Live analysis of lagging chromosomes during anaphase and their effect on spindle elongation rate in fission yeast
The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-la...
Saved in:
Published in | Journal of cell science Vol. 113 Pt 23; no. 23; pp. 4177 - 4191 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.12.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres. The nucleus is highly dynamic during interphase: the clustered centromeres, in particular, are highly mobile. By expressing GFP-( )2-tubulin and GFP-Swi6p in the same cells we observe that the clustered centromeres move in concert with the cytoplasmic microtubules, which is likely to reflect their association with the spindle pole body. Drug treatment indicates that this movement is dependent on intact cytoplasmic microtubules. We have also used GFP-Swi6p to investigate the properties of lagging chromosomes observed in mutants with defects in chromosome segregation. Lagging chromosomes display a variety of behaviours on anaphase spindles, most surprisingly, chromosomes appear to initiate microtubule interactions and move to the poles late in anaphase B. Interestingly, in cells displaying lagging chromosomes, the rate of spindle elongation is slowed by a factor of two. This suggests that cells are able to sense the presence of a lagging chromosome and slow anaphase B in order to allow it extra time to reach the pole. However, this mechanism is not dependent on the spindle checkpoint proteins Bub1p or Dma1p, raising the possibility that a novel checkpoint mechanism operates to retard spindle elongation if lagging chromosomes are detected. An alternative model is also discussed in which single defective kinetochores on lagging chromatids are able to interact simultaneously with microtubules emanating from both poles and affect spindle dynamics by counteracting the spindle elongation force. |
---|---|
AbstractList | The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres. The nucleus is highly dynamic during interphase: the clustered centromeres, in particular, are highly mobile. By expressing GFP-( )2-tubulin and GFP-Swi6p in the same cells we observe that the clustered centromeres move in concert with the cytoplasmic microtubules, which is likely to reflect their association with the spindle pole body. Drug treatment indicates that this movement is dependent on intact cytoplasmic microtubules. We have also used GFP-Swi6p to investigate the properties of lagging chromosomes observed in mutants with defects in chromosome segregation. Lagging chromosomes display a variety of behaviours on anaphase spindles, most surprisingly, chromosomes appear to initiate microtubule interactions and move to the poles late in anaphase B. Interestingly, in cells displaying lagging chromosomes, the rate of spindle elongation is slowed by a factor of two. This suggests that cells are able to sense the presence of a lagging chromosome and slow anaphase B in order to allow it extra time to reach the pole. However, this mechanism is not dependent on the spindle checkpoint proteins Bub1p or Dma1p, raising the possibility that a novel checkpoint mechanism operates to retard spindle elongation if lagging chromosomes are detected. An alternative model is also discussed in which single defective kinetochores on lagging chromatids are able to interact simultaneously with microtubules emanating from both poles and affect spindle dynamics by counteracting the spindle elongation force. The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres. The nucleus is highly dynamic during interphase: the clustered centromeres, in particular, are highly mobile. By expressing GFP-α2-tubulin and GFP-Swi6p in the same cells we observe that the clustered centromeres move in concert with the cytoplasmic microtubules, which is likely to reflect their association with the spindle pole body. Drug treatment indicates that this movement is dependent on intact cytoplasmic microtubules. We have also used GFP-Swi6p to investigate the properties of lagging chromosomes observed in mutants with defects in chromosome segregation. Lagging chromosomes display a variety of behaviours on anaphase spindles, most surprisingly, chromosomes appear to initiate microtubule interactions and move to the poles late in anaphase B. Interestingly, in cells displaying lagging chromosomes, the rate of spindle elongation is slowed by a factor of two. This suggests that cells are able to sense the presence of a lagging chromosome and slow anaphase B in order to allow it extra time to reach the pole. However, this mechanism is not dependent on the spindle checkpoint proteins Bub1p or Dma1p, raising the possibility that a novel checkpoint mechanism operates to retard spindle elongation if lagging chromosomes are detected. An alternative model is also discussed in which single defective kinetochores on lagging chromatids are able to interact simultaneously with microtubules emanating from both poles and affect spindle dynamics by counteracting the spindle elongation force. Movies available on-line: http://www.biologists.com/JCS/movies/jcs1686.html, Movie FIG2A, Movie FIG2B, Movie FIG2C, Movie FIG2D, Movie FIG3A, Movie FIG3B, Movie FIG3C, Movie FIG5A, Movie FIG5B, Movie FIG5C, Movie FIG5D, Movie FIG5E, Movie FIG5F, Movie FIG5G, Movie FIG5H, Movie FIG5I, Movie FIG5J, Movie FIG8CSP10-2 The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres. The nucleus is highly dynamic during interphase: the clustered centromeres, in particular, are highly mobile. By expressing GFP- alpha 2-tubulin and GFP-Swi6p in the same cells we observe that the clustered centromeres move in concert with the cytoplasmic microtubules, which is likely to reflect their association with the spindle pole body. Drug treatment indicates that this movement is dependent on intact cytoplasmic microtubules. We have also used GFP-Swi6p to investigate the properties of lagging chromosomes observed in mutants with defects in chromosome segregation. Lagging chromosomes display a variety of behaviours on anaphase spindles, most surprisingly, chromosomes appear to initiate microtubule interactions and move to the poles late in anaphase B. Interestingly, in cells displaying lagging chromosomes, the rate of spindle elongation is slowed by a factor of two. This suggests that cells are able to sense the presence of a lagging chromosome and slow anaphase B in order to allow it extra time to reach the pole. However, this mechanism is not dependent on the spindle checkpoint proteins Bub1p or Dma1p, raising the possibility that a novel checkpoint mechanism operates to retard spindle elongation if lagging chromosomes are detected. An alternative model is also discussed in which single defective kinetochores on lagging chromatids are able to interact simultaneously with microtubules emanating from both poles and affect spindle dynamics by counteracting the spindle elongation force. |
Author | Cande, W Z Perry, P E Allshire, R C Uzawa, S Pidoux, A L |
Author_xml | – sequence: 1 givenname: A L surname: Pidoux fullname: Pidoux, A L email: robin.allshire@hgu.mrc.ac.uk organization: Chromosome Biology Section, Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK. robin.allshire@hgu.mrc.ac.uk – sequence: 2 givenname: S surname: Uzawa fullname: Uzawa, S – sequence: 3 givenname: P E surname: Perry fullname: Perry, P E – sequence: 4 givenname: W Z surname: Cande fullname: Cande, W Z – sequence: 5 givenname: R C surname: Allshire fullname: Allshire, R C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11069763$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkDtrwzAUhUVJadLH3K1o6uZUshzLGkvoCwJdugtZukpUbCnVdQr597VJoNPlHr5zhu-azGKKQMg9Z0teVuXTt8Ul52JZimXFpbwgC15JWSgu5IwsGCt5oVZCzMk14jdjTJZKXpE556xWshYL8rMJv0BNNN0RA9LkaWe22xC31O5y6hOmHpC6Q56iEdvvDE68o8MOQqbgPdiBpkhxH6LrgEKX4tYMYYyyGYCGSH1AnP4jGBxuyaU3HcLd-d6Qr9eXr_V7sfl8-1g_bworaj4ULTgGppXK1qWvoHGqtUIJ75tWrRxrhLPeNarhbW2kaISpxli1QqkaVlUlbsjjaXaf088BcNB9QAtdZyKkA2re8NHSqhnBpxNoc0LM4PU-h97ko-ZMT5L1KFmPknUp9CR5bDycpw9tD-6fP1sVf0w_fH8 |
CitedBy_id | crossref_primary_10_1046_j_1365_2443_2001_00459_x crossref_primary_10_7554_eLife_03398 crossref_primary_10_1098_rstb_2004_1611 crossref_primary_10_15252_embr_202255928 crossref_primary_10_1098_rstb_2004_1610 crossref_primary_10_1242_jcs_00707 crossref_primary_10_1101_gad_344205 crossref_primary_10_1128_MCB_00374_12 crossref_primary_10_1002_jcp_26836 crossref_primary_10_1002_yea_684 crossref_primary_10_1002_cfg_92 crossref_primary_10_1016_S0168_9525_01_02279_X crossref_primary_10_1128_MCB_24_8_3157_3167_2004 crossref_primary_10_1083_jcb_201905091 crossref_primary_10_1128_MCB_26_5_1710_1721_2006 crossref_primary_10_1128_MCB_02205_05 crossref_primary_10_1093_genetics_160_3_861 crossref_primary_10_1128_EC_2_5_910_921_2003 crossref_primary_10_1242_jcs_115_5_931 crossref_primary_10_1083_jcb_200212110 crossref_primary_10_1101_gad_1470407 crossref_primary_10_1074_jbc_M109186200 crossref_primary_10_1016_S0959_437X_03_00019_4 crossref_primary_10_1038_sj_emboj_7601892 crossref_primary_10_1101_gad_1497307 crossref_primary_10_1534_genetics_118_301031 crossref_primary_10_1016_j_cub_2007_06_044 crossref_primary_10_1016_j_cub_2009_05_042 crossref_primary_10_1371_journal_pgen_1002499 crossref_primary_10_1083_jcb_200902093 crossref_primary_10_1091_mbc_e05_08_0802 crossref_primary_10_1074_jbc_M110_143198 crossref_primary_10_1091_mbc_01_07_0333 crossref_primary_10_1128_MCB_22_20_7168_7183_2002 crossref_primary_10_1534_genetics_105_048298 crossref_primary_10_1111_acel_13649 crossref_primary_10_1016_j_cub_2018_10_049 crossref_primary_10_1016_j_cub_2004_03_042 crossref_primary_10_1266_ggs_23_00239 crossref_primary_10_1016_j_cub_2004_11_029 crossref_primary_10_3390_genes10110855 crossref_primary_10_1016_j_cub_2005_05_052 crossref_primary_10_1002_bies_201400140 crossref_primary_10_1016_j_cub_2003_09_031 crossref_primary_10_1093_genetics_163_3_857 crossref_primary_10_1016_S0960_9822_02_00761_3 crossref_primary_10_1091_mbc_12_9_2767 crossref_primary_10_1091_mbc_e03_02_0090 crossref_primary_10_1126_science_1064027 crossref_primary_10_1371_journal_pone_0069673 crossref_primary_10_1371_journal_pone_0010634 crossref_primary_10_1016_j_molcel_2019_10_018 crossref_primary_10_1371_journal_pone_0061464 crossref_primary_10_1126_science_1074757 crossref_primary_10_1371_journal_pgen_1010100 crossref_primary_10_1242_jcs_115_3_507 crossref_primary_10_1128_MCB_01531_07 crossref_primary_10_15252_embj_201591320 crossref_primary_10_1242_jcs_115_3_587 crossref_primary_10_1111_j_1600_0854_2012_01333_x crossref_primary_10_1083_jcb_200602152 crossref_primary_10_1016_S0960_9822_03_00316_6 crossref_primary_10_1371_journal_pone_0002221 crossref_primary_10_1104_pp_126_2_622 crossref_primary_10_1007_s00412_020_00741_w crossref_primary_10_1534_genetics_118_301055 crossref_primary_10_1093_genetics_160_2_445 crossref_primary_10_1016_S0955_0674_02_00328_9 crossref_primary_10_1038_nrm_2017_119 crossref_primary_10_1083_jcb_200111012 crossref_primary_10_1074_jbc_M806461200 crossref_primary_10_1007_s00018_010_0327_5 crossref_primary_10_1016_j_cub_2005_07_021 crossref_primary_10_3390_biology5040051 crossref_primary_10_1091_mbc_e06_10_0963 crossref_primary_10_1007_s10577_023_09727_7 crossref_primary_10_1016_j_mrrev_2018_11_001 crossref_primary_10_1038_ncb1069 crossref_primary_10_1038_35089520 crossref_primary_10_1088_1478_3975_10_3_036007 crossref_primary_10_1128_EC_5_3_530_543_2006 crossref_primary_10_1016_j_bbcan_2008_05_003 crossref_primary_10_1242_jcs_00796 |
Cites_doi | 10.1038/566 10.1016/S0960-9822(00)80090-1 10.1007/978-1-4757-5348-6_13 10.1038/33941 10.1101/gad.11.22.2939 10.1242/jcs.80.1.253 10.1126/science.279.5353.1045 10.1016/1043-4682(95)90001-2 10.1083/jcb.110.5.1617 10.1093/genetics/136.1.53 10.1242/jcs.89.3.343 10.1093/emboj/18.10.2707 10.1091/mbc.5.7.747 10.1016/S0076-6879(97)83037-6 10.1093/emboj/18.9.2424 10.1083/jcb.98.3.859 10.1016/0076-6879(91)94059-L 10.1101/SQB.1993.058.01.076 10.1242/jcs.111.6.701 10.1242/jcs.111.12.1603 10.1083/jcb.121.5.961 10.1091/mbc.3.7.819 10.1101/gad.13.13.1664 10.1016/S0960-9822(00)00360-2 10.1016/0378-1119(94)90619-X 10.1002/j.1460-2075.1993.tb05931.x 10.1083/jcb.135.3.545 10.1073/pnas.94.15.7965 10.1091/mbc.8.8.1461 10.1016/0092-8674(94)90075-2 10.1073/pnas.88.1.263 10.1038/336251a0 10.1242/jcs.112.5.651 10.1093/emboj/16.1.193 10.1016/0378-1119(93)90552-E 10.1128/MCB.17.6.3305 10.1002/j.1460-2075.1996.tb01051.x 10.1091/mbc.9.11.3211 10.1038/39382 10.1002/j.1460-2075.1992.tb05203.x 10.1093/nar/26.18.4222 10.1126/science.7660126 10.1083/jcb.110.2.417 10.1016/S0955-0674(00)00094-6 10.1016/S0962-8924(00)01727-X 10.1016/S0092-8674(00)80492-4 10.1016/S0959-437X(99)80031-8 10.1083/jcb.136.2.229 10.1016/0378-1119(93)90551-D 10.1126/science.8146661 10.1007/BF00326175 10.1083/jcb.120.1.141 10.1091/mbc.5.10.1145 10.1016/S0092-8674(00)80320-7 10.1242/jcs.109.11.2637 10.1016/S0960-9822(06)00412-X 10.1101/gad.14.7.783 10.1073/pnas.96.9.4989 10.1242/jcs.112.18.3103 10.1083/jcb.145.5.979 10.1083/jcb.129.4.1033 10.1007/BF00265441 10.1101/gad.9.2.218 10.1016/S0960-9822(99)80355-8 10.1016/0092-8674(94)90180-5 10.1242/jcs.110.16.1851 10.1002/cm.970060407 10.1038/316168a0 10.1093/genetics/153.3.1153 10.1242/jcs.111.12.1635 10.1016/S0962-8924(98)01299-9 10.1083/jcb.143.7.1775 10.1083/jcb.109.5.2257 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 M7N P64 RC3 |
DOI | 10.1242/jcs.113.23.4177 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9137 |
EndPage | 4191 |
ExternalDocumentID | 10_1242_jcs_113_23_4177 11069763 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01GM23238 – fundername: NCRR NIH HHS grantid: S10RR11902 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 18M 2WC 34G 39C 3O- 4.4 4R4 53G 5GY 5RE 5VS 85S AAJMC ABDNZ ABEFU ABJNI ABPPZ ABTAH ACGFO ACGFS ACIWK ACNCT ACPRK ACYGS ADBBV ADCOW AEILP AENEX AFFNX AFRAH AGGIJ AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P F9R GX1 H13 HZ~ IH2 INIJC KQ8 MVM NPM O9- OHT OK1 P2P R.V RCB RHF RHI RNS SJN TN5 TR2 UPT VH1 W2D W8F WH7 WOQ X7M XOL YQI YQT ZGI ZXP ZY4 ~02 ~KM AAYXX CITATION 8FD FR3 M7N P64 RC3 |
ID | FETCH-LOGICAL-c361t-bed0eab79c62f4e8d9bc393ff8b95d083dcfd8981b6a7383a495d9b3996e5443 |
ISSN | 0021-9533 |
IngestDate | Fri Oct 25 11:03:30 EDT 2024 Fri Dec 06 04:45:10 EST 2024 Sat Sep 28 08:29:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | http://www.biologists.com/user-licence-1-1 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c361t-bed0eab79c62f4e8d9bc393ff8b95d083dcfd8981b6a7383a495d9b3996e5443 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 11069763 |
PQID | 18191358 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_18191358 crossref_primary_10_1242_jcs_113_23_4177 pubmed_primary_11069763 |
PublicationCentury | 2000 |
PublicationDate | 2000-12-01 |
PublicationDateYYYYMMDD | 2000-12-01 |
PublicationDate_xml | – month: 12 year: 2000 text: 2000-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of cell science |
PublicationTitleAlternate | J Cell Sci |
PublicationYear | 2000 |
References | Murone (2024011400312970300_JOCES_113_23_4177C58) 1996; 15 Marshall (2024011400312970300_JOCES_113_23_4177C54) 1997; 7 Li (2024011400312970300_JOCES_113_23_4177C50) 1999; 96 Dobie (2024011400312970300_JOCES_113_23_4177C20) 1999; 9 Maundrell (2024011400312970300_JOCES_113_23_4177C56) 1993; 123 Trelles-Sticken (2024011400312970300_JOCES_113_23_4177C77) 1999; 112 Ngan (2024011400312970300_JOCES_113_23_4177C61) 1997; 17 Takahashi (2024011400312970300_JOCES_113_23_4177C74) 1994; 5 Steiner (2024011400312970300_JOCES_113_23_4177C72) 1994; 79 Cande (2024011400312970300_JOCES_113_23_4177C11) 1985; 316 Hagan (2024011400312970300_JOCES_113_23_4177C40) 1995; 129 Fankhauser (2024011400312970300_JOCES_113_23_4177C28) 1993; 12 Rieder (2024011400312970300_JOCES_113_23_4177C68) 1998; 8 Chikashige (2024011400312970300_JOCES_113_23_4177C14) 1997; 16 Beltraminelli (2024011400312970300_JOCES_113_23_4177C8) 1999; 112 Ekwall (2024011400312970300_JOCES_113_23_4177C27) 1999; 153 Mallavarapu (2024011400312970300_JOCES_113_23_4177C53) 1999; 9 Clarke (2024011400312970300_JOCES_113_23_4177C15) 1994; 58 Taylor (2024011400312970300_JOCES_113_23_4177C76) 1999; 9 He (2024011400312970300_JOCES_113_23_4177C43) 1997; 94 Chikashige (2024011400312970300_JOCES_113_23_4177C13) 1994; 264 Ding (2024011400312970300_JOCES_113_23_4177C17) 1998; 111 Janicke (2024011400312970300_JOCES_113_23_4177C46) 1984; 98 Paro (2024011400312970300_JOCES_113_23_4177C63) 1991; 88 Pidoux (2024011400312970300_JOCES_113_23_4177C65) 1992; 11 Gunawardena (2024011400312970300_JOCES_113_23_4177C36) 2000; 10 Brinkley (2024011400312970300_JOCES_113_23_4177C10) 1988; 336 Kim (2024011400312970300_JOCES_113_23_4177C48) 1998; 279 Funabiki (2024011400312970300_JOCES_113_23_4177C32) 1993; 121 Fesquet (2024011400312970300_JOCES_113_23_4177C29) 1999; 18 Nabeshima (2024011400312970300_JOCES_113_23_4177C59) 1997; 283 Fraschini (2024011400312970300_JOCES_113_23_4177C30) 1999; 145 Ding (2024011400312970300_JOCES_113_23_4177C18) 1993; 120 Nimmo (2024011400312970300_JOCES_113_23_4177C62) 1998; 392 Wadsworth (2024011400312970300_JOCES_113_23_4177C78) 1989; 109 Moreno (2024011400312970300_JOCES_113_23_4177C57) 1991; 194 Lorentz (2024011400312970300_JOCES_113_23_4177C52) 1994; 143 Bernard (2024011400312970300_JOCES_113_23_4177C9) 1998; 143 Ekwall (2024011400312970300_JOCES_113_23_4177C26) 1999 Hagan (2024011400312970300_JOCES_113_23_4177C41) 1997; 110 Basi (2024011400312970300_JOCES_113_23_4177C6) 1993; 123 Doe (2024011400312970300_JOCES_113_23_4177C21) 1998; 26 Gardner (2024011400312970300_JOCES_113_23_4177C33) 2000; 10 Khodjakov (2024011400312970300_JOCES_113_23_4177C47) 1997; 136 Sambrook (2024011400312970300_JOCES_113_23_4177C69) 1989 Pidoux (2024011400312970300_JOCES_113_23_4177C67) 2000 Goshima (2024011400312970300_JOCES_113_23_4177C34) 1999; 13 He (2024011400312970300_JOCES_113_23_4177C44) 1998; 111 Ekwall (2024011400312970300_JOCES_113_23_4177C25) 1997; 91 Allshire (2024011400312970300_JOCES_113_23_4177C3) 1995; 9 Ekwall (2024011400312970300_JOCES_113_23_4177C24) 1996; 109 Allshire (2024011400312970300_JOCES_113_23_4177C1) 1994; 76 Ivanova (2024011400312970300_JOCES_113_23_4177C45) 1998; 19 Hagan (2024011400312970300_JOCES_113_23_4177C39) 1990; 110 Gould (2024011400312970300_JOCES_113_23_4177C35) 1997; 11 Hagan (2024011400312970300_JOCES_113_23_4177C37) 1998; 111 Chen (2024011400312970300_JOCES_113_23_4177C12) 1995 Lorentz (2024011400312970300_JOCES_113_23_4177C51) 1992; 233 Takahashi (2024011400312970300_JOCES_113_23_4177C73) 1992; 3 Pidoux (2024011400312970300_JOCES_113_23_4177C66) 2000; 12 Andersen (2024011400312970300_JOCES_113_23_4177C5) 1997; 389 Alexandru (2024011400312970300_JOCES_113_23_4177C4) 1999; 18 Partridge (2024011400312970300_JOCES_113_23_4177C64) 2000; 14 Fuge (2024011400312970300_JOCES_113_23_4177C31) 1972; 39 Dernberg (2024011400312970300_JOCES_113_23_4177C16) 1995 Ekwall (2024011400312970300_JOCES_113_23_4177C22) 1994; 136 Allshire (2024011400312970300_JOCES_113_23_4177C2) 1995; 6 Ekwall (2024011400312970300_JOCES_113_23_4177C23) 1995; 269 Baum (2024011400312970300_JOCES_113_23_4177C7) 1994; 5 Ladrach (2024011400312970300_JOCES_113_23_4177C49) 1986; 6 Masuda (2024011400312970300_JOCES_113_23_4177C55) 1990; 110 Saitoh (2024011400312970300_JOCES_113_23_4177C70) 1997; 90 Tanaka (2024011400312970300_JOCES_113_23_4177C75) 1986; 80 Hahnenberger (2024011400312970300_JOCES_113_23_4177C42) 1991; 11 Shelby (2024011400312970300_JOCES_113_23_4177C71) 1996; 135 Nabeshima (2024011400312970300_JOCES_113_23_4177C60) 1998; 9 Ding (2024011400312970300_JOCES_113_23_4177C19) 1997; 8 Hagan (2024011400312970300_JOCES_113_23_4177C38) 1988; 89 |
References_xml | – volume: 19 start-page: 192 year: 1998 ident: 2024011400312970300_JOCES_113_23_4177C45 article-title: The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast publication-title: Nature Genet doi: 10.1038/566 contributor: fullname: Ivanova – volume: 9 start-page: 1423 year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C53 article-title: A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe publication-title: Curr. Biol doi: 10.1016/S0960-9822(00)80090-1 contributor: fullname: Mallavarapu – start-page: 197 volume-title: In Handbook of biological Confocal Microscopy year: 1995 ident: 2024011400312970300_JOCES_113_23_4177C12 doi: 10.1007/978-1-4757-5348-6_13 contributor: fullname: Chen – volume: 392 start-page: 825 year: 1998 ident: 2024011400312970300_JOCES_113_23_4177C62 article-title: Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe publication-title: Nature doi: 10.1038/33941 contributor: fullname: Nimmo – volume: 11 start-page: 2939 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C35 article-title: The control of septum formation in fission yeast publication-title: Genes Dev doi: 10.1101/gad.11.22.2939 contributor: fullname: Gould – volume: 80 start-page: 253 year: 1986 ident: 2024011400312970300_JOCES_113_23_4177C75 article-title: Mitosis in the fission yeast Schizosaccharomyces pombe as revealed by freeze-substitution electron microscopy publication-title: J. Cell Sci doi: 10.1242/jcs.80.1.253 contributor: fullname: Tanaka – volume: 279 start-page: 1045 year: 1998 ident: 2024011400312970300_JOCES_113_23_4177C48 article-title: Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint publication-title: Science doi: 10.1126/science.279.5353.1045 contributor: fullname: Kim – volume: 6 start-page: 55 year: 1995 ident: 2024011400312970300_JOCES_113_23_4177C2 article-title: Elements of chromosome structure and function in fission yeast publication-title: Semin. Cell Biol doi: 10.1016/1043-4682(95)90001-2 contributor: fullname: Allshire – volume: 110 start-page: 1617 year: 1990 ident: 2024011400312970300_JOCES_113_23_4177C39 article-title: Intramitotic controls in the fission yeast Schizosaccharomyces pombe: the effect of cell size on spindle length and the timing of mitotic events publication-title: J. Cell Biol doi: 10.1083/jcb.110.5.1617 contributor: fullname: Hagan – volume: 136 start-page: 53 year: 1994 ident: 2024011400312970300_JOCES_113_23_4177C22 article-title: Mutations in rik1, clr2, clr3 and clr4 genes asymmetrically derepress the silent mating-type loci in fission yeast publication-title: Genetics doi: 10.1093/genetics/136.1.53 contributor: fullname: Ekwall – volume: 89 start-page: 343 year: 1988 ident: 2024011400312970300_JOCES_113_23_4177C38 article-title: The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe publication-title: J. Cell Sci doi: 10.1242/jcs.89.3.343 contributor: fullname: Hagan – volume: 18 start-page: 2707 year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C4 article-title: Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage publication-title: EMBO J doi: 10.1093/emboj/18.10.2707 contributor: fullname: Alexandru – volume: 5 start-page: 747 year: 1994 ident: 2024011400312970300_JOCES_113_23_4177C7 article-title: The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere publication-title: Mol. Biol. Cell doi: 10.1091/mbc.5.7.747 contributor: fullname: Baum – start-page: 295 volume-title: In Telomeres (ed. E. H. Blackburn and C. W. Greider) year: 1995 ident: 2024011400312970300_JOCES_113_23_4177C16 contributor: fullname: Dernberg – volume: 283 start-page: 459 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C59 article-title: Use of green fluorescent protein for intracellular protein localization in living fission yeast cells publication-title: Meth. Enzymol doi: 10.1016/S0076-6879(97)83037-6 contributor: fullname: Nabeshima – volume: 18 start-page: 2424 year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C29 article-title: A Bub2p-dependent spindle checkpoint pathway regulates the Dbf2p kinase in budding yeast publication-title: EMBO J doi: 10.1093/emboj/18.9.2424 contributor: fullname: Fesquet – volume: 98 start-page: 859 year: 1984 ident: 2024011400312970300_JOCES_113_23_4177C46 article-title: Malorientation in half-bivalents at anaphase: analysis of autosomal laggards in untreated, cold-treated, and cold-recovering crane fly spermatocytes publication-title: J. Cell Biol doi: 10.1083/jcb.98.3.859 contributor: fullname: Janicke – volume: 194 start-page: 795 year: 1991 ident: 2024011400312970300_JOCES_113_23_4177C57 article-title: Molecular genetic analysis of fission yeast Schizosaccharomyces pombe publication-title: Meth. Enzymol doi: 10.1016/0076-6879(91)94059-L contributor: fullname: Moreno – volume: 58 start-page: 687 year: 1994 ident: 2024011400312970300_JOCES_113_23_4177C15 article-title: Structure and function of Schizosaccharomyces pombe centromeres publication-title: Cold Spring Harbor Symp. Quant. Biol doi: 10.1101/SQB.1993.058.01.076 contributor: fullname: Clarke – volume: 111 start-page: 701 year: 1998 ident: 2024011400312970300_JOCES_113_23_4177C17 article-title: Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells publication-title: J. Cell Sci doi: 10.1242/jcs.111.6.701 contributor: fullname: Ding – volume: 111 start-page: 1603 year: 1998 ident: 2024011400312970300_JOCES_113_23_4177C37 article-title: The fission yeast microtubule cytoskeleton publication-title: J. Cell Sci doi: 10.1242/jcs.111.12.1603 contributor: fullname: Hagan – volume: 121 start-page: 961 year: 1993 ident: 2024011400312970300_JOCES_113_23_4177C32 article-title: Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast publication-title: J. Cell Biol doi: 10.1083/jcb.121.5.961 contributor: fullname: Funabiki – volume: 3 start-page: 819 year: 1992 ident: 2024011400312970300_JOCES_113_23_4177C73 article-title: A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere publication-title: Mol. Biol. Cell doi: 10.1091/mbc.3.7.819 contributor: fullname: Takahashi – volume: 13 start-page: 1664 year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C34 article-title: Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation publication-title: Genes Dev doi: 10.1101/gad.13.13.1664 contributor: fullname: Goshima – volume: 10 start-page: 285 year: 2000 ident: 2024011400312970300_JOCES_113_23_4177C36 article-title: Direct evidence for interphase chromosome movement during the mid-blastula transition in Drosophila publication-title: Curr. Biol doi: 10.1016/S0960-9822(00)00360-2 contributor: fullname: Gunawardena – volume: 143 start-page: 139 year: 1994 ident: 2024011400312970300_JOCES_113_23_4177C52 article-title: Switching gene swi6, involved in repression of silent mating type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals publication-title: Gene doi: 10.1016/0378-1119(94)90619-X contributor: fullname: Lorentz – volume: 12 start-page: 2697 year: 1993 ident: 2024011400312970300_JOCES_113_23_4177C28 article-title: The S. pombe cdc16 gene is required both for maintenance of p34cdc2 kinase activity and regulation of septum formation: a link between mitosis and cytokinesis? publication-title: EMBO J doi: 10.1002/j.1460-2075.1993.tb05931.x contributor: fullname: Fankhauser – volume: 135 start-page: 545 year: 1996 ident: 2024011400312970300_JOCES_113_23_4177C71 article-title: Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells publication-title: J. Cell Biol doi: 10.1083/jcb.135.3.545 contributor: fullname: Shelby – volume: 94 start-page: 7965 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C43 article-title: The Schizosaccharomyces pombe spindle checkpoint protein Mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.94.15.7965 contributor: fullname: He – volume: 8 start-page: 1461 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C19 article-title: The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds publication-title: Mol. Biol Cell doi: 10.1091/mbc.8.8.1461 contributor: fullname: Ding – volume: 79 start-page: 865 year: 1994 ident: 2024011400312970300_JOCES_113_23_4177C72 article-title: A novel epigenetic affect can alter centromere function in fission yeast publication-title: Cell doi: 10.1016/0092-8674(94)90075-2 contributor: fullname: Steiner – volume: 88 start-page: 263 year: 1991 ident: 2024011400312970300_JOCES_113_23_4177C63 article-title: The polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.88.1.263 contributor: fullname: Paro – volume: 336 start-page: 251 year: 1988 ident: 2024011400312970300_JOCES_113_23_4177C10 article-title: Movement and segregation of kinetochores experimentally detached from mammalian chromosomes publication-title: Nature doi: 10.1038/336251a0 contributor: fullname: Brinkley – volume: 112 start-page: 651 year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C77 article-title: Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering publication-title: J. Cell Sci doi: 10.1242/jcs.112.5.651 contributor: fullname: Trelles-Sticken – volume: 16 start-page: 193 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C14 article-title: Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe publication-title: EMBO J doi: 10.1093/emboj/16.1.193 contributor: fullname: Chikashige – volume: 123 start-page: 131 year: 1993 ident: 2024011400312970300_JOCES_113_23_4177C6 article-title: TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility publication-title: Gene doi: 10.1016/0378-1119(93)90552-E contributor: fullname: Basi – volume: 17 start-page: 3305 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C61 article-title: The centromere enhancer mediates centromere activation in Schizosaccharomyces pombe publication-title: Mol. Cell. Biol doi: 10.1128/MCB.17.6.3305 contributor: fullname: Ngan – volume: 15 start-page: 6605 year: 1996 ident: 2024011400312970300_JOCES_113_23_4177C58 article-title: The fission yeast dma1 gene is a component of the spindle assembly checkpoint, required to prevent septum formation and premature exit from mitosis if spindle function is compromised publication-title: EMBO J doi: 10.1002/j.1460-2075.1996.tb01051.x contributor: fullname: Murone – volume: 9 start-page: 3211 year: 1998 ident: 2024011400312970300_JOCES_113_23_4177C60 article-title: Dynamics of centromeres during metaphase-anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle publication-title: Mol. Biol. Cell doi: 10.1091/mbc.9.11.3211 contributor: fullname: Nabeshima – volume: 389 start-page: 640 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C5 article-title: Mitotic chromatin regulates phosphorylation of Stathmin/Op18 publication-title: Nature doi: 10.1038/39382 contributor: fullname: Andersen – volume: 11 start-page: 1583 year: 1992 ident: 2024011400312970300_JOCES_113_23_4177C65 article-title: Analysis of the BiP gene and identification of an ER retention signal in Schizosaccharomyces pombe publication-title: EMBO J doi: 10.1002/j.1460-2075.1992.tb05203.x contributor: fullname: Pidoux – volume: 26 start-page: 4222 year: 1998 ident: 2024011400312970300_JOCES_113_23_4177C21 article-title: The fission yeast chromo domain encoding gene chp1+ is required for chromosome segregation and shows a genetic interaction with alpha tubulin publication-title: Nucl. Acids Res doi: 10.1093/nar/26.18.4222 contributor: fullname: Doe – volume: 269 start-page: 1429 year: 1995 ident: 2024011400312970300_JOCES_113_23_4177C23 article-title: The chromo domain protein Swi6: A key component at fission yeast centromeres publication-title: Science doi: 10.1126/science.7660126 contributor: fullname: Ekwall – volume: 110 start-page: 417 year: 1990 ident: 2024011400312970300_JOCES_113_23_4177C55 article-title: In vitro reactivation of spindle elongation in fission yeast nuc2 mutant cells publication-title: J. Cell Biol doi: 10.1083/jcb.110.2.417 contributor: fullname: Masuda – volume: 12 start-page: 308 year: 2000 ident: 2024011400312970300_JOCES_113_23_4177C66 article-title: Centromeres: getting a grip of chromosomes publication-title: Curr. Opin. Cell Biol doi: 10.1016/S0955-0674(00)00094-6 contributor: fullname: Pidoux – volume-title: In The Yeast Nucleus year: 2000 ident: 2024011400312970300_JOCES_113_23_4177C67 contributor: fullname: Pidoux – volume: 10 start-page: 154 year: 2000 ident: 2024011400312970300_JOCES_113_23_4177C33 article-title: The spindle checkpoint: two transitions, two pathways publication-title: Trends Cell Biol doi: 10.1016/S0962-8924(00)01727-X contributor: fullname: Gardner – volume: 91 start-page: 1021 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C25 article-title: Transient inhibition of histone acetylation alters the structural and functional imprint at fission yeast centromeres publication-title: Cell doi: 10.1016/S0092-8674(00)80492-4 contributor: fullname: Ekwall – volume: 9 start-page: 206 year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C20 article-title: Centromere proteins and chromosome inheritance: a complex affair publication-title: Curr. Opin. Genet. Dev doi: 10.1016/S0959-437X(99)80031-8 contributor: fullname: Dobie – volume: 136 start-page: 229 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C47 article-title: Chromosome fragments possessing only one kinetochore can congress to the spindle equator publication-title: J. Cell Biol doi: 10.1083/jcb.136.2.229 contributor: fullname: Khodjakov – volume: 123 start-page: 127 year: 1993 ident: 2024011400312970300_JOCES_113_23_4177C56 article-title: Thiamine-repressible expression vectors pREP and pRIP for fission yeast publication-title: Gene doi: 10.1016/0378-1119(93)90551-D contributor: fullname: Maundrell – volume: 264 start-page: 270 year: 1994 ident: 2024011400312970300_JOCES_113_23_4177C13 article-title: Telomere-led premeiotic chromosome movement in fission yeast publication-title: Science doi: 10.1126/science.8146661 contributor: fullname: Chikashige – volume: 39 start-page: 403 year: 1972 ident: 2024011400312970300_JOCES_113_23_4177C31 article-title: Morphological studies on the structure of univalent sex chromosomes during anaphase movement in spermatocytes of the crane fly Pales ferruginea publication-title: Chromosoma doi: 10.1007/BF00326175 contributor: fullname: Fuge – volume: 120 start-page: 141 year: 1993 ident: 2024011400312970300_JOCES_113_23_4177C18 article-title: Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe publication-title: J. Cell Biol doi: 10.1083/jcb.120.1.141 contributor: fullname: Ding – volume: 5 start-page: 1145 year: 1994 ident: 2024011400312970300_JOCES_113_23_4177C74 article-title: Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality publication-title: Mol. Biol. Cell doi: 10.1091/mbc.5.10.1145 contributor: fullname: Takahashi – volume: 90 start-page: 131 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C70 article-title: Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialised chromatin required for equal segregation publication-title: Cell doi: 10.1016/S0092-8674(00)80320-7 contributor: fullname: Saitoh – volume: 109 start-page: 2637 year: 1996 ident: 2024011400312970300_JOCES_113_23_4177C24 article-title: Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function publication-title: J. Cell Sci doi: 10.1242/jcs.109.11.2637 contributor: fullname: Ekwall – volume: 7 start-page: 930 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C54 article-title: Interphase chromosomes undergo constrained diffusional motion in living cells publication-title: Curr. Biol doi: 10.1016/S0960-9822(06)00412-X contributor: fullname: Marshall – volume: 14 start-page: 783 year: 2000 ident: 2024011400312970300_JOCES_113_23_4177C64 article-title: Distinct protein interaction domains and protein spreading in a complex centromere publication-title: Genes Dev doi: 10.1101/gad.14.7.783 contributor: fullname: Partridge – volume: 96 start-page: 4989 year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C50 article-title: Bifurcation of the mitotic checkpoint pathway in budding yeast publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.96.9.4989 contributor: fullname: Li – volume: 112 start-page: 3103 year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C8 article-title: The S. pombe zfs1 gene is required to prevent septation if mitotic progression is inhibited publication-title: J. Cell Sci doi: 10.1242/jcs.112.18.3103 contributor: fullname: Beltraminelli – volume: 145 start-page: 979 year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C30 article-title: Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2 publication-title: J. Cell Biol doi: 10.1083/jcb.145.5.979 contributor: fullname: Fraschini – start-page: 38 volume-title: In Chromosome Structural Analysis: a Practical Approach (ed. W. A. Bickmore) year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C26 contributor: fullname: Ekwall – volume: 129 start-page: 1033 year: 1995 ident: 2024011400312970300_JOCES_113_23_4177C40 article-title: The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability publication-title: J. Cell Biol doi: 10.1083/jcb.129.4.1033 contributor: fullname: Hagan – volume: 233 start-page: 436 year: 1992 ident: 2024011400312970300_JOCES_113_23_4177C51 article-title: The switching gene swi6 affects recombination and gene expression in the mating-type region of Schizosaccharomyces pombe publication-title: Mol. Gen. Genet doi: 10.1007/BF00265441 contributor: fullname: Lorentz – volume: 9 start-page: 218 year: 1995 ident: 2024011400312970300_JOCES_113_23_4177C3 article-title: Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation publication-title: Genes Dev doi: 10.1101/gad.9.2.218 contributor: fullname: Allshire – volume: 9 start-page: R562 year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C76 article-title: Chromosome segregation: dual control ensures fidelity publication-title: Curr. Biol doi: 10.1016/S0960-9822(99)80355-8 contributor: fullname: Taylor – volume: 76 start-page: 157 year: 1994 ident: 2024011400312970300_JOCES_113_23_4177C1 article-title: Position effect variegation at fission yeast centromeres publication-title: Cell doi: 10.1016/0092-8674(94)90180-5 contributor: fullname: Allshire – volume: 110 start-page: 1851 year: 1997 ident: 2024011400312970300_JOCES_113_23_4177C41 article-title: Evidence for cell cycle-specific, spindle pole body-mediated, nuclear positioning in the fission yeast Schizosaccharomyces pombe publication-title: J. Cell Sci doi: 10.1242/jcs.110.16.1851 contributor: fullname: Hagan – volume: 6 start-page: 419 year: 1986 ident: 2024011400312970300_JOCES_113_23_4177C49 article-title: Malorientation and abnormal segregation of chromosomes during recovery from colcemid and nocodazole publication-title: Cell Motil. Cytoskel doi: 10.1002/cm.970060407 contributor: fullname: Ladrach – volume: 316 start-page: 168 year: 1985 ident: 2024011400312970300_JOCES_113_23_4177C11 article-title: In vitro reactivation of anaphase spindle elongation using isolated diatom spindles publication-title: Nature doi: 10.1038/316168a0 contributor: fullname: Cande – volume: 153 start-page: 1153 year: 1999 ident: 2024011400312970300_JOCES_113_23_4177C27 article-title: Novel fission yeast mutants which alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation publication-title: Genetics doi: 10.1093/genetics/153.3.1153 contributor: fullname: Ekwall – volume: 111 start-page: 1635 year: 1998 ident: 2024011400312970300_JOCES_113_23_4177C44 article-title: Mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe publication-title: J Cell Sci doi: 10.1242/jcs.111.12.1635 contributor: fullname: He – volume: 8 start-page: 310 year: 1998 ident: 2024011400312970300_JOCES_113_23_4177C68 article-title: The vertebrate cell kinetochore and its roles during mitosis publication-title: Trends Cell Biol doi: 10.1016/S0962-8924(98)01299-9 contributor: fullname: Rieder – volume-title: Molecular Cloning year: 1989 ident: 2024011400312970300_JOCES_113_23_4177C69 contributor: fullname: Sambrook – volume: 11 start-page: 2206 year: 1991 ident: 2024011400312970300_JOCES_113_23_4177C42 article-title: Identification of DNA regions required for mitotic and meiotic functions within the centromere of Schizosaccharomyces pombe chromosome I publication-title: Mol. Cell. Biol contributor: fullname: Hahnenberger – volume: 143 start-page: 1775 year: 1998 ident: 2024011400312970300_JOCES_113_23_4177C9 article-title: Fission yeast Bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis publication-title: J. Cell Biol doi: 10.1083/jcb.143.7.1775 contributor: fullname: Bernard – volume: 109 start-page: 2257 year: 1989 ident: 2024011400312970300_JOCES_113_23_4177C78 article-title: Biotin-tubulin incorporates into kinetochore fiber microtubules during early but not late anaphase publication-title: J. Cell Biol doi: 10.1083/jcb.109.5.2257 contributor: fullname: Wadsworth |
SSID | ssj0007297 |
Score | 2.0247176 |
Snippet | The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 4177 |
SubjectTerms | Anaphase - physiology Cell Nucleus - physiology Chromosome Segregation - genetics Chromosomes, Fungal - physiology Fungal Proteins - genetics Gene Expression Regulation, Fungal Genes, Reporter Green Fluorescent Proteins Indicators and Reagents - metabolism Kinetochores - physiology Luminescent Proteins - genetics Meiosis - physiology Mitosis - physiology Mutagenesis - physiology Saccharomyces cerevisiae Proteins Schizosaccharomyces - cytology Schizosaccharomyces - genetics Schizosaccharomyces pombe Spindle Apparatus - genetics Transcription Factors - genetics |
Title | Live analysis of lagging chromosomes during anaphase and their effect on spindle elongation rate in fission yeast |
URI | https://www.ncbi.nlm.nih.gov/pubmed/11069763 https://search.proquest.com/docview/18191358 |
Volume | 113 Pt 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiDfl6QMHpCgliZvXESFghRDqoSv1FvzcjbSblDYV7P56ZmK7TRcqAZcoSiwnmvk0nhmPvyHkdVomsChmLDQmgQCFZUh5a3QoJURiOhfSiL7K92t2fDL9vEgXo9G3QdXSphMTefXHcyX_o1V4BnrFU7L_oNntpPAA7kG_cAUNw_WvdPwFy374gFbknJ_2TYfkGVbZrVtkYtoeROTLM1iyfMlkvXK1HLhdsF7WSLYQ6PO2ObWQQAoJTIaYGutkm-ASm_wccGUx-x-4tXRra2vVbn5a07NNMJ9c8R98L-E60yu7kT8bnInAxHZf_Of2TXxWYljh4U8JxLg1zPYsbcyCWRckbGAxp7Ft4_KbKQffAU25XGPbmUnCJtdHgi6WF71mwYXJSm8o99mz_asb5CZSJWJ3hU-LXREQhBauqa_9W0f-BN9-e-3LyC7r5tp3YQ7EJb1_Mr9L7jht0HcWJffISDf3yS3bavTyAfmOWKEeK7Q11GGFDrBCLVaoxwrcKNpjhVqs0LahDit0hxWKWKF1Qx1WaI-Vh2T-8cP8_XHo2m2EkmVxFwqtIs1FXsosMVNdqFJIVjJjClGmClx1JY0qSohzMp6zgnGIrWEMeLiZRhbFR-SoaRv9hNA8yoXiEecK6QTTQshExKWUeRQppQo5Jm-8AKulJVWpMBgFsVcgdohKWZWwCsU-Jq-8gCswfIhn3uh2A4Mw1cDSYkweW7nvpnJ6enrwzTNyewfa5-SoW230C3AuO_Gyx8cv57148g |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Live+analysis+of+lagging+chromosomes+during+anaphase+and+their+effect+on+spindle+elongation+rate+in+fission+yeast&rft.jtitle=Journal+of+cell+science&rft.au=Pidoux%2C+A+L&rft.au=Uzawa%2C+S&rft.au=Perry%2C+P+E&rft.au=Cande%2C+W+Z&rft.date=2000-12-01&rft.issn=0021-9533&rft.volume=113+Pt+23&rft.spage=4177&rft_id=info:doi/10.1242%2Fjcs.113.23.4177&rft_id=info%3Apmid%2F11069763&rft.externalDocID=11069763 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon |