12
Volkl (10.1016/j.tifs.2022.04.002_bib85) 2004; 44
Wang (10.1016/j.tifs.2022.04.002_bib87) 2019; 83
Lu (10.1016/j.tifs.2022.04.002_bib54) 2021
Tsubaki (10.1016/j.tifs.2022.04.002_bib81) 2019; 35
Gentile (10.1016/j.tifs.2022.04.002_bib26) 2020; 6
Afsah‐Hejri (10.1016/j.tifs.2022.04.002_bib1) 2020; 19
Huang (10.1016/j.tifs.2022.04.002_bib39) 2020; 16
He (10.1016/j.tifs.2022.04.002_bib36) 2020; 11
Legrand (10.1016/j.tifs.2022.04.002_bib47) 2017; 113
Hu (10.1016/j.tifs.2022.04.002_bib40) 2022; 200
Wang (10.1016/j.tifs.2022.04.002_bib92) 2021; 9
Das (10.1016/j.tifs.2022.04.002_bib15) 2021; 37
Gimeno (10.1016/j.tifs.2022.04.002_bib27) 2020; 129
Ito (10.1016/j.tifs.2022.04.002_bib43) 2013; 79
Leite (10.1016/j.tifs.2022.04.002_bib48) 2021; 115
Pan (10.1016/j.tifs.2022.04.002_bib63) 2015; 31
Hanif (10.1016/j.tifs.2022.04.002_bib32) 2019; 11
Schweiger (10.1016/j.tifs.2022.04.002_bib73) 2013; 14
Cuzick (10.1016/j.tifs.2022.04.002_bib14) 2008; 177
He (10.1016/j.tifs.2022.04.002_bib33) 2016; 7
Yang (10.1016/j.tifs.2022.04.002_bib96) 2020; 96
Cantoro (10.1016/j.tifs.2022.04.002_bib4) 2021; 66
Verdonk (10.1016/j.tifs.2022.04.002_bib83) 2003; 52
de Castro (10.1016/j.tifs.2022.04.002_bib7) 2019; 37
Gado (10.1016/j.tifs.2022.04.002_bib24) 2020; 60
Sood (10.1016/j.tifs.2022.04.002_bib75) 2020; 9
Fuchs (10.1016/j.tifs.2022.04.002_bib23) 2002; 19
References_xml – volume: 200
  start-page: 388
  year: 2022
  end-page: 396
  ident: bib40
  article-title: Crystal structure and biochemical analysis of the specialized deoxynivalenol–detoxifying glyoxalase SPG from Gossypium hirsutum
  publication-title: International Journal of Biological Macromolecules
– volume: 13
  year: 2018
  ident: bib8
  article-title: A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight
  publication-title: PLoS One
– volume: 28
  start-page: 7
  year: 2012
  end-page: 13
  ident: bib42
  article-title: Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil
  publication-title: World Journal of Microbiology and Biotechnology
– volume: 68
  start-page: 2187
  year: 2017
  end-page: 2197
  ident: bib49
  article-title: A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium Head Blight resistance in transgenic wheat
  publication-title: Journal of Experimental Botany
– volume: 89
  start-page: 336
  year: 2021
  end-page: 347
  ident: bib59
  article-title: Machine learning-based prediction of enzyme substrate scope: Application to bacterial nitrilases
  publication-title: Proteins Structure Function and Genetics
– volume: 66
  start-page: 259
  year: 2021
  end-page: 270
  ident: bib4
  article-title: Bacillus velezensis RC 218 as a biocontrol agent against Fusarium graminearum: Effect on penetration, growth and TRI5 expression in wheat spikes
  publication-title: BioControl
– volume: 8
  start-page: 110708
  year: 2017
  end-page: 110726
  ident: bib95
  article-title: Antioxidant agents against trichothecenes: New hints for oxidative stress treatment
  publication-title: Oncotarget
– volume: 13
  year: 2021
  ident: bib61
  article-title: Possibilities for the biological control of mycotoxins in food and feed
  publication-title: Toxins
– volume: 11
  start-page: 1106
  year: 2018
  end-page: 1111
  ident: bib5
  article-title: The enzymatic detoxification of the mycotoxin deoxynivalenol: Identification of DepA from the DON epimerization pathway
  publication-title: Microbial Biotechnology
– volume: 83
  year: 2017
  ident: bib31
  article-title: Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum
  publication-title: Applied and Environmental Microbiology
– volume: 116
  start-page: 13996
  year: 2019
  end-page: 14001
  ident: bib69
  article-title: Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  year: 2020
  ident: bib3
  article-title: Plant cell wall changes in common wheat roots as a result of their interaction with beneficial fungi of Trichoderma
  publication-title: Cells
– volume: 67
  start-page: 532
  year: 2018
  end-page: 548
  ident: bib74
  article-title: Integrated control of fusarium head blight and deoxynivalenol mycotoxin in wheat
  publication-title: Plant Pathology
– volume: 19
  start-page: 1449
  year: 2020
  end-page: 1464
  ident: bib12
  article-title: Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 10
  start-page: 308
  year: 2020
  end-page: 322
  ident: bib52
  article-title: Monn: A multi-objective neural network for predicting compound-protein interactions and affinities
  publication-title: Cell Systems
– volume: 10
  start-page: 1210
  year: 2019
  end-page: 1223
  ident: bib56
  article-title: Machine learning in enzyme engineering
  publication-title: ACS Catalysis
– volume: 278
  start-page: 47905
  year: 2003
  end-page: 47914
  ident: bib66
  article-title: Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana
  publication-title: Journal of Biological Chemistry
– volume: 368
  year: 2020
  ident: bib88
  article-title: Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat
  publication-title: Science
– volume: 11
  year: 2019
  ident: bib91
  article-title: ACID: A free tool for drug repurposing using consensus inverse docking strategy
  publication-title: Journal of Cheminformatics
– volume: 12
  year: 2020
  ident: bib17
  article-title: An in silico target fishing approach to identify novel ochratoxin A hydrolyzing enzyme
  publication-title: Toxins
– volume: 79
  start-page: 1619
  year: 2013
  end-page: 1628
  ident: bib43
  article-title: Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol
  publication-title: Applied and Environmental Microbiology
– volume: 177
  start-page: 990
  year: 2008
  end-page: 1000
  ident: bib14
  article-title: Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue
  publication-title: New Phytologist
– volume: 109
  start-page: 560
  year: 2019
  end-page: 570
  ident: bib71
  article-title: Is exploitation competition involved in a multitrophic strategy for the biocontrol of Fusarium head blight?
  publication-title: Phytopathology
– volume: 31
  start-page: 137
  year: 2015
  end-page: 143
  ident: bib63
  article-title: Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat
  publication-title: Mycotoxin Research
– volume: 12
  year: 2020
  ident: bib86
  article-title: Isolation and characterization of a deoxynivalenol-degrading bacterium Bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice
  publication-title: Toxins
– volume: 19
  start-page: 379
  year: 2002
  end-page: 386
  ident: bib23
  article-title: Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797
  publication-title: Food Additives & Contaminants
– volume: 60
  start-page: 1346
  year: 2020
  end-page: 1374
  ident: bib58
  article-title: Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 8
  start-page: 335
  year: 2016
  ident: bib79
  article-title: Detoxification of deoxynivalenol via glycosylation represents novel insights on antagonistic activities of Trichoderma when confronted with Fusarium graminearum
  publication-title: Toxins
– volume: 19
  start-page: 895
  year: 2020
  end-page: 926
  ident: bib30
  article-title: Deoxynivalenol: Masked forms, fate during food processing, and potential biological remedies
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 9
  start-page: 131
  year: 2021
  ident: bib92
  article-title: Post-translational regulation of autophagy is involved in intra-microbiome suppression of fungal pathogens
  publication-title: Microbiome
– start-page: 12
  year: 2020
  ident: bib97
  article-title: Natural occurrence of deoxynivalenol and its acetylated derivatives in Chinese maize and wheat collected in 2017
  publication-title: Toxins
– volume: 14
  start-page: 772
  year: 2013
  end-page: 785
  ident: bib73
  article-title: Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes
  publication-title: Molecular Plant Pathology
– volume: 59
  start-page: 4833
  year: 2019
  end-page: 4843
  ident: bib21
  article-title: Convolution neural network-based prediction of protein thermostability
  publication-title: Journal of Chemical Information and Modeling
– volume: 60
  start-page: 4098
  year: 2020
  end-page: 4107
  ident: bib24
  article-title: Improving enzyme optimum temperature prediction with resampling strategies and ensemble learning
  publication-title: Journal of Chemical Information and Modeling
– volume: 149
  year: 2020
  ident: bib45
  article-title: Sarocladium zeae is a systemic endophyte of wheat and an effective biocontrol agent against Fusarium head blight
  publication-title: Biological Control
– volume: 9
  year: 2020
  ident: bib75
  article-title: Trichoderma: The "secrets" of a multitalented biocontrol agent
  publication-title: Plants
– volume: 26
  start-page: 897
  year: 2012
  end-page: 906
  ident: bib57
  article-title: FRED and HYBRID docking performance on standardized datasets
  publication-title: Journal of Computer-Aided Molecular Design
– volume: 102
  start-page: 193
  year: 2020
  end-page: 202
  ident: bib60
  article-title: A systematic review and meta-analysis to investigate the concentration and prevalence of trichothecenes in the cereal-based food
  publication-title: Trends in Food Science & Technology
– volume: 96
  start-page: 233
  year: 2020
  end-page: 252
  ident: bib96
  article-title: Recent advances on toxicity and determination methods of mycotoxins in foodstuffs
  publication-title: Trends in Food Science & Technology
– volume: 89
  start-page: 419
  year: 2011
  end-page: 427
  ident: bib41
  article-title: Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol
  publication-title: Applied Microbiology and Biotechnology
– volume: 12
  start-page: 363
  year: 2020
  ident: bib34
  article-title: Novel soil bacterium strain Desulfitobacterium sp. PGC-3-9 detoxifies trichothecene mycotoxins in wheat via de-epoxidation under aerobic and anaerobic conditions
  publication-title: Toxins
– volume: 290
  start-page: 290
  year: 2009
  end-page: 295
  ident: bib29
  article-title: Transformation of trichothecene mycotoxins by microorganisms from fish digesta
  publication-title: Aquaculture
– volume: 19
  start-page: 1777
  year: 2020
  end-page: 1808
  ident: bib1
  article-title: Application of ozone for degradation of mycotoxins in food: A review
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– year: 2022
  ident: bib67
  article-title: A quinoprotein dehydrogenase from Pelagibacterium halotolerans ANSP101 oxidizes deoxynivalenol to 3-keto-deoxynivalenol
  publication-title: Food Control
– volume: 44
  start-page: 147
  year: 2004
  end-page: 156
  ident: bib85
  article-title: Microbial detoxification of mycotoxin deoxynivalenol
  publication-title: Journal of Basic Microbiology
– volume: 10
  start-page: 2172
  year: 2019
  ident: bib98
  article-title: Detoxification of deoxynivalenol by a mixed culture of soil bacteria with 3-epi-Deoxynivalenol as the main intermediate
  publication-title: Frontiers in Microbiology
– volume: 9
  start-page: 13
  year: 2017
  end-page: 18
  ident: bib62
  article-title: An integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions
  publication-title: Plant Gene
– volume: 12
  year: 2020
  ident: bib68
  article-title: Regulation efficacy and mechanism of the toxicity of microcystin-LR targeting protein phosphatase 1 via the biodegradation pathway
  publication-title: Toxins
– volume: 129
  start-page: 680
  year: 2020
  end-page: 694
  ident: bib27
  article-title: From laboratory to the field: Biological control of Fusarium graminearum on infected maize crop residues
  publication-title: Journal of Applied Microbiology
– volume: 119
  start-page: 115
  year: 2020
  end-page: 127
  ident: bib20
  article-title: Improving the accuracy of protein thermostability predictions for single point mutations
  publication-title: Biophysical Journal
– volume: 56
  start-page: 6585
  year: 2017
  end-page: 6596
  ident: bib94
  article-title: Determinants and expansion of specificity in a trichothecene UDP-glucosyltransferase from Oryza sativa
  publication-title: Biochemistry
– volume: 9
  start-page: 3429
  year: 2018
  ident: bib11
  article-title: Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation
  publication-title: Nature Communications
– volume: 6
  start-page: 939
  year: 2020
  end-page: 949
  ident: bib26
  article-title: Deep docking: A deep learning platform for augmentation of structure based drug discovery
  publication-title: ACS Central Science
– volume: 11
  year: 2019
  ident: bib32
  article-title: Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis
  publication-title: Toxins
– volume: 7
  start-page: 9549
  year: 2017
  ident: bib38
  article-title: An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain
  publication-title: Scientific Reports
– volume: 13
  year: 2021
  ident: bib82
  article-title: Bacterial enrichment cultures biotransform the mycotoxin deoxynivalenol into a novel metabolite toxic to plant and porcine cells
  publication-title: Toxins
– year: 2020
  ident: bib99
  article-title: Antagonistic action of Streptomyces pratensis S10 on Fusarium graminearum and its complete genome sequence
  publication-title: Environmental Microbiology
– volume: 321
  start-page: 126703
  year: 2020
  ident: bib35
  article-title: A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify deoxynivalenol in wheat via epimerization in a Devosia strain
  publication-title: Food Chemistry
– volume: 172
  start-page: 559
  year: 2016
  end-page: 574
  ident: bib64
  article-title: A Brachypodium UDP-glycosyltransferase confers root tolerance to deoxynivalenol and resistance to Fusarium infection
  publication-title: Plant Physiology
– volume: 110
  start-page: 551
  year: 2021
  end-page: 558
  ident: bib19
  article-title: Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans
  publication-title: Trends in Food Science & Technology
– year: 2021
  ident: bib22
  article-title: Mechanisms of deoxynivalenol (DON) degradation during different treatments: A review
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 7
  year: 2016
  ident: bib33
  article-title: Bacterial epimerization as a route for deoxynivalenol detoxification: The influence of growth and environmental conditions
  publication-title: Frontiers in Microbiology
– volume: 57
  start-page: 15
  year: 2019
  end-page: 39
  ident: bib9
  article-title: Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management
  publication-title: Annual Review of Phytopathology
– volume: 8
  year: 2016
  ident: bib37
  article-title: Aerobic de-epoxydation of trichothecene mycotoxins by a soil bacterial consortium isolated using in situ soil enrichment
  publication-title: Toxins
– volume: 11
  start-page: 707
  year: 2016
  end-page: 715
  ident: bib46
  article-title: Using reverse docking for target identification and its applications for drug discovery
  publication-title: Expert Opinion on Drug Discovery
– volume: 7
  start-page: 395
  year: 2016
  ident: bib78
  article-title: Functional agents to biologically control deoxynivalenol contamination in cereal grains
  publication-title: Frontiers in Microbiology
– volume: 158
  start-page: 98
  year: 2012
  end-page: 106
  ident: bib55
  article-title: Biocontrol of Fusarium head blight: Interactions between Trichoderma and mycotoxigenic Fusarium
  publication-title: Microbiology
– volume: 113
  start-page: 26
  year: 2017
  end-page: 38
  ident: bib47
  article-title: Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum
  publication-title: Biological Control
– volume: 83
  start-page: 41
  year: 2019
  end-page: 52
  ident: bib87
  article-title: Food raw materials and food production occurrences of deoxynivalenol in different regions
  publication-title: Trends in Food Science & Technology
– volume: 65
  start-page: 414
  year: 2017
  end-page: 422
  ident: bib93
  article-title: Isolation and characterization of a novel deoxynivalenol-transforming strain Paradevosia shaoguanensis DDB001 from wheat field soil
  publication-title: Letters in Applied Microbiology
– volume: 11
  start-page: 4125
  year: 2020
  ident: bib80
  article-title: Machine learning for chemical discovery
  publication-title: Nature Communications
– volume: 27
  start-page: 510
  year: 2010
  end-page: 520
  ident: bib2
  article-title: Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation
  publication-title: Food Additives & Contaminants Part A Chem Anal Control Expo Risk Assess
– volume: 276
  start-page: 436
  year: 2019
  end-page: 442
  ident: bib89
  article-title: Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16
  publication-title: Food Chemistry
– volume: 37
  start-page: 1099
  year: 2021
  end-page: 1106
  ident: bib15
  article-title: CATH functional families predict functional sites in proteins
  publication-title: Bioinformatics
– volume: 112
  start-page: 310
  year: 2018
  end-page: 319
  ident: bib25
  article-title: Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9
  publication-title: Food and Chemical Toxicology
– volume: 140
  start-page: 111276
  year: 2020
  ident: bib100
  article-title: Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101
  publication-title: Food and Chemical Toxicology
– volume: 91
  start-page: 491
  year: 2011
  end-page: 504
  ident: bib44
  article-title: Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives
  publication-title: Applied Microbiology and Biotechnology
– volume: 12
  start-page: 658421
  year: 2021
  ident: bib101
  article-title: Biodegradation of deoxynivalenol by Nocardioides sp. ZHH-013: 3-keto-Deoxynivalenol and 3-epi-Deoxynivalenol as intermediate products
  publication-title: Frontiers in Microbiology
– volume: 56
  start-page: 2495
  year: 2016
  end-page: 2506
  ident: bib65
  article-title: Boosting docking-based virtual screening with deep learning
  publication-title: Journal of Chemical Information and Modeling
– volume: 113
  start-page: 22
  year: 2018
  end-page: 28
  ident: bib76
  article-title: Screening of new bacterial isolates with antifungal activity and application of selected Bacillus sp. cultures for biocontrol of Fusarium graminearum under field conditions
  publication-title: Crop Protection
– volume: 15
  start-page: 5116
  year: 2019
  end-page: 5134
  ident: bib16
  article-title: EnzyDock: Protein-Ligand docking of multiple reactive states along a reaction coordinate in enzymes
  publication-title: Journal of Chemical Theory and Computation
– volume: 28
  start-page: 894
  year: 2011
  end-page: 901
  ident: bib53
  article-title: Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance
  publication-title: Food Additives & Contaminants Part A Chem Anal Control Expo Risk Assess
– year: 2021
  ident: bib54
  article-title: Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review
  publication-title: The Science of the Total Environment
– volume: 104
  start-page: 6045
  year: 2020
  end-page: 6056
  ident: bib90
  article-title: Metabolomics-guided analysis reveals a two-step epimerization of deoxynivalenol catalyzed by the bacterial consortium IFSN-C1
  publication-title: Applied Microbiology and Biotechnology
– volume: 9
  start-page: 383
  year: 2017
  ident: bib51
  article-title: Effects of adding Clostridium sp. WJ06 on intestinal morphology and microbial diversity of growing pigs fed with natural deoxynivalenol contaminated wheat
  publication-title: Toxins
– volume: 9
  start-page: 1573
  year: 2018
  ident: bib6
  article-title: The identification of DepB: An enzyme responsible for the final detoxification step in the deoxynivalenol epimerization pathway in Devosia mutans 17-2-E-8
  publication-title: Frontiers in Microbiology
– volume: 16
  start-page: 250
  year: 2020
  end-page: 256
  ident: bib39
  article-title: Aromatization of natural products by a specialized detoxification enzyme
  publication-title: Nature Chemical Biology
– volume: 11
  start-page: 574775
  year: 2020
  ident: bib36
  article-title: TaUGT6, a novel UDP-glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat
  publication-title: Frontiers of Plant Science
– volume: 115
  start-page: 307
  year: 2021
  end-page: 331
  ident: bib48
  article-title: Maize food chain and mycotoxins: A review on occurrence studies
  publication-title: Trends in Food Science & Technology
– volume: 10
  start-page: 2356
  year: 2019
  ident: bib13
  article-title: Selection of an endophytic Streptomyces sp. strain DEF09 from wheat roots as a biocontrol agent against Fusarium graminearum
  publication-title: Frontiers in Microbiology
– volume: 10
  year: 2015
  ident: bib28
  article-title: Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum
  publication-title: PLoS One
– volume: 85
  start-page: 1353
  year: 2020
  end-page: 1360
  ident: bib50
  article-title: Molecular docking studies and in vitro degradation of four aflatoxins (AFB1, AFB2, AFG1, and AFG2) by a recombinant laccase from Saccharomyces cerevisiae
  publication-title: Journal of Food Science
– year: 2021
  ident: bib84
  article-title: Enzyme promiscuity prediction using hierarchy-informed multi-label classification
  publication-title: Bioinformatics
– volume: 36
  start-page: 4406
  year: 2020
  end-page: 4414
  ident: bib10
  article-title: TransformerCPI: Improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments
  publication-title: Bioinformatics
– year: 2020
  ident: bib70
  article-title: Straw competition and wheat root endophytism of Trichoderma gamsii T6085 as useful traits in the biocontrol of Fusarium head blight
  publication-title: Phytopathology
– volume: 52
  start-page: 609
  year: 2003
  end-page: 623
  ident: bib83
  article-title: Improved protein-ligand docking using GOLD
  publication-title: Proteins Structure Function and Genetics
– volume: 35
  start-page: 309
  year: 2019
  end-page: 318
  ident: bib81
  article-title: Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences
  publication-title: Bioinformatics
– volume: 59
  start-page: 895
  year: 2019
  end-page: 913
  ident: bib77
  article-title: Comparative assessment of scoring functions: The CASF-2016 update
  publication-title: Journal of Chemical Information and Modeling
– volume: 37
  start-page: 2154
  year: 2019
  end-page: 2164
  ident: bib7
  article-title: Asymmetric biodegradation of the nerve agents sarin and VX by human dUTPase: Chemometrics, molecular docking and hybrid QM/MM calculations
  publication-title: Journal of Biomolecular Structure and Dynamics
– volume: 33
  start-page: 842
  year: 2020
  end-page: 858
  ident: bib18
  article-title: Transcriptomic and exometabolomic profiling reveals antagonistic and defensive modes of Clonostachys rosea action against Fusarium graminearum
  publication-title: Molecular Plant-Microbe Interactions
– volume: 35
  start-page: 1394
  year: 2018
  end-page: 1409
  ident: bib72
  article-title: Effects and biotransformation of the mycotoxin deoxynivalenol in growing pigs fed with naturally contaminated pelleted grains with and without the addition of Coriobacteriaceum DSM 11798
  publication-title: Food Additives & Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment
– volume: 113
  start-page: 26
  year: 2017
  ident: 10.1016/j.tifs.2022.04.002_bib47
  article-title: Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum
  publication-title: Biological Control
  doi: 10.1016/j.biocontrol.2017.06.011
– volume: 12
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib17
  article-title: An in silico target fishing approach to identify novel ochratoxin A hydrolyzing enzyme
  publication-title: Toxins
  doi: 10.3390/toxins12040258
– volume: 52
  start-page: 609
  year: 2003
  ident: 10.1016/j.tifs.2022.04.002_bib83
  article-title: Improved protein-ligand docking using GOLD
  publication-title: Proteins Structure Function and Genetics
  doi: 10.1002/prot.10465
– volume: 37
  start-page: 1099
  year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib15
  article-title: CATH functional families predict functional sites in proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa937
– volume: 37
  start-page: 2154
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib7
  article-title: Asymmetric biodegradation of the nerve agents sarin and VX by human dUTPase: Chemometrics, molecular docking and hybrid QM/MM calculations
  publication-title: Journal of Biomolecular Structure and Dynamics
  doi: 10.1080/07391102.2018.1478751
– volume: 89
  start-page: 419
  year: 2011
  ident: 10.1016/j.tifs.2022.04.002_bib41
  article-title: Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/s00253-010-2857-z
– volume: 26
  start-page: 897
  year: 2012
  ident: 10.1016/j.tifs.2022.04.002_bib57
  article-title: FRED and HYBRID docking performance on standardized datasets
  publication-title: Journal of Computer-Aided Molecular Design
  doi: 10.1007/s10822-012-9584-8
– volume: 19
  start-page: 1777
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib1
  article-title: Application of ozone for degradation of mycotoxins in food: A review
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/1541-4337.12594
– volume: 83
  year: 2017
  ident: 10.1016/j.tifs.2022.04.002_bib31
  article-title: Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.01075-17
– volume: 102
  start-page: 193
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib60
  article-title: A systematic review and meta-analysis to investigate the concentration and prevalence of trichothecenes in the cereal-based food
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2020.05.026
– volume: 9
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib75
  article-title: Trichoderma: The "secrets" of a multitalented biocontrol agent
  publication-title: Plants
  doi: 10.3390/plants9060762
– volume: 8
  start-page: 335
  year: 2016
  ident: 10.1016/j.tifs.2022.04.002_bib79
  article-title: Detoxification of deoxynivalenol via glycosylation represents novel insights on antagonistic activities of Trichoderma when confronted with Fusarium graminearum
  publication-title: Toxins
  doi: 10.3390/toxins8110335
– volume: 10
  year: 2015
  ident: 10.1016/j.tifs.2022.04.002_bib28
  article-title: Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum
  publication-title: PLoS One
– volume: 11
  start-page: 4125
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib80
  article-title: Machine learning for chemical discovery
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-17844-8
– year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib70
  article-title: Straw competition and wheat root endophytism of Trichoderma gamsii T6085 as useful traits in the biocontrol of Fusarium head blight
  publication-title: Phytopathology
– volume: 59
  start-page: 4833
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib21
  article-title: Convolution neural network-based prediction of protein thermostability
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/acs.jcim.9b00220
– volume: 11
  start-page: 707
  year: 2016
  ident: 10.1016/j.tifs.2022.04.002_bib46
  article-title: Using reverse docking for target identification and its applications for drug discovery
  publication-title: Expert Opinion on Drug Discovery
  doi: 10.1080/17460441.2016.1190706
– volume: 119
  start-page: 115
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib20
  article-title: Improving the accuracy of protein thermostability predictions for single point mutations
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2020.05.020
– volume: 11
  start-page: 574775
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib36
  article-title: TaUGT6, a novel UDP-glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat
  publication-title: Frontiers of Plant Science
  doi: 10.3389/fpls.2020.574775
– volume: 172
  start-page: 559
  year: 2016
  ident: 10.1016/j.tifs.2022.04.002_bib64
  article-title: A Brachypodium UDP-glycosyltransferase confers root tolerance to deoxynivalenol and resistance to Fusarium infection
  publication-title: Plant Physiology
  doi: 10.1104/pp.16.00371
– volume: 290
  start-page: 290
  year: 2009
  ident: 10.1016/j.tifs.2022.04.002_bib29
  article-title: Transformation of trichothecene mycotoxins by microorganisms from fish digesta
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2009.02.037
– volume: 278
  start-page: 47905
  year: 2003
  ident: 10.1016/j.tifs.2022.04.002_bib66
  article-title: Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M307552200
– volume: 35
  start-page: 309
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib81
  article-title: Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty535
– volume: 10
  start-page: 2172
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib98
  article-title: Detoxification of deoxynivalenol by a mixed culture of soil bacteria with 3-epi-Deoxynivalenol as the main intermediate
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2019.02172
– volume: 115
  start-page: 307
  year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib48
  article-title: Maize food chain and mycotoxins: A review on occurrence studies
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2021.06.045
– volume: 12
  start-page: 363
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib34
  article-title: Novel soil bacterium strain Desulfitobacterium sp. PGC-3-9 detoxifies trichothecene mycotoxins in wheat via de-epoxidation under aerobic and anaerobic conditions
  publication-title: Toxins
  doi: 10.3390/toxins12060363
– volume: 9
  start-page: 3429
  year: 2018
  ident: 10.1016/j.tifs.2022.04.002_bib11
  article-title: Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-05683-7
– volume: 59
  start-page: 895
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib77
  article-title: Comparative assessment of scoring functions: The CASF-2016 update
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/acs.jcim.8b00545
– volume: 79
  start-page: 1619
  year: 2013
  ident: 10.1016/j.tifs.2022.04.002_bib43
  article-title: Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.03227-12
– volume: 56
  start-page: 2495
  year: 2016
  ident: 10.1016/j.tifs.2022.04.002_bib65
  article-title: Boosting docking-based virtual screening with deep learning
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/acs.jcim.6b00355
– volume: 11
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib32
  article-title: Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis
  publication-title: Toxins
  doi: 10.3390/toxins11050295
– volume: 60
  start-page: 1346
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib58
  article-title: Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey
  publication-title: Critical Reviews in Food Science and Nutrition
  doi: 10.1080/10408398.2019.1571479
– volume: 60
  start-page: 4098
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib24
  article-title: Improving enzyme optimum temperature prediction with resampling strategies and ensemble learning
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/acs.jcim.0c00489
– year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib54
  article-title: Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review
  publication-title: The Science of the Total Environment
– volume: 7
  year: 2016
  ident: 10.1016/j.tifs.2022.04.002_bib33
  article-title: Bacterial epimerization as a route for deoxynivalenol detoxification: The influence of growth and environmental conditions
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2016.00572
– volume: 28
  start-page: 7
  year: 2012
  ident: 10.1016/j.tifs.2022.04.002_bib42
  article-title: Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil
  publication-title: World Journal of Microbiology and Biotechnology
  doi: 10.1007/s11274-011-0785-4
– volume: 89
  start-page: 336
  year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib59
  article-title: Machine learning-based prediction of enzyme substrate scope: Application to bacterial nitrilases
  publication-title: Proteins Structure Function and Genetics
  doi: 10.1002/prot.26019
– year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib84
  article-title: Enzyme promiscuity prediction using hierarchy-informed multi-label classification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab054
– volume: 7
  start-page: 9549
  year: 2017
  ident: 10.1016/j.tifs.2022.04.002_bib38
  article-title: An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-08799-w
– volume: 96
  start-page: 233
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib96
  article-title: Recent advances on toxicity and determination methods of mycotoxins in foodstuffs
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2019.12.021
– volume: 10
  start-page: 1210
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib56
  article-title: Machine learning in enzyme engineering
  publication-title: ACS Catalysis
  doi: 10.1021/acscatal.9b04321
– volume: 68
  start-page: 2187
  year: 2017
  ident: 10.1016/j.tifs.2022.04.002_bib49
  article-title: A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium Head Blight resistance in transgenic wheat
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erx109
– volume: 15
  start-page: 5116
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib16
  article-title: EnzyDock: Protein-Ligand docking of multiple reactive states along a reaction coordinate in enzymes
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/acs.jctc.9b00366
– volume: 7
  start-page: 395
  year: 2016
  ident: 10.1016/j.tifs.2022.04.002_bib78
  article-title: Functional agents to biologically control deoxynivalenol contamination in cereal grains
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2016.00395
– volume: 368
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib88
  article-title: Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat
  publication-title: Science
  doi: 10.1126/science.aba5435
– volume: 8
  start-page: 110708
  year: 2017
  ident: 10.1016/j.tifs.2022.04.002_bib95
  article-title: Antioxidant agents against trichothecenes: New hints for oxidative stress treatment
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22800
– volume: 33
  start-page: 842
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib18
  article-title: Transcriptomic and exometabolomic profiling reveals antagonistic and defensive modes of Clonostachys rosea action against Fusarium graminearum
  publication-title: Molecular Plant-Microbe Interactions
  doi: 10.1094/MPMI-11-19-0310-R
– volume: 28
  start-page: 894
  year: 2011
  ident: 10.1016/j.tifs.2022.04.002_bib53
  article-title: Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance
  publication-title: Food Additives & Contaminants Part A Chem Anal Control Expo Risk Assess
  doi: 10.1080/19440049.2011.576402
– volume: 16
  start-page: 250
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib39
  article-title: Aromatization of natural products by a specialized detoxification enzyme
  publication-title: Nature Chemical Biology
  doi: 10.1038/s41589-019-0446-8
– volume: 149
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib45
  article-title: Sarocladium zeae is a systemic endophyte of wheat and an effective biocontrol agent against Fusarium head blight
  publication-title: Biological Control
  doi: 10.1016/j.biocontrol.2020.104329
– volume: 83
  start-page: 41
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib87
  article-title: Food raw materials and food production occurrences of deoxynivalenol in different regions
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2018.11.003
– volume: 113
  start-page: 22
  year: 2018
  ident: 10.1016/j.tifs.2022.04.002_bib76
  article-title: Screening of new bacterial isolates with antifungal activity and application of selected Bacillus sp. cultures for biocontrol of Fusarium graminearum under field conditions
  publication-title: Crop Protection
  doi: 10.1016/j.cropro.2018.07.006
– volume: 35
  start-page: 1394
  year: 2018
  ident: 10.1016/j.tifs.2022.04.002_bib72
  article-title: Effects and biotransformation of the mycotoxin deoxynivalenol in growing pigs fed with naturally contaminated pelleted grains with and without the addition of Coriobacteriaceum DSM 11798
  publication-title: Food Additives & Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment
  doi: 10.1080/19440049.2018.1461254
– volume: 44
  start-page: 147
  year: 2004
  ident: 10.1016/j.tifs.2022.04.002_bib85
  article-title: Microbial detoxification of mycotoxin deoxynivalenol
  publication-title: Journal of Basic Microbiology
  doi: 10.1002/jobm.200310353
– volume: 13
  year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib61
  article-title: Possibilities for the biological control of mycotoxins in food and feed
  publication-title: Toxins
  doi: 10.3390/toxins13030198
– volume: 11
  start-page: 1106
  year: 2018
  ident: 10.1016/j.tifs.2022.04.002_bib5
  article-title: The enzymatic detoxification of the mycotoxin deoxynivalenol: Identification of DepA from the DON epimerization pathway
  publication-title: Microbial Biotechnology
  doi: 10.1111/1751-7915.12874
– volume: 140
  start-page: 111276
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib100
  article-title: Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101
  publication-title: Food and Chemical Toxicology
  doi: 10.1016/j.fct.2020.111276
– volume: 11
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib91
  article-title: ACID: A free tool for drug repurposing using consensus inverse docking strategy
  publication-title: Journal of Cheminformatics
  doi: 10.1186/s13321-019-0394-z
– volume: 112
  start-page: 310
  year: 2018
  ident: 10.1016/j.tifs.2022.04.002_bib25
  article-title: Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9
  publication-title: Food and Chemical Toxicology
  doi: 10.1016/j.fct.2017.12.066
– volume: 9
  start-page: 383
  year: 2017
  ident: 10.1016/j.tifs.2022.04.002_bib51
  article-title: Effects of adding Clostridium sp. WJ06 on intestinal morphology and microbial diversity of growing pigs fed with natural deoxynivalenol contaminated wheat
  publication-title: Toxins
  doi: 10.3390/toxins9120383
– volume: 31
  start-page: 137
  year: 2015
  ident: 10.1016/j.tifs.2022.04.002_bib63
  article-title: Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat
  publication-title: Mycotoxin Research
  doi: 10.1007/s12550-015-0224-8
– volume: 91
  start-page: 491
  year: 2011
  ident: 10.1016/j.tifs.2022.04.002_bib44
  article-title: Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/s00253-011-3401-5
– volume: 177
  start-page: 990
  year: 2008
  ident: 10.1016/j.tifs.2022.04.002_bib14
  article-title: Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2007.02333.x
– year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib22
  article-title: Mechanisms of deoxynivalenol (DON) degradation during different treatments: A review
  publication-title: Critical Reviews in Food Science and Nutrition
– year: 2022
  ident: 10.1016/j.tifs.2022.04.002_bib67
  article-title: A quinoprotein dehydrogenase from Pelagibacterium halotolerans ANSP101 oxidizes deoxynivalenol to 3-keto-deoxynivalenol
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.108834
– volume: 9
  start-page: 1573
  year: 2018
  ident: 10.1016/j.tifs.2022.04.002_bib6
  article-title: The identification of DepB: An enzyme responsible for the final detoxification step in the deoxynivalenol epimerization pathway in Devosia mutans 17-2-E-8
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2018.01573
– volume: 13
  year: 2018
  ident: 10.1016/j.tifs.2022.04.002_bib8
  article-title: A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight
  publication-title: PLoS One
– volume: 13
  year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib82
  article-title: Bacterial enrichment cultures biotransform the mycotoxin deoxynivalenol into a novel metabolite toxic to plant and porcine cells
  publication-title: Toxins
  doi: 10.3390/toxins13080552
– volume: 12
  start-page: 658421
  year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib101
  article-title: Biodegradation of deoxynivalenol by Nocardioides sp. ZHH-013: 3-keto-Deoxynivalenol and 3-epi-Deoxynivalenol as intermediate products
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2021.658421
– volume: 67
  start-page: 532
  year: 2018
  ident: 10.1016/j.tifs.2022.04.002_bib74
  article-title: Integrated control of fusarium head blight and deoxynivalenol mycotoxin in wheat
  publication-title: Plant Pathology
  doi: 10.1111/ppa.12785
– volume: 9
  start-page: 131
  year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib92
  article-title: Post-translational regulation of autophagy is involved in intra-microbiome suppression of fungal pathogens
  publication-title: Microbiome
  doi: 10.1186/s40168-021-01077-y
– volume: 27
  start-page: 510
  year: 2010
  ident: 10.1016/j.tifs.2022.04.002_bib2
  article-title: Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation
  publication-title: Food Additives & Contaminants Part A Chem Anal Control Expo Risk Assess
  doi: 10.1080/19440040903571747
– year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib99
  article-title: Antagonistic action of Streptomyces pratensis S10 on Fusarium graminearum and its complete genome sequence
  publication-title: Environmental Microbiology
– volume: 129
  start-page: 680
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib27
  article-title: From laboratory to the field: Biological control of Fusarium graminearum on infected maize crop residues
  publication-title: Journal of Applied Microbiology
  doi: 10.1111/jam.14634
– volume: 110
  start-page: 551
  year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib19
  article-title: Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2021.02.038
– volume: 200
  start-page: 388
  year: 2022
  ident: 10.1016/j.tifs.2022.04.002_bib40
  article-title: Crystal structure and biochemical analysis of the specialized deoxynivalenol–detoxifying glyoxalase SPG from Gossypium hirsutum
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2022.01.055
– volume: 158
  start-page: 98
  year: 2012
  ident: 10.1016/j.tifs.2022.04.002_bib55
  article-title: Biocontrol of Fusarium head blight: Interactions between Trichoderma and mycotoxigenic Fusarium
  publication-title: Microbiology
  doi: 10.1099/mic.0.052639-0
– volume: 19
  start-page: 379
  year: 2002
  ident: 10.1016/j.tifs.2022.04.002_bib23
  article-title: Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797
  publication-title: Food Additives & Contaminants
  doi: 10.1080/02652030110091154
– start-page: 12
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib97
  article-title: Natural occurrence of deoxynivalenol and its acetylated derivatives in Chinese maize and wheat collected in 2017
  publication-title: Toxins
– volume: 10
  start-page: 308
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib52
  article-title: Monn: A multi-objective neural network for predicting compound-protein interactions and affinities
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2020.03.002
– volume: 57
  start-page: 15
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib9
  article-title: Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management
  publication-title: Annual Review of Phytopathology
  doi: 10.1146/annurev-phyto-082718-100318
– volume: 8
  year: 2016
  ident: 10.1016/j.tifs.2022.04.002_bib37
  article-title: Aerobic de-epoxydation of trichothecene mycotoxins by a soil bacterial consortium isolated using in situ soil enrichment
  publication-title: Toxins
  doi: 10.3390/toxins8100277
– volume: 116
  start-page: 13996
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib69
  article-title: Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1821905116
– volume: 14
  start-page: 772
  year: 2013
  ident: 10.1016/j.tifs.2022.04.002_bib73
  article-title: Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes
  publication-title: Molecular Plant Pathology
  doi: 10.1111/mpp.12048
– volume: 65
  start-page: 414
  year: 2017
  ident: 10.1016/j.tifs.2022.04.002_bib93
  article-title: Isolation and characterization of a novel deoxynivalenol-transforming strain Paradevosia shaoguanensis DDB001 from wheat field soil
  publication-title: Letters in Applied Microbiology
  doi: 10.1111/lam.12790
– volume: 56
  start-page: 6585
  year: 2017
  ident: 10.1016/j.tifs.2022.04.002_bib94
  article-title: Determinants and expansion of specificity in a trichothecene UDP-glucosyltransferase from Oryza sativa
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b01007
– volume: 66
  start-page: 259
  year: 2021
  ident: 10.1016/j.tifs.2022.04.002_bib4
  article-title: Bacillus velezensis RC 218 as a biocontrol agent against Fusarium graminearum: Effect on penetration, growth and TRI5 expression in wheat spikes
  publication-title: BioControl
  doi: 10.1007/s10526-020-10062-7
– volume: 109
  start-page: 560
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib71
  article-title: Is exploitation competition involved in a multitrophic strategy for the biocontrol of Fusarium head blight?
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-04-18-0123-R
– volume: 10
  start-page: 2356
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib13
  article-title: Selection of an endophytic Streptomyces sp. strain DEF09 from wheat roots as a biocontrol agent against Fusarium graminearum
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2019.02356
– volume: 12
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib86
  article-title: Isolation and characterization of a deoxynivalenol-degrading bacterium Bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice
  publication-title: Toxins
  doi: 10.3390/toxins12030184
– volume: 276
  start-page: 436
  year: 2019
  ident: 10.1016/j.tifs.2022.04.002_bib89
  article-title: Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.10.011
– volume: 19
  start-page: 895
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib30
  article-title: Deoxynivalenol: Masked forms, fate during food processing, and potential biological remedies
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/1541-4337.12545
– volume: 85
  start-page: 1353
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib50
  article-title: Molecular docking studies and in vitro degradation of four aflatoxins (AFB1, AFB2, AFG1, and AFG2) by a recombinant laccase from Saccharomyces cerevisiae
  publication-title: Journal of Food Science
  doi: 10.1111/1750-3841.15106
– volume: 36
  start-page: 4406
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib10
  article-title: TransformerCPI: Improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa524
– volume: 9
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib3
  article-title: Plant cell wall changes in common wheat roots as a result of their interaction with beneficial fungi of Trichoderma
  publication-title: Cells
  doi: 10.3390/cells9102319
– volume: 19
  start-page: 1449
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib12
  article-title: Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/1541-4337.12567
– volume: 9
  start-page: 13
  year: 2017
  ident: 10.1016/j.tifs.2022.04.002_bib62
  article-title: An integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions
  publication-title: Plant Gene
  doi: 10.1016/j.plgene.2016.11.005
– volume: 321
  start-page: 126703
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib35
  article-title: A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify deoxynivalenol in wheat via epimerization in a Devosia strain
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2020.126703
– volume: 12
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib68
  article-title: Regulation efficacy and mechanism of the toxicity of microcystin-LR targeting protein phosphatase 1 via the biodegradation pathway
  publication-title: Toxins
  doi: 10.3390/toxins12120790
– volume: 104
  start-page: 6045
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib90
  article-title: Metabolomics-guided analysis reveals a two-step epimerization of deoxynivalenol catalyzed by the bacterial consortium IFSN-C1
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/s00253-020-10673-1
– volume: 6
  start-page: 939
  year: 2020
  ident: 10.1016/j.tifs.2022.04.002_bib26
  article-title: Deep docking: A deep learning platform for augmentation of structure based drug discovery
  publication-title: ACS Central Science
  doi: 10.1021/acscentsci.0c00229
SSID ssj0005355
Score 2.5933857
SecondaryResourceType review_article
Snippet Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high...
Background: Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 96
SubjectTerms Biocontrol
Biological control
Computer applications
Deoxynivalenol
Detoxification
Enzymes
Food safety
food science
fungi
Fusarium
Metabolites
Microbial antagonist
Microorganisms
Mycotoxin
Mycotoxins
Software
toxicity
Title Elimination of Fusarium mycotoxin deoxynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives
URI https://dx.doi.org/10.1016/j.tifs.2022.04.002
https://www.proquest.com/docview/2675247731
https://www.proquest.com/docview/2661046694
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9QwFA_LelAPoqviuOsSwYMiddokTVtvy7rD6OAI6uLeSr4KlZl0sO2y48Gb_7d5abquInvwUEqaF1KSl_eRvPcLQs_SqtJGZjIimuiIFTmLBOMyAqxxomJVDFsD75d8fsrenaVnO-h4zIWBsMog-weZ7qV1-DINoznd1PX0U-xcB6eA3AM6m0HCL2MZcPmrH1fCPKi_-RSII6AOiTNDjFdXVwDZTYiHOw1bK_9QTn-Jaa97ZnfRnWA04qPhv-6hHWP30M0xp7jdQ7evwAreRz9PVv6uLhhz3FR41rfOI-7XeL1VTddc1BZr01xsbe3YzNhmhZ-_-bB8gc9rgde1R2ZyvQmrsbHftx7TFbfdiCnxGgdMJwzJSH3rCQdoErz5nbrZPkCns5PPx_MoXLcQKcqTLlJJ5awTZw9pCOrjznKiOleK6zSlxpWVzCHjIyaCqqLiSpOK5amgMuPGEF7Qh2jXNtY8QpjkUiVExDSXCUsL571LKZQsEpqKXBI2Qck4zqUKWORwJcaqHIPOvpYwNyXMTRmz0vU6QS8v22wGJI5rqdNx-so_-Kl0quLadgfjXJdhNbt651URlmU0maCnl9VuHcLhirCm6YGGw3E5L9jj_-x6H92C0hCHdoB2u2-9eeIsnk4eepY-RDeO3i7mS3gvPn5Z_AIVxANW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQeEBQQW1owEgcQCpvYjjfpDZWuFmiXA63UmxU_IgXtOqsmqbocuPG_GTtOKQj1wCGHxGM58tjzsGe-QehVWpbayImMiCY6YnnGooJxGTmscaJilfdHAydzPjtjn87T8w10OOTCuLDKIPt7me6ldfgyDrM5XlXV-GsMrgMoIHiczmbZHXSXwfZ1ZQze_bgR50F96VNHHTnykDnTB3m1VekwuwnxeKfhbOUf2ukvOe2Vz_QBuh-sRvy-_7GHaMPYHbQ1JBU3O2j7Bq7gI_TzaOGLdblJx3WJp10DLnG3xMu1qtv6qrJYm_pqbStYZ8bWC_z6w5f5G3xZFXhZeWgmGK2wGhv7fe1BXXHTDqASBziAOmGXjdQ1nrDHJsGr37mbzWN0Nj06PZxFod5CpChP2kglJZgnYBBpF9XHwXSiOlOK6zSlBt6VzFzKR0wKqvKSK01KlqUFlRNuDOE5fYI2bW3NU4RJJlVCiphmMmFpDu67lIWSeULTIpOEjVAyzLNQAYzc1cRYiCHq7JtwvBGONyJmAkYdobfXfVY9FMet1OnAPvHHghKgK27ttzfwWoTtDO3gVhE2mdBkhF5eN8NGdLcrhTV152i4uy_nOdv9z6FfoK3Z6cmxOP44__wM3XMtfVDaHtpsLzqzD-ZPK5_75f0L0_ADQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elimination+of+Fusarium+mycotoxin+deoxynivalenol+%28DON%29+via+microbial+and+enzymatic+strategies%3A+Current+status+and+future+perspectives&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Tian%2C+Ye&rft.au=Zhang%2C+Dachuan&rft.au=Cai%2C+Pengli&rft.au=Lin%2C+Huikang&rft.date=2022-06-01&rft.issn=0924-2244&rft.volume=124&rft.spage=96&rft.epage=107&rft_id=info:doi/10.1016%2Fj.tifs.2022.04.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tifs_2022_04_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon