Elimination of Fusarium mycotoxin deoxynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives
Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high contamination level and frequency. Applying microbial antagonists to inhibit fungal DON synthesis and detoxification of DON into low toxic metabolites ar...
Saved in:
Published in | Trends in food science & technology Vol. 124; pp. 96 - 107 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Elsevier Ltd
01.06.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high contamination level and frequency. Applying microbial antagonists to inhibit fungal DON synthesis and detoxification of DON into low toxic metabolites are biological approaches to eliminate DON via an environment friendly manner. Therefore, it is essential to review the latest research work on Fusarium biocontrol and DON bio-detoxification.
We summarized recent reported microbial and enzymatic methods for DON elimination. The microbial antagonists on Fusarium control and DON detoxification microbes/enzymes, as well as their control mechanisms were systematically reviewed. In addition, we highlighted the potentials of biological methods for DON elimination and discussed novel approaches for DON detoxification enzymes discovery guided by computational strategy.
Successful cases of controlling DON producing fungi by microbial antagonists and detoxifying DON by microbes and enzymes were reported in the past several years, which would provide new opportunities to eliminate mycotoxin DON and promote large-scale usage of bio control-based methods. On the other hand, registration and technical difficulties in practical application should be comprehensively considered and solved in future. Additionally, we proposed a conceptual framework of combining the computational tools with multi omics approaches for DON detoxification enzymes discovery, which could provide a new foundation for future mycotoxin detoxification research.
•DON is a food contaminant with high contamination level and frequency.•Microbial antagonists exhibit potentials on F. graminearum control.•Microbes and enzymes are desirable to dispose DON contaminated cereal grains.•Application of computational strategy towards DON detoxification enzyme screen is highlighted. |
---|---|
AbstractList | Background: Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high contamination level and frequency. Applying microbial antagonists to inhibit fungal DON synthesis and detoxification of DON into low toxic metabolites are biological approaches to eliminate DON via an environment friendly manner. Therefore, it is essential to review the latest research work on Fusarium biocontrol and DON bio-detoxification. Scope and approach: We summarized recent reported microbial and enzymatic methods for DON elimination. The microbial antagonists on Fusarium control and DON detoxification microbes/enzymes, as well as their control mechanisms were systematically reviewed. In addition, we highlighted the potentials of biological methods for DON elimination and discussed novel approaches for DON detoxification enzymes discovery guided by computational strategy. Key finding and conclusion: Successful cases of controlling DON producing fungi by microbial antagonists and detoxifying DON by microbes and enzymes were reported in the past several years, which would provide new opportunities to eliminate mycotoxin DON and promote large-scale usage of bio control-based methods. On the other hand, registration and technical difficulties in practical application should be comprehensively considered and solved in future. Additionally, we proposed a conceptual framework of combining the computational tools with multi omics approaches for DON detoxification enzymes discovery, which could provide a new foundation for future mycotoxin detoxification research. Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high contamination level and frequency. Applying microbial antagonists to inhibit fungal DON synthesis and detoxification of DON into low toxic metabolites are biological approaches to eliminate DON via an environment friendly manner. Therefore, it is essential to review the latest research work on Fusarium biocontrol and DON bio-detoxification. We summarized recent reported microbial and enzymatic methods for DON elimination. The microbial antagonists on Fusarium control and DON detoxification microbes/enzymes, as well as their control mechanisms were systematically reviewed. In addition, we highlighted the potentials of biological methods for DON elimination and discussed novel approaches for DON detoxification enzymes discovery guided by computational strategy. Successful cases of controlling DON producing fungi by microbial antagonists and detoxifying DON by microbes and enzymes were reported in the past several years, which would provide new opportunities to eliminate mycotoxin DON and promote large-scale usage of bio control-based methods. On the other hand, registration and technical difficulties in practical application should be comprehensively considered and solved in future. Additionally, we proposed a conceptual framework of combining the computational tools with multi omics approaches for DON detoxification enzymes discovery, which could provide a new foundation for future mycotoxin detoxification research. Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high contamination level and frequency. Applying microbial antagonists to inhibit fungal DON synthesis and detoxification of DON into low toxic metabolites are biological approaches to eliminate DON via an environment friendly manner. Therefore, it is essential to review the latest research work on Fusarium biocontrol and DON bio-detoxification. We summarized recent reported microbial and enzymatic methods for DON elimination. The microbial antagonists on Fusarium control and DON detoxification microbes/enzymes, as well as their control mechanisms were systematically reviewed. In addition, we highlighted the potentials of biological methods for DON elimination and discussed novel approaches for DON detoxification enzymes discovery guided by computational strategy. Successful cases of controlling DON producing fungi by microbial antagonists and detoxifying DON by microbes and enzymes were reported in the past several years, which would provide new opportunities to eliminate mycotoxin DON and promote large-scale usage of bio control-based methods. On the other hand, registration and technical difficulties in practical application should be comprehensively considered and solved in future. Additionally, we proposed a conceptual framework of combining the computational tools with multi omics approaches for DON detoxification enzymes discovery, which could provide a new foundation for future mycotoxin detoxification research. •DON is a food contaminant with high contamination level and frequency.•Microbial antagonists exhibit potentials on F. graminearum control.•Microbes and enzymes are desirable to dispose DON contaminated cereal grains.•Application of computational strategy towards DON detoxification enzyme screen is highlighted. |
Author | Wu, Aibo Hu, Qian-Nan Lin, Huikang Tian, Ye Cai, Pengli Ying, Hao Zhang, Dachuan |
Author_xml | – sequence: 1 givenname: Ye surname: Tian fullname: Tian, Ye – sequence: 2 givenname: Dachuan surname: Zhang fullname: Zhang, Dachuan – sequence: 3 givenname: Pengli orcidid: 0000-0002-7910-6558 surname: Cai fullname: Cai, Pengli – sequence: 4 givenname: Huikang surname: Lin fullname: Lin, Huikang – sequence: 5 givenname: Hao surname: Ying fullname: Ying, Hao – sequence: 6 givenname: Qian-Nan surname: Hu fullname: Hu, Qian-Nan email: qnhu@sibs.ac.cn – sequence: 7 givenname: Aibo surname: Wu fullname: Wu, Aibo email: abwu@sibs.ac.cn |
BookMark | eNp9kU9v1DAQxS1UJLaFL8DJEpdySOp_cRLEBS0tRaroBc6W15mgWSX2Yjurbu98b7xdTj30NJrR741m3jsnZz54IOQ9ZzVnXF9t64xjqgUTomaqZky8IivetX0lWSPPyIr1QlVCKPWGnKe0ZayMm2ZF_l5POKO3GYOnYaQ3S7IRl5nOBxdyeEBPBwgPB497O4EPE738ev_jI92jpTO6GDZoJ2r9QME_Huayx9GUo83wGyF9ouslRvC5zGxe0hM4LnmJQHcQ0w5cxj2kt-T1aKcE7_7XC_Lr5vrn-ra6u__2ff3lrnJS81w5PirZN1oMvO-l7mQvh845PTSNhNK7TddJXZ630vWjdoMYVddYuWk1gNC9vCCXp727GP4skLKZMTmYJushLMkIrTlTWveqoB-eoduwRF-uK1TbCNW2kheqO1HFiZQijMZhfjKzeICT4cwc8zFbc8zHHPMxTJlyYpGKZ9JdxNnGw8uizycRFJf2CNEkh-AdDBiLl2YI-JL8H3M3rZI |
CitedBy_id | crossref_primary_10_1093_bib_bbae089 crossref_primary_10_3390_toxics12070526 crossref_primary_10_1016_j_foodcont_2024_110335 crossref_primary_10_36253_phyto_15152 crossref_primary_10_1016_j_snb_2023_134192 crossref_primary_10_3390_foods12163071 crossref_primary_10_1021_acs_jafc_3c07179 crossref_primary_10_3390_molecules27238146 crossref_primary_10_1016_j_cofs_2023_101074 crossref_primary_10_1111_1541_4337_13203 crossref_primary_10_1016_j_scitotenv_2023_167028 crossref_primary_10_3390_microorganisms11051165 crossref_primary_10_1007_s00203_024_04208_9 crossref_primary_10_3390_foods11172693 crossref_primary_10_1016_j_jhazmat_2023_132806 crossref_primary_10_1016_j_foodres_2024_114275 crossref_primary_10_1016_j_fgb_2024_103899 crossref_primary_10_1016_j_foodchem_2022_135228 crossref_primary_10_1016_j_foodcont_2023_110027 crossref_primary_10_3389_fmicb_2024_1359947 crossref_primary_10_1007_s11540_024_09742_z crossref_primary_10_1016_j_foodcont_2024_110640 crossref_primary_10_1021_acs_jafc_3c09100 crossref_primary_10_3390_toxins14090591 crossref_primary_10_18470_1992_1098_2023_4_104_113 crossref_primary_10_1016_j_foodchem_2025_143706 crossref_primary_10_3389_fvets_2025_1493496 crossref_primary_10_1016_j_talanta_2024_125806 crossref_primary_10_3390_jof10090606 crossref_primary_10_1093_af_vfac079 crossref_primary_10_3390_toxins15120702 crossref_primary_10_1016_j_mtnano_2023_100330 crossref_primary_10_1016_j_ijbiomac_2024_129512 crossref_primary_10_3390_microorganisms12010173 crossref_primary_10_1002_ps_8200 crossref_primary_10_1016_j_fm_2024_104676 crossref_primary_10_1007_s00604_024_06676_8 crossref_primary_10_3390_foods13111746 crossref_primary_10_1021_acs_jafc_3c03194 crossref_primary_10_1016_j_foodchem_2025_142947 crossref_primary_10_1021_acscatal_3c04461 crossref_primary_10_3390_foods12132555 crossref_primary_10_1021_acs_jafc_3c01403 crossref_primary_10_1021_acs_jafc_4c04055 crossref_primary_10_1016_j_ijbiomac_2024_130484 crossref_primary_10_1016_j_jclepro_2024_144024 crossref_primary_10_1080_10408398_2023_2294166 crossref_primary_10_1016_j_foodchem_2024_142064 crossref_primary_10_1021_acs_jafc_4c06999 crossref_primary_10_1016_j_tifs_2024_104513 crossref_primary_10_1016_j_ecoenv_2023_115395 crossref_primary_10_1016_j_foodcont_2022_109472 crossref_primary_10_3390_biotech12020032 crossref_primary_10_1186_s40538_025_00744_8 crossref_primary_10_1016_j_foodchem_2023_137609 crossref_primary_10_1080_10408398_2023_2220402 crossref_primary_10_1016_j_mcat_2025_114827 crossref_primary_10_1007_s10658_023_02736_6 crossref_primary_10_3390_foods13132057 crossref_primary_10_1016_j_foodchem_2024_140550 crossref_primary_10_3390_foods13213373 |
Cites_doi | 10.1016/j.biocontrol.2017.06.011 10.3390/toxins12040258 10.1002/prot.10465 10.1093/bioinformatics/btaa937 10.1080/07391102.2018.1478751 10.1007/s00253-010-2857-z 10.1007/s10822-012-9584-8 10.1111/1541-4337.12594 10.1128/AEM.01075-17 10.1016/j.tifs.2020.05.026 10.3390/plants9060762 10.3390/toxins8110335 10.1038/s41467-020-17844-8 10.1021/acs.jcim.9b00220 10.1080/17460441.2016.1190706 10.1016/j.bpj.2020.05.020 10.3389/fpls.2020.574775 10.1104/pp.16.00371 10.1016/j.aquaculture.2009.02.037 10.1074/jbc.M307552200 10.1093/bioinformatics/bty535 10.3389/fmicb.2019.02172 10.1016/j.tifs.2021.06.045 10.3390/toxins12060363 10.1038/s41467-018-05683-7 10.1021/acs.jcim.8b00545 10.1128/AEM.03227-12 10.1021/acs.jcim.6b00355 10.3390/toxins11050295 10.1080/10408398.2019.1571479 10.1021/acs.jcim.0c00489 10.3389/fmicb.2016.00572 10.1007/s11274-011-0785-4 10.1002/prot.26019 10.1093/bioinformatics/btab054 10.1038/s41598-017-08799-w 10.1016/j.tifs.2019.12.021 10.1021/acscatal.9b04321 10.1093/jxb/erx109 10.1021/acs.jctc.9b00366 10.3389/fmicb.2016.00395 10.1126/science.aba5435 10.18632/oncotarget.22800 10.1094/MPMI-11-19-0310-R 10.1080/19440049.2011.576402 10.1038/s41589-019-0446-8 10.1016/j.biocontrol.2020.104329 10.1016/j.tifs.2018.11.003 10.1016/j.cropro.2018.07.006 10.1080/19440049.2018.1461254 10.1002/jobm.200310353 10.3390/toxins13030198 10.1111/1751-7915.12874 10.1016/j.fct.2020.111276 10.1186/s13321-019-0394-z 10.1016/j.fct.2017.12.066 10.3390/toxins9120383 10.1007/s12550-015-0224-8 10.1007/s00253-011-3401-5 10.1111/j.1469-8137.2007.02333.x 10.1016/j.foodcont.2022.108834 10.3389/fmicb.2018.01573 10.3390/toxins13080552 10.3389/fmicb.2021.658421 10.1111/ppa.12785 10.1186/s40168-021-01077-y 10.1080/19440040903571747 10.1111/jam.14634 10.1016/j.tifs.2021.02.038 10.1016/j.ijbiomac.2022.01.055 10.1099/mic.0.052639-0 10.1080/02652030110091154 10.1016/j.cels.2020.03.002 10.1146/annurev-phyto-082718-100318 10.3390/toxins8100277 10.1073/pnas.1821905116 10.1111/mpp.12048 10.1111/lam.12790 10.1021/acs.biochem.7b01007 10.1007/s10526-020-10062-7 10.1094/PHYTO-04-18-0123-R 10.3389/fmicb.2019.02356 10.3390/toxins12030184 10.1016/j.foodchem.2018.10.011 10.1111/1541-4337.12545 10.1111/1750-3841.15106 10.1093/bioinformatics/btaa524 10.3390/cells9102319 10.1111/1541-4337.12567 10.1016/j.plgene.2016.11.005 10.1016/j.foodchem.2020.126703 10.3390/toxins12120790 10.1007/s00253-020-10673-1 10.1021/acscentsci.0c00229 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2022 |
DBID | AAYXX CITATION 7QO 7QR 7ST 7T7 8FD C1K F28 FR3 P64 SOI 7S9 L.6 |
DOI | 10.1016/j.tifs.2022.04.002 |
DatabaseName | CrossRef Biotechnology Research Abstracts Chemoreception Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts ANTE: Abstracts in New Technology & Engineering Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-3053 |
EndPage | 107 |
ExternalDocumentID | 10_1016_j_tifs_2022_04_002 S0924224422001248 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K WH7 WUQ XFK Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QO 7QR 7ST 7T7 8FD C1K EFKBS F28 FR3 P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c361t-c1f439562d199368393d8cc6d553e368cb8836002a3c9f6cd2f485a3b76ee2693 |
IEDL.DBID | .~1 |
ISSN | 0924-2244 |
IngestDate | Fri Jul 11 10:06:21 EDT 2025 Wed Aug 13 02:39:29 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 Tue Jul 01 04:02:42 EDT 2025 Fri Feb 23 02:39:21 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Food safety Deoxynivalenol Microbial antagonist Mycotoxin Detoxification Biocontrol |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-c1f439562d199368393d8cc6d553e368cb8836002a3c9f6cd2f485a3b76ee2693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7910-6558 |
PQID | 2675247731 |
PQPubID | 2045388 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2661046694 proquest_journals_2675247731 crossref_citationtrail_10_1016_j_tifs_2022_04_002 crossref_primary_10_1016_j_tifs_2022_04_002 elsevier_sciencedirect_doi_10_1016_j_tifs_2022_04_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Trends in food science & technology |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ikunaga, Sato, Grond, Numaziri, Yoshida, Yamaya, Hiradate, Hasegawa, Toshima, Koitabashi, Ito, Karlovsky, Tsushima (bib41) 2011; 89 He, Shi, Yang, Huang, Yuan, Yi, Wu, Li, Gao, Zhang, Liao (bib34) 2020; 12 Das, Shimshi, Raz, Nitoker Eliaz, Mhashal, Ansbacher, Major (bib16) 2019; 15 de Castro, Soares, Pereira, Silva, Silva, Mancini, Caetano, da Cunha, Ramalho (bib7) 2019; 37 Ito, Sato, Ishizaka, Yoshida, Koitabashi, Yoshida, Tsushima (bib43) 2013; 79 Karlovsky (bib44) 2011; 91 Wang, Wang, Ji, Xu, Yu, Shi, Xu (bib89) 2019; 276 Das, Scholes, Sen, Orengo (bib15) 2021; 37 Pasquet, Changenet, Macadré, Boex-Fontvieille, Soulhat, Bouchabké-Coussa, Dalmais, Atanasova-Pénichon, Bendahmane, Saindrenan, Dufresne (bib64) 2016; 172 McGann (bib57) 2012; 26 Afsah‐Hejri, Hajeb, Ehsani (bib1) 2020; 19 Deng, You, Nepovimova, Wang, Musilek, Wu, Wu, Kuca (bib19) 2021; 110 Mishra, Srivastava, Dewangan, Divakar, Kumar Rath (bib58) 2020; 60 Basinska-Barczak, Blaszczyk, Szentner (bib3) 2020; 9 He, Zhang, Yi, Tang, Yuan, Guo, Wu, Qu, Li, Liao (bib38) 2017; 7 Wang, Xu, Sun, Xu, Chai, Berg, Cernava, Ma, Chen (bib92) 2021; 9 Schweiger, Steiner, Ametz, Siegwart, Wiesenberger, Berthiller, Lemmens, Jia, Adam, Muehlbauer, Kreil, Buerstmayr (bib73) 2013; 14 Pereira, Caffarena, Dos Santos (bib65) 2016; 56 Zhang, Qin, Guo, Zhang, Ma, Ji, Zhao (bib100) 2020; 140 Mousavi Khaneghah, Farhadi, Nematollahi, Vasseghian, Fakhri (bib60) 2020; 102 Pan, Mionetto, Tiscornia, Bettucci (bib63) 2015; 31 Verdonk, Cole, Hartshorn, Murray, Taylor (bib83) 2003; 52 Ryu, Kim, Lee (bib69) 2019; 116 Chen, Heng, Qin, Bian (bib8) 2018; 13 Legrand, Picot, Cobo-Díaz, Chen, Le Floch (bib47) 2017; 113 Lee, Lee, Kim (bib46) 2016; 11 Guo, Ji, Wang, Sun (bib30) 2020; 19 Wang, Sun, Ge, Zhao, Hou, Wang, Lyu, Chen, Xu, Guo, Li, Su, Li, Wang, Bo, Fang, Zhuang, Cheng, Wu, Kong (bib88) 2020; 368 Wang, Hou, Guo, Zhang, Sun, Wei, Shen (bib86) 2020; 12 Huang, Fang, Tian, Chen, Lin, Guo, Li, Fan, Song, Chen, Ahati, Wang, Zhao, Martin, Chen (bib39) 2020; 16 Shah, Ali, Yahya, Zhu, Wang, Si, Rahman, Ma (bib74) 2018; 67 Awad, Ghareeb, Bohm, Zentek (bib2) 2010; 27 Sarrocco, Esteban, Vicente, Bernardi, Plainchamp, Domenichini, Puntoni, Baroncelli, Vannacci, Dufresne (bib70) 2020 Tkatchenko (bib80) 2020; 11 Matarese, Sarrocco, Gruber, Seidl-Seiboth, Vannacci (bib55) 2012; 158 Cuzick, Urban, Hammond-Kosack (bib14) 2008; 177 Zhang, Chen, Hu, Jia, Ma, Tang, Wang (bib99) 2020 Hanif, Zhang, Li, Li, Xu, Zubair, Zhang, Jia, Zhao, Liang, Majid, Yan, Farzand, Wu, Gu, Gao (bib32) 2019; 11 Duan, Lupyan, Wang (bib20) 2020; 119 Yan, Liu, Liu, Yao, Liu, Wu, Gong (bib97) 2020 Nesic, Habschied, Mastanjevic (bib61) 2021; 13 Wang, Liao, Peng, Chen, Zhang, Nüssler, Shi, Liu, Yang (bib87) 2019; 83 Zhai, Zhong, Gao, Lu, Bie, Zhao, Zhang, Lu (bib98) 2019; 10 Gao, Mu, Wen, Sun, Chen, Deng (bib25) 2018; 112 He, Yuan, Zhang, Guo, Gong, Zhang, Wu, Huang, Qu, Li, Liao (bib37) 2016; 8 Wu, Wang, Nepovimova, Wang, Yang, Li, Zhang, Kuca (bib95) 2017; 8 Hu, Li, Min, Yu, Liu, Huang, Zhang, Yang, Dai, Chen, Guo (bib40) 2022; 200 Li, Wang, Huang, Chen, Wang (bib51) 2017; 9 Dellafiora, Gonaus, Streit, Galaverna, Moll, Vogtentanz, Schatzmayr, Dall'Asta, Prasad (bib17) 2020; 12 Gentile, Agrawal, Hsing, Ton, Ban, Norinder, Gleave, Cherkasov (bib26) 2020; 6 Leite, Freitas, Silva, Barbosa, Ramos (bib48) 2021; 115 Palazzini, Yerkovich, Alberione, Chiotta, Chulze (bib62) 2017; 9 Sarrocco, Valenti, Manfredini, Esteban, Bernardi, Puntoni, Baroncelli, Haidukowski, Moretti, Vannacci (bib71) 2019; 109 He, Wu, Liu, Jiang, Yu, Qiu, Wang, Zhang, Ma (bib36) 2020; 11 Su, Yang, Du, Feng, Liu, Li, Wang (bib77) 2019; 59 Carere, Hassan, Lepp, Zhou (bib6) 2018; 9 Lu, Luo, Ruan, Wang, Yang (bib54) 2021 Fuchs, Binder, Heidler, Krska (bib23) 2002; 19 Islam, Zhou, Young, Goodwin, Pauls (bib42) 2012; 28 Vanhoutte, De Tender, Demeyere, Abdallah, Ommeslag, Vermeir, Saeger, Debode, Meyer, Croubels, Audenaert, De Gelder (bib82) 2021; 13 Cantoro, Palazzini, Yerkovich, Miralles, Chulze (bib4) 2021; 66 Li, Wan, Shu, Jiang, Zhao, Zeng (bib52) 2020; 10 Yang, Li, Wu, Liu, Li, Luo, Hu, Wang, Wu (bib96) 2020; 96 Colombo, Kunova, Pizzatti, Saracchi, Cortesi, Pasquali (bib13) 2019; 10 Mou, Eakes, Cooper, Foster, Standaert, Podar, Doktycz, Parks (bib59) 2021; 89 Mazurenko, Prokop, Damborsky (bib56) 2019; 10 Li, Zhu, de Lange, Zhou, He, Yu, Gong, Young (bib53) 2011; 28 Tian, Tan, Liu, Liao, Sun, Wang, Wu (bib78) 2016; 7 Gimeno, Kagi, Drakopoulos, Banziger, Lehmann, Forrer, Keller, Vogelgsang (bib27) 2020; 129 Sayyari, Faeste, Hansen, Uhlig, Framstad, Schatzmayr, Sivertsen (bib72) 2018; 35 Visani, Hughes, Hassoun (bib84) 2021 Zhang, Zhang, Qin, Wang, Wang, Bin, Xie, Zheng, Luo (bib101) 2021; 12 Feizollahi, Roopesh (bib22) 2021 Chen, Tan, Wang, Zhong, Liu, Yang, Luo, Chen, Jiang, Zheng (bib10) 2020; 36 Ren, Hu, Wang, Du, Zong (bib68) 2020; 12 Kemp, Vaughan, McCormick, Brown, Bakker (bib45) 2020; 149 Wang, Wang, Man, Lee, Shi, Xu (bib90) 2020; 104 Demissie, Witte, Robinson, Sproule, Foote, Johnston, Harris, Overy, Loewen (bib18) 2020; 33 Claeys, Romano, De Ruyck, Wilson, Fervers, Korenjak, Zavadil, Gunter, De Saeger, De Boevre, Huybrechts (bib12) 2020; 19 Chen, Wang, Yang, Wen, Sun, Chai, Ma (bib11) 2018; 9 Guan, He, Young, Zhu, Li, Ji, Zhou (bib29) 2009; 290 Li, Michlmayr, Schweiger, Malachova, Shin, Huang, Dong, Wiesenberger, McCormick, Lemmens, Fruhmann, Hametner, Berthiller, Adam, Muehlbauer (bib49) 2017; 68 Poppenberger, Berthiller, Lucyshyn, Sieberer, Schuhmacher, Krska, Kuchler, Glossl, Luschnig, Adam (bib66) 2003; 278 Gong, Li, Yuan, Song, Yao, He, Zhang, Liao (bib28) 2015; 10 Carere, Hassan, Lepp, Zhou (bib5) 2018; 11 Wetterhorn, Gabardi, Michlmayr, Malachova, Busman, McCormick, Berthiller, Adam, Rayment (bib94) 2017; 56 Tsubaki, Tomii, Sese (bib81) 2019; 35 Liu, Mao, Hu, Tron, Lin, Wang, Sun (bib50) 2020; 85 Wang, Wu, Li, Jia, Su, Hao, Yang (bib91) 2019; 11 He, Shi, Yang, Huang, Zhao, Wu, Dong, Li, Zhang, Liao (bib35) 2020; 321 Sood, Kapoor, Kumar, Sheteiwy, Ramakrishnan, Landi, Araniti, Sharma (bib75) 2020; 9 Volkl, Vogler, Schollenberger, Karlovsky (bib85) 2004; 44 Qin, Zhang, Liu, Guo, Tang, Zhang, Ma, Ji, Zhao (bib67) 2022 Wang, Zhang, Zhao, Han, Liu, Zhang (bib93) 2017; 65 Tian, Tan, Liu, Yan, Liao, Chen, de Saeger, Yang, Zhang, Wu (bib79) 2016; 8 Gu, Yang, Yuan, Shi, Wu, Lou, Huo, Wu, Borriss, Gao (bib31) 2017; 83 Fang, Huang, Zhang, Wang, Zhang, Li, Yan, Zhang, Yan, Xu (bib21) 2019; 59 Stumbriene, Gudiukaite, Semaskiene, Svegzda, Jonaviciene, Suproniene (bib76) 2018; 113 Gado, Beckham, Payne (bib24) 2020; 60 He, Hassan, Perilla, Li, Boland, Zhou (bib33) 2016; 7 Chen, Kistler, Ma (bib9) 2019; 57 Vanhoutte (10.1016/j.tifs.2022.04.002_bib82) 2021; 13 Das (10.1016/j.tifs.2022.04.002_bib16) 2019; 15 Tian (10.1016/j.tifs.2022.04.002_bib79) 2016; 8 Wang (10.1016/j.tifs.2022.04.002_bib88) 2020; 368 Guan (10.1016/j.tifs.2022.04.002_bib29) 2009; 290 Wang (10.1016/j.tifs.2022.04.002_bib91) 2019; 11 Sarrocco (10.1016/j.tifs.2022.04.002_bib71) 2019; 109 Deng (10.1016/j.tifs.2022.04.002_bib19) 2021; 110 Chen (10.1016/j.tifs.2022.04.002_bib11) 2018; 9 Zhang (10.1016/j.tifs.2022.04.002_bib100) 2020; 140 Colombo (10.1016/j.tifs.2022.04.002_bib13) 2019; 10 Pasquet (10.1016/j.tifs.2022.04.002_bib64) 2016; 172 Mazurenko (10.1016/j.tifs.2022.04.002_bib56) 2019; 10 Guo (10.1016/j.tifs.2022.04.002_bib30) 2020; 19 Tian (10.1016/j.tifs.2022.04.002_bib78) 2016; 7 Visani (10.1016/j.tifs.2022.04.002_bib84) 2021 Tkatchenko (10.1016/j.tifs.2022.04.002_bib80) 2020; 11 Karlovsky (10.1016/j.tifs.2022.04.002_bib44) 2011; 91 Mishra (10.1016/j.tifs.2022.04.002_bib58) 2020; 60 Palazzini (10.1016/j.tifs.2022.04.002_bib62) 2017; 9 McGann (10.1016/j.tifs.2022.04.002_bib57) 2012; 26 Su (10.1016/j.tifs.2022.04.002_bib77) 2019; 59 Ren (10.1016/j.tifs.2022.04.002_bib68) 2020; 12 Gu (10.1016/j.tifs.2022.04.002_bib31) 2017; 83 Lee (10.1016/j.tifs.2022.04.002_bib46) 2016; 11 Duan (10.1016/j.tifs.2022.04.002_bib20) 2020; 119 Carere (10.1016/j.tifs.2022.04.002_bib6) 2018; 9 He (10.1016/j.tifs.2022.04.002_bib38) 2017; 7 Yan (10.1016/j.tifs.2022.04.002_bib97) 2020 Sayyari (10.1016/j.tifs.2022.04.002_bib72) 2018; 35 Awad (10.1016/j.tifs.2022.04.002_bib2) 2010; 27 Mou (10.1016/j.tifs.2022.04.002_bib59) 2021; 89 Gong (10.1016/j.tifs.2022.04.002_bib28) 2015; 10 Kemp (10.1016/j.tifs.2022.04.002_bib45) 2020; 149 Sarrocco (10.1016/j.tifs.2022.04.002_bib70) 2020 Wang (10.1016/j.tifs.2022.04.002_bib90) 2020; 104 Wang (10.1016/j.tifs.2022.04.002_bib89) 2019; 276 Li (10.1016/j.tifs.2022.04.002_bib52) 2020; 10 Li (10.1016/j.tifs.2022.04.002_bib53) 2011; 28 Li (10.1016/j.tifs.2022.04.002_bib51) 2017; 9 Carere (10.1016/j.tifs.2022.04.002_bib5) 2018; 11 Mousavi Khaneghah (10.1016/j.tifs.2022.04.002_bib60) 2020; 102 Chen (10.1016/j.tifs.2022.04.002_bib10) 2020; 36 Li (10.1016/j.tifs.2022.04.002_bib49) 2017; 68 Chen (10.1016/j.tifs.2022.04.002_bib9) 2019; 57 Wang (10.1016/j.tifs.2022.04.002_bib86) 2020; 12 Nesic (10.1016/j.tifs.2022.04.002_bib61) 2021; 13 Stumbriene (10.1016/j.tifs.2022.04.002_bib76) 2018; 113 Zhai (10.1016/j.tifs.2022.04.002_bib98) 2019; 10 He (10.1016/j.tifs.2022.04.002_bib37) 2016; 8 Islam (10.1016/j.tifs.2022.04.002_bib42) 2012; 28 Shah (10.1016/j.tifs.2022.04.002_bib74) 2018; 67 Ikunaga (10.1016/j.tifs.2022.04.002_bib41) 2011; 89 Poppenberger (10.1016/j.tifs.2022.04.002_bib66) 2003; 278 Qin (10.1016/j.tifs.2022.04.002_bib67) 2022 Pereira (10.1016/j.tifs.2022.04.002_bib65) 2016; 56 Fang (10.1016/j.tifs.2022.04.002_bib21) 2019; 59 Claeys (10.1016/j.tifs.2022.04.002_bib12) 2020; 19 Dellafiora (10.1016/j.tifs.2022.04.002_bib17) 2020; 12 Wang (10.1016/j.tifs.2022.04.002_bib93) 2017; 65 Basinska-Barczak (10.1016/j.tifs.2022.04.002_bib3) 2020; 9 Zhang (10.1016/j.tifs.2022.04.002_bib101) 2021; 12 Gao (10.1016/j.tifs.2022.04.002_bib25) 2018; 112 Wetterhorn (10.1016/j.tifs.2022.04.002_bib94) 2017; 56 Wu (10.1016/j.tifs.2022.04.002_bib95) 2017; 8 He (10.1016/j.tifs.2022.04.002_bib35) 2020; 321 Zhang (10.1016/j.tifs.2022.04.002_bib99) 2020 Matarese (10.1016/j.tifs.2022.04.002_bib55) 2012; 158 Demissie (10.1016/j.tifs.2022.04.002_bib18) 2020; 33 Ryu (10.1016/j.tifs.2022.04.002_bib69) 2019; 116 Chen (10.1016/j.tifs.2022.04.002_bib8) 2018; 13 Feizollahi (10.1016/j.tifs.2022.04.002_bib22) 2021 Liu (10.1016/j.tifs.2022.04.002_bib50) 2020; 85 He (10.1016/j.tifs.2022.04.002_bib34) 2020; 12 Volkl (10.1016/j.tifs.2022.04.002_bib85) 2004; 44 Wang (10.1016/j.tifs.2022.04.002_bib87) 2019; 83 Lu (10.1016/j.tifs.2022.04.002_bib54) 2021 Tsubaki (10.1016/j.tifs.2022.04.002_bib81) 2019; 35 Gentile (10.1016/j.tifs.2022.04.002_bib26) 2020; 6 Afsah‐Hejri (10.1016/j.tifs.2022.04.002_bib1) 2020; 19 Huang (10.1016/j.tifs.2022.04.002_bib39) 2020; 16 He (10.1016/j.tifs.2022.04.002_bib36) 2020; 11 Legrand (10.1016/j.tifs.2022.04.002_bib47) 2017; 113 Hu (10.1016/j.tifs.2022.04.002_bib40) 2022; 200 Wang (10.1016/j.tifs.2022.04.002_bib92) 2021; 9 Das (10.1016/j.tifs.2022.04.002_bib15) 2021; 37 Gimeno (10.1016/j.tifs.2022.04.002_bib27) 2020; 129 Ito (10.1016/j.tifs.2022.04.002_bib43) 2013; 79 Leite (10.1016/j.tifs.2022.04.002_bib48) 2021; 115 Pan (10.1016/j.tifs.2022.04.002_bib63) 2015; 31 Hanif (10.1016/j.tifs.2022.04.002_bib32) 2019; 11 Schweiger (10.1016/j.tifs.2022.04.002_bib73) 2013; 14 Cuzick (10.1016/j.tifs.2022.04.002_bib14) 2008; 177 He (10.1016/j.tifs.2022.04.002_bib33) 2016; 7 Yang (10.1016/j.tifs.2022.04.002_bib96) 2020; 96 Cantoro (10.1016/j.tifs.2022.04.002_bib4) 2021; 66 Verdonk (10.1016/j.tifs.2022.04.002_bib83) 2003; 52 de Castro (10.1016/j.tifs.2022.04.002_bib7) 2019; 37 Gado (10.1016/j.tifs.2022.04.002_bib24) 2020; 60 Sood (10.1016/j.tifs.2022.04.002_bib75) 2020; 9 Fuchs (10.1016/j.tifs.2022.04.002_bib23) 2002; 19 |
References_xml | – volume: 200 start-page: 388 year: 2022 end-page: 396 ident: bib40 article-title: Crystal structure and biochemical analysis of the specialized deoxynivalenol–detoxifying glyoxalase SPG from Gossypium hirsutum publication-title: International Journal of Biological Macromolecules – volume: 13 year: 2018 ident: bib8 article-title: A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight publication-title: PLoS One – volume: 28 start-page: 7 year: 2012 end-page: 13 ident: bib42 article-title: Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil publication-title: World Journal of Microbiology and Biotechnology – volume: 68 start-page: 2187 year: 2017 end-page: 2197 ident: bib49 article-title: A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium Head Blight resistance in transgenic wheat publication-title: Journal of Experimental Botany – volume: 89 start-page: 336 year: 2021 end-page: 347 ident: bib59 article-title: Machine learning-based prediction of enzyme substrate scope: Application to bacterial nitrilases publication-title: Proteins Structure Function and Genetics – volume: 66 start-page: 259 year: 2021 end-page: 270 ident: bib4 article-title: Bacillus velezensis RC 218 as a biocontrol agent against Fusarium graminearum: Effect on penetration, growth and TRI5 expression in wheat spikes publication-title: BioControl – volume: 8 start-page: 110708 year: 2017 end-page: 110726 ident: bib95 article-title: Antioxidant agents against trichothecenes: New hints for oxidative stress treatment publication-title: Oncotarget – volume: 13 year: 2021 ident: bib61 article-title: Possibilities for the biological control of mycotoxins in food and feed publication-title: Toxins – volume: 11 start-page: 1106 year: 2018 end-page: 1111 ident: bib5 article-title: The enzymatic detoxification of the mycotoxin deoxynivalenol: Identification of DepA from the DON epimerization pathway publication-title: Microbial Biotechnology – volume: 83 year: 2017 ident: bib31 article-title: Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum publication-title: Applied and Environmental Microbiology – volume: 116 start-page: 13996 year: 2019 end-page: 14001 ident: bib69 article-title: Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 year: 2020 ident: bib3 article-title: Plant cell wall changes in common wheat roots as a result of their interaction with beneficial fungi of Trichoderma publication-title: Cells – volume: 67 start-page: 532 year: 2018 end-page: 548 ident: bib74 article-title: Integrated control of fusarium head blight and deoxynivalenol mycotoxin in wheat publication-title: Plant Pathology – volume: 19 start-page: 1449 year: 2020 end-page: 1464 ident: bib12 article-title: Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 10 start-page: 308 year: 2020 end-page: 322 ident: bib52 article-title: Monn: A multi-objective neural network for predicting compound-protein interactions and affinities publication-title: Cell Systems – volume: 10 start-page: 1210 year: 2019 end-page: 1223 ident: bib56 article-title: Machine learning in enzyme engineering publication-title: ACS Catalysis – volume: 278 start-page: 47905 year: 2003 end-page: 47914 ident: bib66 article-title: Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana publication-title: Journal of Biological Chemistry – volume: 368 year: 2020 ident: bib88 article-title: Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat publication-title: Science – volume: 11 year: 2019 ident: bib91 article-title: ACID: A free tool for drug repurposing using consensus inverse docking strategy publication-title: Journal of Cheminformatics – volume: 12 year: 2020 ident: bib17 article-title: An in silico target fishing approach to identify novel ochratoxin A hydrolyzing enzyme publication-title: Toxins – volume: 79 start-page: 1619 year: 2013 end-page: 1628 ident: bib43 article-title: Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol publication-title: Applied and Environmental Microbiology – volume: 177 start-page: 990 year: 2008 end-page: 1000 ident: bib14 article-title: Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue publication-title: New Phytologist – volume: 109 start-page: 560 year: 2019 end-page: 570 ident: bib71 article-title: Is exploitation competition involved in a multitrophic strategy for the biocontrol of Fusarium head blight? publication-title: Phytopathology – volume: 31 start-page: 137 year: 2015 end-page: 143 ident: bib63 article-title: Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat publication-title: Mycotoxin Research – volume: 12 year: 2020 ident: bib86 article-title: Isolation and characterization of a deoxynivalenol-degrading bacterium Bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice publication-title: Toxins – volume: 19 start-page: 379 year: 2002 end-page: 386 ident: bib23 article-title: Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797 publication-title: Food Additives & Contaminants – volume: 60 start-page: 1346 year: 2020 end-page: 1374 ident: bib58 article-title: Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey publication-title: Critical Reviews in Food Science and Nutrition – volume: 8 start-page: 335 year: 2016 ident: bib79 article-title: Detoxification of deoxynivalenol via glycosylation represents novel insights on antagonistic activities of Trichoderma when confronted with Fusarium graminearum publication-title: Toxins – volume: 19 start-page: 895 year: 2020 end-page: 926 ident: bib30 article-title: Deoxynivalenol: Masked forms, fate during food processing, and potential biological remedies publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 9 start-page: 131 year: 2021 ident: bib92 article-title: Post-translational regulation of autophagy is involved in intra-microbiome suppression of fungal pathogens publication-title: Microbiome – start-page: 12 year: 2020 ident: bib97 article-title: Natural occurrence of deoxynivalenol and its acetylated derivatives in Chinese maize and wheat collected in 2017 publication-title: Toxins – volume: 14 start-page: 772 year: 2013 end-page: 785 ident: bib73 article-title: Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes publication-title: Molecular Plant Pathology – volume: 59 start-page: 4833 year: 2019 end-page: 4843 ident: bib21 article-title: Convolution neural network-based prediction of protein thermostability publication-title: Journal of Chemical Information and Modeling – volume: 60 start-page: 4098 year: 2020 end-page: 4107 ident: bib24 article-title: Improving enzyme optimum temperature prediction with resampling strategies and ensemble learning publication-title: Journal of Chemical Information and Modeling – volume: 149 year: 2020 ident: bib45 article-title: Sarocladium zeae is a systemic endophyte of wheat and an effective biocontrol agent against Fusarium head blight publication-title: Biological Control – volume: 9 year: 2020 ident: bib75 article-title: Trichoderma: The "secrets" of a multitalented biocontrol agent publication-title: Plants – volume: 26 start-page: 897 year: 2012 end-page: 906 ident: bib57 article-title: FRED and HYBRID docking performance on standardized datasets publication-title: Journal of Computer-Aided Molecular Design – volume: 102 start-page: 193 year: 2020 end-page: 202 ident: bib60 article-title: A systematic review and meta-analysis to investigate the concentration and prevalence of trichothecenes in the cereal-based food publication-title: Trends in Food Science & Technology – volume: 96 start-page: 233 year: 2020 end-page: 252 ident: bib96 article-title: Recent advances on toxicity and determination methods of mycotoxins in foodstuffs publication-title: Trends in Food Science & Technology – volume: 89 start-page: 419 year: 2011 end-page: 427 ident: bib41 article-title: Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol publication-title: Applied Microbiology and Biotechnology – volume: 12 start-page: 363 year: 2020 ident: bib34 article-title: Novel soil bacterium strain Desulfitobacterium sp. PGC-3-9 detoxifies trichothecene mycotoxins in wheat via de-epoxidation under aerobic and anaerobic conditions publication-title: Toxins – volume: 290 start-page: 290 year: 2009 end-page: 295 ident: bib29 article-title: Transformation of trichothecene mycotoxins by microorganisms from fish digesta publication-title: Aquaculture – volume: 19 start-page: 1777 year: 2020 end-page: 1808 ident: bib1 article-title: Application of ozone for degradation of mycotoxins in food: A review publication-title: Comprehensive Reviews in Food Science and Food Safety – year: 2022 ident: bib67 article-title: A quinoprotein dehydrogenase from Pelagibacterium halotolerans ANSP101 oxidizes deoxynivalenol to 3-keto-deoxynivalenol publication-title: Food Control – volume: 44 start-page: 147 year: 2004 end-page: 156 ident: bib85 article-title: Microbial detoxification of mycotoxin deoxynivalenol publication-title: Journal of Basic Microbiology – volume: 10 start-page: 2172 year: 2019 ident: bib98 article-title: Detoxification of deoxynivalenol by a mixed culture of soil bacteria with 3-epi-Deoxynivalenol as the main intermediate publication-title: Frontiers in Microbiology – volume: 9 start-page: 13 year: 2017 end-page: 18 ident: bib62 article-title: An integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions publication-title: Plant Gene – volume: 12 year: 2020 ident: bib68 article-title: Regulation efficacy and mechanism of the toxicity of microcystin-LR targeting protein phosphatase 1 via the biodegradation pathway publication-title: Toxins – volume: 129 start-page: 680 year: 2020 end-page: 694 ident: bib27 article-title: From laboratory to the field: Biological control of Fusarium graminearum on infected maize crop residues publication-title: Journal of Applied Microbiology – volume: 119 start-page: 115 year: 2020 end-page: 127 ident: bib20 article-title: Improving the accuracy of protein thermostability predictions for single point mutations publication-title: Biophysical Journal – volume: 56 start-page: 6585 year: 2017 end-page: 6596 ident: bib94 article-title: Determinants and expansion of specificity in a trichothecene UDP-glucosyltransferase from Oryza sativa publication-title: Biochemistry – volume: 9 start-page: 3429 year: 2018 ident: bib11 article-title: Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation publication-title: Nature Communications – volume: 6 start-page: 939 year: 2020 end-page: 949 ident: bib26 article-title: Deep docking: A deep learning platform for augmentation of structure based drug discovery publication-title: ACS Central Science – volume: 11 year: 2019 ident: bib32 article-title: Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis publication-title: Toxins – volume: 7 start-page: 9549 year: 2017 ident: bib38 article-title: An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain publication-title: Scientific Reports – volume: 13 year: 2021 ident: bib82 article-title: Bacterial enrichment cultures biotransform the mycotoxin deoxynivalenol into a novel metabolite toxic to plant and porcine cells publication-title: Toxins – year: 2020 ident: bib99 article-title: Antagonistic action of Streptomyces pratensis S10 on Fusarium graminearum and its complete genome sequence publication-title: Environmental Microbiology – volume: 321 start-page: 126703 year: 2020 ident: bib35 article-title: A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify deoxynivalenol in wheat via epimerization in a Devosia strain publication-title: Food Chemistry – volume: 172 start-page: 559 year: 2016 end-page: 574 ident: bib64 article-title: A Brachypodium UDP-glycosyltransferase confers root tolerance to deoxynivalenol and resistance to Fusarium infection publication-title: Plant Physiology – volume: 110 start-page: 551 year: 2021 end-page: 558 ident: bib19 article-title: Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans publication-title: Trends in Food Science & Technology – year: 2021 ident: bib22 article-title: Mechanisms of deoxynivalenol (DON) degradation during different treatments: A review publication-title: Critical Reviews in Food Science and Nutrition – volume: 7 year: 2016 ident: bib33 article-title: Bacterial epimerization as a route for deoxynivalenol detoxification: The influence of growth and environmental conditions publication-title: Frontiers in Microbiology – volume: 57 start-page: 15 year: 2019 end-page: 39 ident: bib9 article-title: Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management publication-title: Annual Review of Phytopathology – volume: 8 year: 2016 ident: bib37 article-title: Aerobic de-epoxydation of trichothecene mycotoxins by a soil bacterial consortium isolated using in situ soil enrichment publication-title: Toxins – volume: 11 start-page: 707 year: 2016 end-page: 715 ident: bib46 article-title: Using reverse docking for target identification and its applications for drug discovery publication-title: Expert Opinion on Drug Discovery – volume: 7 start-page: 395 year: 2016 ident: bib78 article-title: Functional agents to biologically control deoxynivalenol contamination in cereal grains publication-title: Frontiers in Microbiology – volume: 158 start-page: 98 year: 2012 end-page: 106 ident: bib55 article-title: Biocontrol of Fusarium head blight: Interactions between Trichoderma and mycotoxigenic Fusarium publication-title: Microbiology – volume: 113 start-page: 26 year: 2017 end-page: 38 ident: bib47 article-title: Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum publication-title: Biological Control – volume: 83 start-page: 41 year: 2019 end-page: 52 ident: bib87 article-title: Food raw materials and food production occurrences of deoxynivalenol in different regions publication-title: Trends in Food Science & Technology – volume: 65 start-page: 414 year: 2017 end-page: 422 ident: bib93 article-title: Isolation and characterization of a novel deoxynivalenol-transforming strain Paradevosia shaoguanensis DDB001 from wheat field soil publication-title: Letters in Applied Microbiology – volume: 11 start-page: 4125 year: 2020 ident: bib80 article-title: Machine learning for chemical discovery publication-title: Nature Communications – volume: 27 start-page: 510 year: 2010 end-page: 520 ident: bib2 article-title: Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation publication-title: Food Additives & Contaminants Part A Chem Anal Control Expo Risk Assess – volume: 276 start-page: 436 year: 2019 end-page: 442 ident: bib89 article-title: Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16 publication-title: Food Chemistry – volume: 37 start-page: 1099 year: 2021 end-page: 1106 ident: bib15 article-title: CATH functional families predict functional sites in proteins publication-title: Bioinformatics – volume: 112 start-page: 310 year: 2018 end-page: 319 ident: bib25 article-title: Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9 publication-title: Food and Chemical Toxicology – volume: 140 start-page: 111276 year: 2020 ident: bib100 article-title: Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101 publication-title: Food and Chemical Toxicology – volume: 91 start-page: 491 year: 2011 end-page: 504 ident: bib44 article-title: Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives publication-title: Applied Microbiology and Biotechnology – volume: 12 start-page: 658421 year: 2021 ident: bib101 article-title: Biodegradation of deoxynivalenol by Nocardioides sp. ZHH-013: 3-keto-Deoxynivalenol and 3-epi-Deoxynivalenol as intermediate products publication-title: Frontiers in Microbiology – volume: 56 start-page: 2495 year: 2016 end-page: 2506 ident: bib65 article-title: Boosting docking-based virtual screening with deep learning publication-title: Journal of Chemical Information and Modeling – volume: 113 start-page: 22 year: 2018 end-page: 28 ident: bib76 article-title: Screening of new bacterial isolates with antifungal activity and application of selected Bacillus sp. cultures for biocontrol of Fusarium graminearum under field conditions publication-title: Crop Protection – volume: 15 start-page: 5116 year: 2019 end-page: 5134 ident: bib16 article-title: EnzyDock: Protein-Ligand docking of multiple reactive states along a reaction coordinate in enzymes publication-title: Journal of Chemical Theory and Computation – volume: 28 start-page: 894 year: 2011 end-page: 901 ident: bib53 article-title: Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance publication-title: Food Additives & Contaminants Part A Chem Anal Control Expo Risk Assess – year: 2021 ident: bib54 article-title: Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review publication-title: The Science of the Total Environment – volume: 104 start-page: 6045 year: 2020 end-page: 6056 ident: bib90 article-title: Metabolomics-guided analysis reveals a two-step epimerization of deoxynivalenol catalyzed by the bacterial consortium IFSN-C1 publication-title: Applied Microbiology and Biotechnology – volume: 9 start-page: 383 year: 2017 ident: bib51 article-title: Effects of adding Clostridium sp. WJ06 on intestinal morphology and microbial diversity of growing pigs fed with natural deoxynivalenol contaminated wheat publication-title: Toxins – volume: 9 start-page: 1573 year: 2018 ident: bib6 article-title: The identification of DepB: An enzyme responsible for the final detoxification step in the deoxynivalenol epimerization pathway in Devosia mutans 17-2-E-8 publication-title: Frontiers in Microbiology – volume: 16 start-page: 250 year: 2020 end-page: 256 ident: bib39 article-title: Aromatization of natural products by a specialized detoxification enzyme publication-title: Nature Chemical Biology – volume: 11 start-page: 574775 year: 2020 ident: bib36 article-title: TaUGT6, a novel UDP-glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat publication-title: Frontiers of Plant Science – volume: 115 start-page: 307 year: 2021 end-page: 331 ident: bib48 article-title: Maize food chain and mycotoxins: A review on occurrence studies publication-title: Trends in Food Science & Technology – volume: 10 start-page: 2356 year: 2019 ident: bib13 article-title: Selection of an endophytic Streptomyces sp. strain DEF09 from wheat roots as a biocontrol agent against Fusarium graminearum publication-title: Frontiers in Microbiology – volume: 10 year: 2015 ident: bib28 article-title: Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum publication-title: PLoS One – volume: 85 start-page: 1353 year: 2020 end-page: 1360 ident: bib50 article-title: Molecular docking studies and in vitro degradation of four aflatoxins (AFB1, AFB2, AFG1, and AFG2) by a recombinant laccase from Saccharomyces cerevisiae publication-title: Journal of Food Science – year: 2021 ident: bib84 article-title: Enzyme promiscuity prediction using hierarchy-informed multi-label classification publication-title: Bioinformatics – volume: 36 start-page: 4406 year: 2020 end-page: 4414 ident: bib10 article-title: TransformerCPI: Improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments publication-title: Bioinformatics – year: 2020 ident: bib70 article-title: Straw competition and wheat root endophytism of Trichoderma gamsii T6085 as useful traits in the biocontrol of Fusarium head blight publication-title: Phytopathology – volume: 52 start-page: 609 year: 2003 end-page: 623 ident: bib83 article-title: Improved protein-ligand docking using GOLD publication-title: Proteins Structure Function and Genetics – volume: 35 start-page: 309 year: 2019 end-page: 318 ident: bib81 article-title: Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences publication-title: Bioinformatics – volume: 59 start-page: 895 year: 2019 end-page: 913 ident: bib77 article-title: Comparative assessment of scoring functions: The CASF-2016 update publication-title: Journal of Chemical Information and Modeling – volume: 37 start-page: 2154 year: 2019 end-page: 2164 ident: bib7 article-title: Asymmetric biodegradation of the nerve agents sarin and VX by human dUTPase: Chemometrics, molecular docking and hybrid QM/MM calculations publication-title: Journal of Biomolecular Structure and Dynamics – volume: 33 start-page: 842 year: 2020 end-page: 858 ident: bib18 article-title: Transcriptomic and exometabolomic profiling reveals antagonistic and defensive modes of Clonostachys rosea action against Fusarium graminearum publication-title: Molecular Plant-Microbe Interactions – volume: 35 start-page: 1394 year: 2018 end-page: 1409 ident: bib72 article-title: Effects and biotransformation of the mycotoxin deoxynivalenol in growing pigs fed with naturally contaminated pelleted grains with and without the addition of Coriobacteriaceum DSM 11798 publication-title: Food Additives & Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment – volume: 113 start-page: 26 year: 2017 ident: 10.1016/j.tifs.2022.04.002_bib47 article-title: Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum publication-title: Biological Control doi: 10.1016/j.biocontrol.2017.06.011 – volume: 12 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib17 article-title: An in silico target fishing approach to identify novel ochratoxin A hydrolyzing enzyme publication-title: Toxins doi: 10.3390/toxins12040258 – volume: 52 start-page: 609 year: 2003 ident: 10.1016/j.tifs.2022.04.002_bib83 article-title: Improved protein-ligand docking using GOLD publication-title: Proteins Structure Function and Genetics doi: 10.1002/prot.10465 – volume: 37 start-page: 1099 year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib15 article-title: CATH functional families predict functional sites in proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa937 – volume: 37 start-page: 2154 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib7 article-title: Asymmetric biodegradation of the nerve agents sarin and VX by human dUTPase: Chemometrics, molecular docking and hybrid QM/MM calculations publication-title: Journal of Biomolecular Structure and Dynamics doi: 10.1080/07391102.2018.1478751 – volume: 89 start-page: 419 year: 2011 ident: 10.1016/j.tifs.2022.04.002_bib41 article-title: Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s00253-010-2857-z – volume: 26 start-page: 897 year: 2012 ident: 10.1016/j.tifs.2022.04.002_bib57 article-title: FRED and HYBRID docking performance on standardized datasets publication-title: Journal of Computer-Aided Molecular Design doi: 10.1007/s10822-012-9584-8 – volume: 19 start-page: 1777 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib1 article-title: Application of ozone for degradation of mycotoxins in food: A review publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12594 – volume: 83 year: 2017 ident: 10.1016/j.tifs.2022.04.002_bib31 article-title: Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.01075-17 – volume: 102 start-page: 193 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib60 article-title: A systematic review and meta-analysis to investigate the concentration and prevalence of trichothecenes in the cereal-based food publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2020.05.026 – volume: 9 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib75 article-title: Trichoderma: The "secrets" of a multitalented biocontrol agent publication-title: Plants doi: 10.3390/plants9060762 – volume: 8 start-page: 335 year: 2016 ident: 10.1016/j.tifs.2022.04.002_bib79 article-title: Detoxification of deoxynivalenol via glycosylation represents novel insights on antagonistic activities of Trichoderma when confronted with Fusarium graminearum publication-title: Toxins doi: 10.3390/toxins8110335 – volume: 10 year: 2015 ident: 10.1016/j.tifs.2022.04.002_bib28 article-title: Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum publication-title: PLoS One – volume: 11 start-page: 4125 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib80 article-title: Machine learning for chemical discovery publication-title: Nature Communications doi: 10.1038/s41467-020-17844-8 – year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib70 article-title: Straw competition and wheat root endophytism of Trichoderma gamsii T6085 as useful traits in the biocontrol of Fusarium head blight publication-title: Phytopathology – volume: 59 start-page: 4833 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib21 article-title: Convolution neural network-based prediction of protein thermostability publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.9b00220 – volume: 11 start-page: 707 year: 2016 ident: 10.1016/j.tifs.2022.04.002_bib46 article-title: Using reverse docking for target identification and its applications for drug discovery publication-title: Expert Opinion on Drug Discovery doi: 10.1080/17460441.2016.1190706 – volume: 119 start-page: 115 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib20 article-title: Improving the accuracy of protein thermostability predictions for single point mutations publication-title: Biophysical Journal doi: 10.1016/j.bpj.2020.05.020 – volume: 11 start-page: 574775 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib36 article-title: TaUGT6, a novel UDP-glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat publication-title: Frontiers of Plant Science doi: 10.3389/fpls.2020.574775 – volume: 172 start-page: 559 year: 2016 ident: 10.1016/j.tifs.2022.04.002_bib64 article-title: A Brachypodium UDP-glycosyltransferase confers root tolerance to deoxynivalenol and resistance to Fusarium infection publication-title: Plant Physiology doi: 10.1104/pp.16.00371 – volume: 290 start-page: 290 year: 2009 ident: 10.1016/j.tifs.2022.04.002_bib29 article-title: Transformation of trichothecene mycotoxins by microorganisms from fish digesta publication-title: Aquaculture doi: 10.1016/j.aquaculture.2009.02.037 – volume: 278 start-page: 47905 year: 2003 ident: 10.1016/j.tifs.2022.04.002_bib66 article-title: Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M307552200 – volume: 35 start-page: 309 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib81 article-title: Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty535 – volume: 10 start-page: 2172 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib98 article-title: Detoxification of deoxynivalenol by a mixed culture of soil bacteria with 3-epi-Deoxynivalenol as the main intermediate publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2019.02172 – volume: 115 start-page: 307 year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib48 article-title: Maize food chain and mycotoxins: A review on occurrence studies publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2021.06.045 – volume: 12 start-page: 363 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib34 article-title: Novel soil bacterium strain Desulfitobacterium sp. PGC-3-9 detoxifies trichothecene mycotoxins in wheat via de-epoxidation under aerobic and anaerobic conditions publication-title: Toxins doi: 10.3390/toxins12060363 – volume: 9 start-page: 3429 year: 2018 ident: 10.1016/j.tifs.2022.04.002_bib11 article-title: Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation publication-title: Nature Communications doi: 10.1038/s41467-018-05683-7 – volume: 59 start-page: 895 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib77 article-title: Comparative assessment of scoring functions: The CASF-2016 update publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.8b00545 – volume: 79 start-page: 1619 year: 2013 ident: 10.1016/j.tifs.2022.04.002_bib43 article-title: Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.03227-12 – volume: 56 start-page: 2495 year: 2016 ident: 10.1016/j.tifs.2022.04.002_bib65 article-title: Boosting docking-based virtual screening with deep learning publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.6b00355 – volume: 11 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib32 article-title: Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis publication-title: Toxins doi: 10.3390/toxins11050295 – volume: 60 start-page: 1346 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib58 article-title: Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2019.1571479 – volume: 60 start-page: 4098 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib24 article-title: Improving enzyme optimum temperature prediction with resampling strategies and ensemble learning publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.0c00489 – year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib54 article-title: Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review publication-title: The Science of the Total Environment – volume: 7 year: 2016 ident: 10.1016/j.tifs.2022.04.002_bib33 article-title: Bacterial epimerization as a route for deoxynivalenol detoxification: The influence of growth and environmental conditions publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2016.00572 – volume: 28 start-page: 7 year: 2012 ident: 10.1016/j.tifs.2022.04.002_bib42 article-title: Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil publication-title: World Journal of Microbiology and Biotechnology doi: 10.1007/s11274-011-0785-4 – volume: 89 start-page: 336 year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib59 article-title: Machine learning-based prediction of enzyme substrate scope: Application to bacterial nitrilases publication-title: Proteins Structure Function and Genetics doi: 10.1002/prot.26019 – year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib84 article-title: Enzyme promiscuity prediction using hierarchy-informed multi-label classification publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab054 – volume: 7 start-page: 9549 year: 2017 ident: 10.1016/j.tifs.2022.04.002_bib38 article-title: An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain publication-title: Scientific Reports doi: 10.1038/s41598-017-08799-w – volume: 96 start-page: 233 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib96 article-title: Recent advances on toxicity and determination methods of mycotoxins in foodstuffs publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2019.12.021 – volume: 10 start-page: 1210 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib56 article-title: Machine learning in enzyme engineering publication-title: ACS Catalysis doi: 10.1021/acscatal.9b04321 – volume: 68 start-page: 2187 year: 2017 ident: 10.1016/j.tifs.2022.04.002_bib49 article-title: A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium Head Blight resistance in transgenic wheat publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erx109 – volume: 15 start-page: 5116 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib16 article-title: EnzyDock: Protein-Ligand docking of multiple reactive states along a reaction coordinate in enzymes publication-title: Journal of Chemical Theory and Computation doi: 10.1021/acs.jctc.9b00366 – volume: 7 start-page: 395 year: 2016 ident: 10.1016/j.tifs.2022.04.002_bib78 article-title: Functional agents to biologically control deoxynivalenol contamination in cereal grains publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2016.00395 – volume: 368 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib88 article-title: Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat publication-title: Science doi: 10.1126/science.aba5435 – volume: 8 start-page: 110708 year: 2017 ident: 10.1016/j.tifs.2022.04.002_bib95 article-title: Antioxidant agents against trichothecenes: New hints for oxidative stress treatment publication-title: Oncotarget doi: 10.18632/oncotarget.22800 – volume: 33 start-page: 842 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib18 article-title: Transcriptomic and exometabolomic profiling reveals antagonistic and defensive modes of Clonostachys rosea action against Fusarium graminearum publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI-11-19-0310-R – volume: 28 start-page: 894 year: 2011 ident: 10.1016/j.tifs.2022.04.002_bib53 article-title: Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance publication-title: Food Additives & Contaminants Part A Chem Anal Control Expo Risk Assess doi: 10.1080/19440049.2011.576402 – volume: 16 start-page: 250 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib39 article-title: Aromatization of natural products by a specialized detoxification enzyme publication-title: Nature Chemical Biology doi: 10.1038/s41589-019-0446-8 – volume: 149 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib45 article-title: Sarocladium zeae is a systemic endophyte of wheat and an effective biocontrol agent against Fusarium head blight publication-title: Biological Control doi: 10.1016/j.biocontrol.2020.104329 – volume: 83 start-page: 41 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib87 article-title: Food raw materials and food production occurrences of deoxynivalenol in different regions publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2018.11.003 – volume: 113 start-page: 22 year: 2018 ident: 10.1016/j.tifs.2022.04.002_bib76 article-title: Screening of new bacterial isolates with antifungal activity and application of selected Bacillus sp. cultures for biocontrol of Fusarium graminearum under field conditions publication-title: Crop Protection doi: 10.1016/j.cropro.2018.07.006 – volume: 35 start-page: 1394 year: 2018 ident: 10.1016/j.tifs.2022.04.002_bib72 article-title: Effects and biotransformation of the mycotoxin deoxynivalenol in growing pigs fed with naturally contaminated pelleted grains with and without the addition of Coriobacteriaceum DSM 11798 publication-title: Food Additives & Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment doi: 10.1080/19440049.2018.1461254 – volume: 44 start-page: 147 year: 2004 ident: 10.1016/j.tifs.2022.04.002_bib85 article-title: Microbial detoxification of mycotoxin deoxynivalenol publication-title: Journal of Basic Microbiology doi: 10.1002/jobm.200310353 – volume: 13 year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib61 article-title: Possibilities for the biological control of mycotoxins in food and feed publication-title: Toxins doi: 10.3390/toxins13030198 – volume: 11 start-page: 1106 year: 2018 ident: 10.1016/j.tifs.2022.04.002_bib5 article-title: The enzymatic detoxification of the mycotoxin deoxynivalenol: Identification of DepA from the DON epimerization pathway publication-title: Microbial Biotechnology doi: 10.1111/1751-7915.12874 – volume: 140 start-page: 111276 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib100 article-title: Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101 publication-title: Food and Chemical Toxicology doi: 10.1016/j.fct.2020.111276 – volume: 11 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib91 article-title: ACID: A free tool for drug repurposing using consensus inverse docking strategy publication-title: Journal of Cheminformatics doi: 10.1186/s13321-019-0394-z – volume: 112 start-page: 310 year: 2018 ident: 10.1016/j.tifs.2022.04.002_bib25 article-title: Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9 publication-title: Food and Chemical Toxicology doi: 10.1016/j.fct.2017.12.066 – volume: 9 start-page: 383 year: 2017 ident: 10.1016/j.tifs.2022.04.002_bib51 article-title: Effects of adding Clostridium sp. WJ06 on intestinal morphology and microbial diversity of growing pigs fed with natural deoxynivalenol contaminated wheat publication-title: Toxins doi: 10.3390/toxins9120383 – volume: 31 start-page: 137 year: 2015 ident: 10.1016/j.tifs.2022.04.002_bib63 article-title: Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat publication-title: Mycotoxin Research doi: 10.1007/s12550-015-0224-8 – volume: 91 start-page: 491 year: 2011 ident: 10.1016/j.tifs.2022.04.002_bib44 article-title: Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s00253-011-3401-5 – volume: 177 start-page: 990 year: 2008 ident: 10.1016/j.tifs.2022.04.002_bib14 article-title: Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue publication-title: New Phytologist doi: 10.1111/j.1469-8137.2007.02333.x – year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib22 article-title: Mechanisms of deoxynivalenol (DON) degradation during different treatments: A review publication-title: Critical Reviews in Food Science and Nutrition – year: 2022 ident: 10.1016/j.tifs.2022.04.002_bib67 article-title: A quinoprotein dehydrogenase from Pelagibacterium halotolerans ANSP101 oxidizes deoxynivalenol to 3-keto-deoxynivalenol publication-title: Food Control doi: 10.1016/j.foodcont.2022.108834 – volume: 9 start-page: 1573 year: 2018 ident: 10.1016/j.tifs.2022.04.002_bib6 article-title: The identification of DepB: An enzyme responsible for the final detoxification step in the deoxynivalenol epimerization pathway in Devosia mutans 17-2-E-8 publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2018.01573 – volume: 13 year: 2018 ident: 10.1016/j.tifs.2022.04.002_bib8 article-title: A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight publication-title: PLoS One – volume: 13 year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib82 article-title: Bacterial enrichment cultures biotransform the mycotoxin deoxynivalenol into a novel metabolite toxic to plant and porcine cells publication-title: Toxins doi: 10.3390/toxins13080552 – volume: 12 start-page: 658421 year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib101 article-title: Biodegradation of deoxynivalenol by Nocardioides sp. ZHH-013: 3-keto-Deoxynivalenol and 3-epi-Deoxynivalenol as intermediate products publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2021.658421 – volume: 67 start-page: 532 year: 2018 ident: 10.1016/j.tifs.2022.04.002_bib74 article-title: Integrated control of fusarium head blight and deoxynivalenol mycotoxin in wheat publication-title: Plant Pathology doi: 10.1111/ppa.12785 – volume: 9 start-page: 131 year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib92 article-title: Post-translational regulation of autophagy is involved in intra-microbiome suppression of fungal pathogens publication-title: Microbiome doi: 10.1186/s40168-021-01077-y – volume: 27 start-page: 510 year: 2010 ident: 10.1016/j.tifs.2022.04.002_bib2 article-title: Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation publication-title: Food Additives & Contaminants Part A Chem Anal Control Expo Risk Assess doi: 10.1080/19440040903571747 – year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib99 article-title: Antagonistic action of Streptomyces pratensis S10 on Fusarium graminearum and its complete genome sequence publication-title: Environmental Microbiology – volume: 129 start-page: 680 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib27 article-title: From laboratory to the field: Biological control of Fusarium graminearum on infected maize crop residues publication-title: Journal of Applied Microbiology doi: 10.1111/jam.14634 – volume: 110 start-page: 551 year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib19 article-title: Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2021.02.038 – volume: 200 start-page: 388 year: 2022 ident: 10.1016/j.tifs.2022.04.002_bib40 article-title: Crystal structure and biochemical analysis of the specialized deoxynivalenol–detoxifying glyoxalase SPG from Gossypium hirsutum publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2022.01.055 – volume: 158 start-page: 98 year: 2012 ident: 10.1016/j.tifs.2022.04.002_bib55 article-title: Biocontrol of Fusarium head blight: Interactions between Trichoderma and mycotoxigenic Fusarium publication-title: Microbiology doi: 10.1099/mic.0.052639-0 – volume: 19 start-page: 379 year: 2002 ident: 10.1016/j.tifs.2022.04.002_bib23 article-title: Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797 publication-title: Food Additives & Contaminants doi: 10.1080/02652030110091154 – start-page: 12 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib97 article-title: Natural occurrence of deoxynivalenol and its acetylated derivatives in Chinese maize and wheat collected in 2017 publication-title: Toxins – volume: 10 start-page: 308 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib52 article-title: Monn: A multi-objective neural network for predicting compound-protein interactions and affinities publication-title: Cell Systems doi: 10.1016/j.cels.2020.03.002 – volume: 57 start-page: 15 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib9 article-title: Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management publication-title: Annual Review of Phytopathology doi: 10.1146/annurev-phyto-082718-100318 – volume: 8 year: 2016 ident: 10.1016/j.tifs.2022.04.002_bib37 article-title: Aerobic de-epoxydation of trichothecene mycotoxins by a soil bacterial consortium isolated using in situ soil enrichment publication-title: Toxins doi: 10.3390/toxins8100277 – volume: 116 start-page: 13996 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib69 article-title: Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1821905116 – volume: 14 start-page: 772 year: 2013 ident: 10.1016/j.tifs.2022.04.002_bib73 article-title: Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes publication-title: Molecular Plant Pathology doi: 10.1111/mpp.12048 – volume: 65 start-page: 414 year: 2017 ident: 10.1016/j.tifs.2022.04.002_bib93 article-title: Isolation and characterization of a novel deoxynivalenol-transforming strain Paradevosia shaoguanensis DDB001 from wheat field soil publication-title: Letters in Applied Microbiology doi: 10.1111/lam.12790 – volume: 56 start-page: 6585 year: 2017 ident: 10.1016/j.tifs.2022.04.002_bib94 article-title: Determinants and expansion of specificity in a trichothecene UDP-glucosyltransferase from Oryza sativa publication-title: Biochemistry doi: 10.1021/acs.biochem.7b01007 – volume: 66 start-page: 259 year: 2021 ident: 10.1016/j.tifs.2022.04.002_bib4 article-title: Bacillus velezensis RC 218 as a biocontrol agent against Fusarium graminearum: Effect on penetration, growth and TRI5 expression in wheat spikes publication-title: BioControl doi: 10.1007/s10526-020-10062-7 – volume: 109 start-page: 560 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib71 article-title: Is exploitation competition involved in a multitrophic strategy for the biocontrol of Fusarium head blight? publication-title: Phytopathology doi: 10.1094/PHYTO-04-18-0123-R – volume: 10 start-page: 2356 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib13 article-title: Selection of an endophytic Streptomyces sp. strain DEF09 from wheat roots as a biocontrol agent against Fusarium graminearum publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2019.02356 – volume: 12 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib86 article-title: Isolation and characterization of a deoxynivalenol-degrading bacterium Bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice publication-title: Toxins doi: 10.3390/toxins12030184 – volume: 276 start-page: 436 year: 2019 ident: 10.1016/j.tifs.2022.04.002_bib89 article-title: Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16 publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.10.011 – volume: 19 start-page: 895 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib30 article-title: Deoxynivalenol: Masked forms, fate during food processing, and potential biological remedies publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12545 – volume: 85 start-page: 1353 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib50 article-title: Molecular docking studies and in vitro degradation of four aflatoxins (AFB1, AFB2, AFG1, and AFG2) by a recombinant laccase from Saccharomyces cerevisiae publication-title: Journal of Food Science doi: 10.1111/1750-3841.15106 – volume: 36 start-page: 4406 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib10 article-title: TransformerCPI: Improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa524 – volume: 9 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib3 article-title: Plant cell wall changes in common wheat roots as a result of their interaction with beneficial fungi of Trichoderma publication-title: Cells doi: 10.3390/cells9102319 – volume: 19 start-page: 1449 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib12 article-title: Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12567 – volume: 9 start-page: 13 year: 2017 ident: 10.1016/j.tifs.2022.04.002_bib62 article-title: An integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions publication-title: Plant Gene doi: 10.1016/j.plgene.2016.11.005 – volume: 321 start-page: 126703 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib35 article-title: A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify deoxynivalenol in wheat via epimerization in a Devosia strain publication-title: Food Chemistry doi: 10.1016/j.foodchem.2020.126703 – volume: 12 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib68 article-title: Regulation efficacy and mechanism of the toxicity of microcystin-LR targeting protein phosphatase 1 via the biodegradation pathway publication-title: Toxins doi: 10.3390/toxins12120790 – volume: 104 start-page: 6045 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib90 article-title: Metabolomics-guided analysis reveals a two-step epimerization of deoxynivalenol catalyzed by the bacterial consortium IFSN-C1 publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s00253-020-10673-1 – volume: 6 start-page: 939 year: 2020 ident: 10.1016/j.tifs.2022.04.002_bib26 article-title: Deep docking: A deep learning platform for augmentation of structure based drug discovery publication-title: ACS Central Science doi: 10.1021/acscentsci.0c00229 |
SSID | ssj0005355 |
Score | 2.5933857 |
SecondaryResourceType | review_article |
Snippet | Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high... Background: Deoxynivalenol (DON) is an important Fusarium mycotoxin commonly detected in foods and feeds, which has drawn global attention because of its high... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 96 |
SubjectTerms | Biocontrol Biological control Computer applications Deoxynivalenol Detoxification Enzymes Food safety food science fungi Fusarium Metabolites Microbial antagonist Microorganisms Mycotoxin Mycotoxins Software toxicity |
Title | Elimination of Fusarium mycotoxin deoxynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives |
URI | https://dx.doi.org/10.1016/j.tifs.2022.04.002 https://www.proquest.com/docview/2675247731 https://www.proquest.com/docview/2661046694 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9QwFA_LelAPoqviuOsSwYMiddokTVtvy7rD6OAI6uLeSr4KlZl0sO2y48Gb_7d5abquInvwUEqaF1KSl_eRvPcLQs_SqtJGZjIimuiIFTmLBOMyAqxxomJVDFsD75d8fsrenaVnO-h4zIWBsMog-weZ7qV1-DINoznd1PX0U-xcB6eA3AM6m0HCL2MZcPmrH1fCPKi_-RSII6AOiTNDjFdXVwDZTYiHOw1bK_9QTn-Jaa97ZnfRnWA04qPhv-6hHWP30M0xp7jdQ7evwAreRz9PVv6uLhhz3FR41rfOI-7XeL1VTddc1BZr01xsbe3YzNhmhZ-_-bB8gc9rgde1R2ZyvQmrsbHftx7TFbfdiCnxGgdMJwzJSH3rCQdoErz5nbrZPkCns5PPx_MoXLcQKcqTLlJJ5awTZw9pCOrjznKiOleK6zSlxpWVzCHjIyaCqqLiSpOK5amgMuPGEF7Qh2jXNtY8QpjkUiVExDSXCUsL571LKZQsEpqKXBI2Qck4zqUKWORwJcaqHIPOvpYwNyXMTRmz0vU6QS8v22wGJI5rqdNx-so_-Kl0quLadgfjXJdhNbt651URlmU0maCnl9VuHcLhirCm6YGGw3E5L9jj_-x6H92C0hCHdoB2u2-9eeIsnk4eepY-RDeO3i7mS3gvPn5Z_AIVxANW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQeEBQQW1owEgcQCpvYjjfpDZWuFmiXA63UmxU_IgXtOqsmqbocuPG_GTtOKQj1wCGHxGM58tjzsGe-QehVWpbayImMiCY6YnnGooJxGTmscaJilfdHAydzPjtjn87T8w10OOTCuLDKIPt7me6ldfgyDrM5XlXV-GsMrgMoIHiczmbZHXSXwfZ1ZQze_bgR50F96VNHHTnykDnTB3m1VekwuwnxeKfhbOUf2ukvOe2Vz_QBuh-sRvy-_7GHaMPYHbQ1JBU3O2j7Bq7gI_TzaOGLdblJx3WJp10DLnG3xMu1qtv6qrJYm_pqbStYZ8bWC_z6w5f5G3xZFXhZeWgmGK2wGhv7fe1BXXHTDqASBziAOmGXjdQ1nrDHJsGr37mbzWN0Nj06PZxFod5CpChP2kglJZgnYBBpF9XHwXSiOlOK6zSlBt6VzFzKR0wKqvKSK01KlqUFlRNuDOE5fYI2bW3NU4RJJlVCiphmMmFpDu67lIWSeULTIpOEjVAyzLNQAYzc1cRYiCHq7JtwvBGONyJmAkYdobfXfVY9FMet1OnAPvHHghKgK27ttzfwWoTtDO3gVhE2mdBkhF5eN8NGdLcrhTV152i4uy_nOdv9z6FfoK3Z6cmxOP44__wM3XMtfVDaHtpsLzqzD-ZPK5_75f0L0_ADQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elimination+of+Fusarium+mycotoxin+deoxynivalenol+%28DON%29+via+microbial+and+enzymatic+strategies%3A+Current+status+and+future+perspectives&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Tian%2C+Ye&rft.au=Zhang%2C+Dachuan&rft.au=Cai%2C+Pengli&rft.au=Lin%2C+Huikang&rft.date=2022-06-01&rft.issn=0924-2244&rft.volume=124&rft.spage=96&rft.epage=107&rft_id=info:doi/10.1016%2Fj.tifs.2022.04.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tifs_2022_04_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon |