Live analysis of lagging chromosomes during anaphase and their effect on spindle elongation rate in fission yeast

The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-la...

Full description

Saved in:
Bibliographic Details
Published inJournal of cell science Vol. 113 Pt 23; no. 23; pp. 4177 - 4191
Main Authors Pidoux, A L, Uzawa, S, Perry, P E, Cande, W Z, Allshire, R C
Format Journal Article
LanguageEnglish
Published England 01.12.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres. The nucleus is highly dynamic during interphase: the clustered centromeres, in particular, are highly mobile. By expressing GFP-( )2-tubulin and GFP-Swi6p in the same cells we observe that the clustered centromeres move in concert with the cytoplasmic microtubules, which is likely to reflect their association with the spindle pole body. Drug treatment indicates that this movement is dependent on intact cytoplasmic microtubules. We have also used GFP-Swi6p to investigate the properties of lagging chromosomes observed in mutants with defects in chromosome segregation. Lagging chromosomes display a variety of behaviours on anaphase spindles, most surprisingly, chromosomes appear to initiate microtubule interactions and move to the poles late in anaphase B. Interestingly, in cells displaying lagging chromosomes, the rate of spindle elongation is slowed by a factor of two. This suggests that cells are able to sense the presence of a lagging chromosome and slow anaphase B in order to allow it extra time to reach the pole. However, this mechanism is not dependent on the spindle checkpoint proteins Bub1p or Dma1p, raising the possibility that a novel checkpoint mechanism operates to retard spindle elongation if lagging chromosomes are detected. An alternative model is also discussed in which single defective kinetochores on lagging chromatids are able to interact simultaneously with microtubules emanating from both poles and affect spindle dynamics by counteracting the spindle elongation force.
AbstractList The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres. The nucleus is highly dynamic during interphase: the clustered centromeres, in particular, are highly mobile. By expressing GFP-( )2-tubulin and GFP-Swi6p in the same cells we observe that the clustered centromeres move in concert with the cytoplasmic microtubules, which is likely to reflect their association with the spindle pole body. Drug treatment indicates that this movement is dependent on intact cytoplasmic microtubules. We have also used GFP-Swi6p to investigate the properties of lagging chromosomes observed in mutants with defects in chromosome segregation. Lagging chromosomes display a variety of behaviours on anaphase spindles, most surprisingly, chromosomes appear to initiate microtubule interactions and move to the poles late in anaphase B. Interestingly, in cells displaying lagging chromosomes, the rate of spindle elongation is slowed by a factor of two. This suggests that cells are able to sense the presence of a lagging chromosome and slow anaphase B in order to allow it extra time to reach the pole. However, this mechanism is not dependent on the spindle checkpoint proteins Bub1p or Dma1p, raising the possibility that a novel checkpoint mechanism operates to retard spindle elongation if lagging chromosomes are detected. An alternative model is also discussed in which single defective kinetochores on lagging chromatids are able to interact simultaneously with microtubules emanating from both poles and affect spindle dynamics by counteracting the spindle elongation force.
The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres. The nucleus is highly dynamic during interphase: the clustered centromeres, in particular, are highly mobile. By expressing GFP-α2-tubulin and GFP-Swi6p in the same cells we observe that the clustered centromeres move in concert with the cytoplasmic microtubules, which is likely to reflect their association with the spindle pole body. Drug treatment indicates that this movement is dependent on intact cytoplasmic microtubules. We have also used GFP-Swi6p to investigate the properties of lagging chromosomes observed in mutants with defects in chromosome segregation. Lagging chromosomes display a variety of behaviours on anaphase spindles, most surprisingly, chromosomes appear to initiate microtubule interactions and move to the poles late in anaphase B. Interestingly, in cells displaying lagging chromosomes, the rate of spindle elongation is slowed by a factor of two. This suggests that cells are able to sense the presence of a lagging chromosome and slow anaphase B in order to allow it extra time to reach the pole. However, this mechanism is not dependent on the spindle checkpoint proteins Bub1p or Dma1p, raising the possibility that a novel checkpoint mechanism operates to retard spindle elongation if lagging chromosomes are detected. An alternative model is also discussed in which single defective kinetochores on lagging chromatids are able to interact simultaneously with microtubules emanating from both poles and affect spindle dynamics by counteracting the spindle elongation force. Movies available on-line: http://www.biologists.com/JCS/movies/jcs1686.html, Movie FIG2A, Movie FIG2B, Movie FIG2C, Movie FIG2D, Movie FIG3A, Movie FIG3B, Movie FIG3C, Movie FIG5A, Movie FIG5B, Movie FIG5C, Movie FIG5D, Movie FIG5E, Movie FIG5F, Movie FIG5G, Movie FIG5H, Movie FIG5I, Movie FIG5J, Movie FIG8CSP10-2
The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres. The nucleus is highly dynamic during interphase: the clustered centromeres, in particular, are highly mobile. By expressing GFP- alpha 2-tubulin and GFP-Swi6p in the same cells we observe that the clustered centromeres move in concert with the cytoplasmic microtubules, which is likely to reflect their association with the spindle pole body. Drug treatment indicates that this movement is dependent on intact cytoplasmic microtubules. We have also used GFP-Swi6p to investigate the properties of lagging chromosomes observed in mutants with defects in chromosome segregation. Lagging chromosomes display a variety of behaviours on anaphase spindles, most surprisingly, chromosomes appear to initiate microtubule interactions and move to the poles late in anaphase B. Interestingly, in cells displaying lagging chromosomes, the rate of spindle elongation is slowed by a factor of two. This suggests that cells are able to sense the presence of a lagging chromosome and slow anaphase B in order to allow it extra time to reach the pole. However, this mechanism is not dependent on the spindle checkpoint proteins Bub1p or Dma1p, raising the possibility that a novel checkpoint mechanism operates to retard spindle elongation if lagging chromosomes are detected. An alternative model is also discussed in which single defective kinetochores on lagging chromatids are able to interact simultaneously with microtubules emanating from both poles and affect spindle dynamics by counteracting the spindle elongation force.
Author Cande, W Z
Perry, P E
Allshire, R C
Uzawa, S
Pidoux, A L
Author_xml – sequence: 1
  givenname: A L
  surname: Pidoux
  fullname: Pidoux, A L
  email: robin.allshire@hgu.mrc.ac.uk
  organization: Chromosome Biology Section, Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK. robin.allshire@hgu.mrc.ac.uk
– sequence: 2
  givenname: S
  surname: Uzawa
  fullname: Uzawa, S
– sequence: 3
  givenname: P E
  surname: Perry
  fullname: Perry, P E
– sequence: 4
  givenname: W Z
  surname: Cande
  fullname: Cande, W Z
– sequence: 5
  givenname: R C
  surname: Allshire
  fullname: Allshire, R C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11069763$$D View this record in MEDLINE/PubMed
BookMark eNpFkDtrwzAUhUVJadLH3K1o6uZUshzLGkvoCwJdugtZukpUbCnVdQr597VJoNPlHr5zhu-azGKKQMg9Z0teVuXTt8Ul52JZimXFpbwgC15JWSgu5IwsGCt5oVZCzMk14jdjTJZKXpE556xWshYL8rMJv0BNNN0RA9LkaWe22xC31O5y6hOmHpC6Q56iEdvvDE68o8MOQqbgPdiBpkhxH6LrgEKX4tYMYYyyGYCGSH1AnP4jGBxuyaU3HcLd-d6Qr9eXr_V7sfl8-1g_bworaj4ULTgGppXK1qWvoHGqtUIJ75tWrRxrhLPeNarhbW2kaISpxli1QqkaVlUlbsjjaXaf088BcNB9QAtdZyKkA2re8NHSqhnBpxNoc0LM4PU-h97ko-ZMT5L1KFmPknUp9CR5bDycpw9tD-6fP1sVf0w_fH8
CitedBy_id crossref_primary_10_1046_j_1365_2443_2001_00459_x
crossref_primary_10_7554_eLife_03398
crossref_primary_10_1098_rstb_2004_1611
crossref_primary_10_15252_embr_202255928
crossref_primary_10_1098_rstb_2004_1610
crossref_primary_10_1242_jcs_00707
crossref_primary_10_1101_gad_344205
crossref_primary_10_1128_MCB_00374_12
crossref_primary_10_1002_jcp_26836
crossref_primary_10_1002_yea_684
crossref_primary_10_1002_cfg_92
crossref_primary_10_1016_S0168_9525_01_02279_X
crossref_primary_10_1128_MCB_24_8_3157_3167_2004
crossref_primary_10_1083_jcb_201905091
crossref_primary_10_1128_MCB_26_5_1710_1721_2006
crossref_primary_10_1128_MCB_02205_05
crossref_primary_10_1093_genetics_160_3_861
crossref_primary_10_1128_EC_2_5_910_921_2003
crossref_primary_10_1242_jcs_115_5_931
crossref_primary_10_1083_jcb_200212110
crossref_primary_10_1101_gad_1470407
crossref_primary_10_1074_jbc_M109186200
crossref_primary_10_1016_S0959_437X_03_00019_4
crossref_primary_10_1038_sj_emboj_7601892
crossref_primary_10_1101_gad_1497307
crossref_primary_10_1534_genetics_118_301031
crossref_primary_10_1016_j_cub_2007_06_044
crossref_primary_10_1016_j_cub_2009_05_042
crossref_primary_10_1371_journal_pgen_1002499
crossref_primary_10_1083_jcb_200902093
crossref_primary_10_1091_mbc_e05_08_0802
crossref_primary_10_1074_jbc_M110_143198
crossref_primary_10_1091_mbc_01_07_0333
crossref_primary_10_1128_MCB_22_20_7168_7183_2002
crossref_primary_10_1534_genetics_105_048298
crossref_primary_10_1111_acel_13649
crossref_primary_10_1016_j_cub_2018_10_049
crossref_primary_10_1016_j_cub_2004_03_042
crossref_primary_10_1266_ggs_23_00239
crossref_primary_10_1016_j_cub_2004_11_029
crossref_primary_10_3390_genes10110855
crossref_primary_10_1016_j_cub_2005_05_052
crossref_primary_10_1002_bies_201400140
crossref_primary_10_1016_j_cub_2003_09_031
crossref_primary_10_1093_genetics_163_3_857
crossref_primary_10_1016_S0960_9822_02_00761_3
crossref_primary_10_1091_mbc_12_9_2767
crossref_primary_10_1091_mbc_e03_02_0090
crossref_primary_10_1126_science_1064027
crossref_primary_10_1371_journal_pone_0069673
crossref_primary_10_1371_journal_pone_0010634
crossref_primary_10_1016_j_molcel_2019_10_018
crossref_primary_10_1371_journal_pone_0061464
crossref_primary_10_1126_science_1074757
crossref_primary_10_1371_journal_pgen_1010100
crossref_primary_10_1242_jcs_115_3_507
crossref_primary_10_1128_MCB_01531_07
crossref_primary_10_15252_embj_201591320
crossref_primary_10_1242_jcs_115_3_587
crossref_primary_10_1111_j_1600_0854_2012_01333_x
crossref_primary_10_1083_jcb_200602152
crossref_primary_10_1016_S0960_9822_03_00316_6
crossref_primary_10_1371_journal_pone_0002221
crossref_primary_10_1104_pp_126_2_622
crossref_primary_10_1007_s00412_020_00741_w
crossref_primary_10_1534_genetics_118_301055
crossref_primary_10_1093_genetics_160_2_445
crossref_primary_10_1016_S0955_0674_02_00328_9
crossref_primary_10_1038_nrm_2017_119
crossref_primary_10_1083_jcb_200111012
crossref_primary_10_1074_jbc_M806461200
crossref_primary_10_1007_s00018_010_0327_5
crossref_primary_10_1016_j_cub_2005_07_021
crossref_primary_10_3390_biology5040051
crossref_primary_10_1091_mbc_e06_10_0963
crossref_primary_10_1007_s10577_023_09727_7
crossref_primary_10_1016_j_mrrev_2018_11_001
crossref_primary_10_1038_ncb1069
crossref_primary_10_1038_35089520
crossref_primary_10_1088_1478_3975_10_3_036007
crossref_primary_10_1128_EC_5_3_530_543_2006
crossref_primary_10_1016_j_bbcan_2008_05_003
crossref_primary_10_1242_jcs_00796
Cites_doi 10.1038/566
10.1016/S0960-9822(00)80090-1
10.1007/978-1-4757-5348-6_13
10.1038/33941
10.1101/gad.11.22.2939
10.1242/jcs.80.1.253
10.1126/science.279.5353.1045
10.1016/1043-4682(95)90001-2
10.1083/jcb.110.5.1617
10.1093/genetics/136.1.53
10.1242/jcs.89.3.343
10.1093/emboj/18.10.2707
10.1091/mbc.5.7.747
10.1016/S0076-6879(97)83037-6
10.1093/emboj/18.9.2424
10.1083/jcb.98.3.859
10.1016/0076-6879(91)94059-L
10.1101/SQB.1993.058.01.076
10.1242/jcs.111.6.701
10.1242/jcs.111.12.1603
10.1083/jcb.121.5.961
10.1091/mbc.3.7.819
10.1101/gad.13.13.1664
10.1016/S0960-9822(00)00360-2
10.1016/0378-1119(94)90619-X
10.1002/j.1460-2075.1993.tb05931.x
10.1083/jcb.135.3.545
10.1073/pnas.94.15.7965
10.1091/mbc.8.8.1461
10.1016/0092-8674(94)90075-2
10.1073/pnas.88.1.263
10.1038/336251a0
10.1242/jcs.112.5.651
10.1093/emboj/16.1.193
10.1016/0378-1119(93)90552-E
10.1128/MCB.17.6.3305
10.1002/j.1460-2075.1996.tb01051.x
10.1091/mbc.9.11.3211
10.1038/39382
10.1002/j.1460-2075.1992.tb05203.x
10.1093/nar/26.18.4222
10.1126/science.7660126
10.1083/jcb.110.2.417
10.1016/S0955-0674(00)00094-6
10.1016/S0962-8924(00)01727-X
10.1016/S0092-8674(00)80492-4
10.1016/S0959-437X(99)80031-8
10.1083/jcb.136.2.229
10.1016/0378-1119(93)90551-D
10.1126/science.8146661
10.1007/BF00326175
10.1083/jcb.120.1.141
10.1091/mbc.5.10.1145
10.1016/S0092-8674(00)80320-7
10.1242/jcs.109.11.2637
10.1016/S0960-9822(06)00412-X
10.1101/gad.14.7.783
10.1073/pnas.96.9.4989
10.1242/jcs.112.18.3103
10.1083/jcb.145.5.979
10.1083/jcb.129.4.1033
10.1007/BF00265441
10.1101/gad.9.2.218
10.1016/S0960-9822(99)80355-8
10.1016/0092-8674(94)90180-5
10.1242/jcs.110.16.1851
10.1002/cm.970060407
10.1038/316168a0
10.1093/genetics/153.3.1153
10.1242/jcs.111.12.1635
10.1016/S0962-8924(98)01299-9
10.1083/jcb.143.7.1775
10.1083/jcb.109.5.2257
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
M7N
P64
RC3
DOI 10.1242/jcs.113.23.4177
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9137
EndPage 4191
ExternalDocumentID 10_1242_jcs_113_23_4177
11069763
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01GM23238
– fundername: NCRR NIH HHS
  grantid: S10RR11902
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
2WC
34G
39C
3O-
4.4
4R4
53G
5GY
5RE
5VS
85S
AAJMC
ABDNZ
ABEFU
ABJNI
ABPPZ
ABTAH
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACYGS
ADBBV
ADCOW
AEILP
AENEX
AFFNX
AFRAH
AGGIJ
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
F9R
GX1
H13
HZ~
IH2
INIJC
KQ8
MVM
NPM
O9-
OHT
OK1
P2P
R.V
RCB
RHF
RHI
RNS
SJN
TN5
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
XOL
YQI
YQT
ZGI
ZXP
ZY4
~02
~KM
AAYXX
CITATION
8FD
FR3
M7N
P64
RC3
ID FETCH-LOGICAL-c361t-bed0eab79c62f4e8d9bc393ff8b95d083dcfd8981b6a7383a495d9b3996e5443
ISSN 0021-9533
IngestDate Fri Oct 25 11:03:30 EDT 2024
Fri Dec 06 04:45:10 EST 2024
Sat Sep 28 08:29:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License http://www.biologists.com/user-licence-1-1
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c361t-bed0eab79c62f4e8d9bc393ff8b95d083dcfd8981b6a7383a495d9b3996e5443
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 11069763
PQID 18191358
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_18191358
crossref_primary_10_1242_jcs_113_23_4177
pubmed_primary_11069763
PublicationCentury 2000
PublicationDate 2000-12-01
PublicationDateYYYYMMDD 2000-12-01
PublicationDate_xml – month: 12
  year: 2000
  text: 2000-12-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of cell science
PublicationTitleAlternate J Cell Sci
PublicationYear 2000
References Murone (2024011400312970300_JOCES_113_23_4177C58) 1996; 15
Marshall (2024011400312970300_JOCES_113_23_4177C54) 1997; 7
Li (2024011400312970300_JOCES_113_23_4177C50) 1999; 96
Dobie (2024011400312970300_JOCES_113_23_4177C20) 1999; 9
Maundrell (2024011400312970300_JOCES_113_23_4177C56) 1993; 123
Trelles-Sticken (2024011400312970300_JOCES_113_23_4177C77) 1999; 112
Ngan (2024011400312970300_JOCES_113_23_4177C61) 1997; 17
Takahashi (2024011400312970300_JOCES_113_23_4177C74) 1994; 5
Steiner (2024011400312970300_JOCES_113_23_4177C72) 1994; 79
Cande (2024011400312970300_JOCES_113_23_4177C11) 1985; 316
Hagan (2024011400312970300_JOCES_113_23_4177C40) 1995; 129
Fankhauser (2024011400312970300_JOCES_113_23_4177C28) 1993; 12
Rieder (2024011400312970300_JOCES_113_23_4177C68) 1998; 8
Chikashige (2024011400312970300_JOCES_113_23_4177C14) 1997; 16
Beltraminelli (2024011400312970300_JOCES_113_23_4177C8) 1999; 112
Ekwall (2024011400312970300_JOCES_113_23_4177C27) 1999; 153
Mallavarapu (2024011400312970300_JOCES_113_23_4177C53) 1999; 9
Clarke (2024011400312970300_JOCES_113_23_4177C15) 1994; 58
Taylor (2024011400312970300_JOCES_113_23_4177C76) 1999; 9
He (2024011400312970300_JOCES_113_23_4177C43) 1997; 94
Chikashige (2024011400312970300_JOCES_113_23_4177C13) 1994; 264
Ding (2024011400312970300_JOCES_113_23_4177C17) 1998; 111
Janicke (2024011400312970300_JOCES_113_23_4177C46) 1984; 98
Paro (2024011400312970300_JOCES_113_23_4177C63) 1991; 88
Pidoux (2024011400312970300_JOCES_113_23_4177C65) 1992; 11
Gunawardena (2024011400312970300_JOCES_113_23_4177C36) 2000; 10
Brinkley (2024011400312970300_JOCES_113_23_4177C10) 1988; 336
Kim (2024011400312970300_JOCES_113_23_4177C48) 1998; 279
Funabiki (2024011400312970300_JOCES_113_23_4177C32) 1993; 121
Fesquet (2024011400312970300_JOCES_113_23_4177C29) 1999; 18
Nabeshima (2024011400312970300_JOCES_113_23_4177C59) 1997; 283
Fraschini (2024011400312970300_JOCES_113_23_4177C30) 1999; 145
Ding (2024011400312970300_JOCES_113_23_4177C18) 1993; 120
Nimmo (2024011400312970300_JOCES_113_23_4177C62) 1998; 392
Wadsworth (2024011400312970300_JOCES_113_23_4177C78) 1989; 109
Moreno (2024011400312970300_JOCES_113_23_4177C57) 1991; 194
Lorentz (2024011400312970300_JOCES_113_23_4177C52) 1994; 143
Bernard (2024011400312970300_JOCES_113_23_4177C9) 1998; 143
Ekwall (2024011400312970300_JOCES_113_23_4177C26) 1999
Hagan (2024011400312970300_JOCES_113_23_4177C41) 1997; 110
Basi (2024011400312970300_JOCES_113_23_4177C6) 1993; 123
Doe (2024011400312970300_JOCES_113_23_4177C21) 1998; 26
Gardner (2024011400312970300_JOCES_113_23_4177C33) 2000; 10
Khodjakov (2024011400312970300_JOCES_113_23_4177C47) 1997; 136
Sambrook (2024011400312970300_JOCES_113_23_4177C69) 1989
Pidoux (2024011400312970300_JOCES_113_23_4177C67) 2000
Goshima (2024011400312970300_JOCES_113_23_4177C34) 1999; 13
He (2024011400312970300_JOCES_113_23_4177C44) 1998; 111
Ekwall (2024011400312970300_JOCES_113_23_4177C25) 1997; 91
Allshire (2024011400312970300_JOCES_113_23_4177C3) 1995; 9
Ekwall (2024011400312970300_JOCES_113_23_4177C24) 1996; 109
Allshire (2024011400312970300_JOCES_113_23_4177C1) 1994; 76
Ivanova (2024011400312970300_JOCES_113_23_4177C45) 1998; 19
Hagan (2024011400312970300_JOCES_113_23_4177C39) 1990; 110
Gould (2024011400312970300_JOCES_113_23_4177C35) 1997; 11
Hagan (2024011400312970300_JOCES_113_23_4177C37) 1998; 111
Chen (2024011400312970300_JOCES_113_23_4177C12) 1995
Lorentz (2024011400312970300_JOCES_113_23_4177C51) 1992; 233
Takahashi (2024011400312970300_JOCES_113_23_4177C73) 1992; 3
Pidoux (2024011400312970300_JOCES_113_23_4177C66) 2000; 12
Andersen (2024011400312970300_JOCES_113_23_4177C5) 1997; 389
Alexandru (2024011400312970300_JOCES_113_23_4177C4) 1999; 18
Partridge (2024011400312970300_JOCES_113_23_4177C64) 2000; 14
Fuge (2024011400312970300_JOCES_113_23_4177C31) 1972; 39
Dernberg (2024011400312970300_JOCES_113_23_4177C16) 1995
Ekwall (2024011400312970300_JOCES_113_23_4177C22) 1994; 136
Allshire (2024011400312970300_JOCES_113_23_4177C2) 1995; 6
Ekwall (2024011400312970300_JOCES_113_23_4177C23) 1995; 269
Baum (2024011400312970300_JOCES_113_23_4177C7) 1994; 5
Ladrach (2024011400312970300_JOCES_113_23_4177C49) 1986; 6
Masuda (2024011400312970300_JOCES_113_23_4177C55) 1990; 110
Saitoh (2024011400312970300_JOCES_113_23_4177C70) 1997; 90
Tanaka (2024011400312970300_JOCES_113_23_4177C75) 1986; 80
Hahnenberger (2024011400312970300_JOCES_113_23_4177C42) 1991; 11
Shelby (2024011400312970300_JOCES_113_23_4177C71) 1996; 135
Nabeshima (2024011400312970300_JOCES_113_23_4177C60) 1998; 9
Ding (2024011400312970300_JOCES_113_23_4177C19) 1997; 8
Hagan (2024011400312970300_JOCES_113_23_4177C38) 1988; 89
References_xml – volume: 19
  start-page: 192
  year: 1998
  ident: 2024011400312970300_JOCES_113_23_4177C45
  article-title: The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast
  publication-title: Nature Genet
  doi: 10.1038/566
  contributor:
    fullname: Ivanova
– volume: 9
  start-page: 1423
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C53
  article-title: A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe
  publication-title: Curr. Biol
  doi: 10.1016/S0960-9822(00)80090-1
  contributor:
    fullname: Mallavarapu
– start-page: 197
  volume-title: In Handbook of biological Confocal Microscopy
  year: 1995
  ident: 2024011400312970300_JOCES_113_23_4177C12
  doi: 10.1007/978-1-4757-5348-6_13
  contributor:
    fullname: Chen
– volume: 392
  start-page: 825
  year: 1998
  ident: 2024011400312970300_JOCES_113_23_4177C62
  article-title: Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe
  publication-title: Nature
  doi: 10.1038/33941
  contributor:
    fullname: Nimmo
– volume: 11
  start-page: 2939
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C35
  article-title: The control of septum formation in fission yeast
  publication-title: Genes Dev
  doi: 10.1101/gad.11.22.2939
  contributor:
    fullname: Gould
– volume: 80
  start-page: 253
  year: 1986
  ident: 2024011400312970300_JOCES_113_23_4177C75
  article-title: Mitosis in the fission yeast Schizosaccharomyces pombe as revealed by freeze-substitution electron microscopy
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.80.1.253
  contributor:
    fullname: Tanaka
– volume: 279
  start-page: 1045
  year: 1998
  ident: 2024011400312970300_JOCES_113_23_4177C48
  article-title: Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint
  publication-title: Science
  doi: 10.1126/science.279.5353.1045
  contributor:
    fullname: Kim
– volume: 6
  start-page: 55
  year: 1995
  ident: 2024011400312970300_JOCES_113_23_4177C2
  article-title: Elements of chromosome structure and function in fission yeast
  publication-title: Semin. Cell Biol
  doi: 10.1016/1043-4682(95)90001-2
  contributor:
    fullname: Allshire
– volume: 110
  start-page: 1617
  year: 1990
  ident: 2024011400312970300_JOCES_113_23_4177C39
  article-title: Intramitotic controls in the fission yeast Schizosaccharomyces pombe: the effect of cell size on spindle length and the timing of mitotic events
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.110.5.1617
  contributor:
    fullname: Hagan
– volume: 136
  start-page: 53
  year: 1994
  ident: 2024011400312970300_JOCES_113_23_4177C22
  article-title: Mutations in rik1, clr2, clr3 and clr4 genes asymmetrically derepress the silent mating-type loci in fission yeast
  publication-title: Genetics
  doi: 10.1093/genetics/136.1.53
  contributor:
    fullname: Ekwall
– volume: 89
  start-page: 343
  year: 1988
  ident: 2024011400312970300_JOCES_113_23_4177C38
  article-title: The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.89.3.343
  contributor:
    fullname: Hagan
– volume: 18
  start-page: 2707
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C4
  article-title: Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage
  publication-title: EMBO J
  doi: 10.1093/emboj/18.10.2707
  contributor:
    fullname: Alexandru
– volume: 5
  start-page: 747
  year: 1994
  ident: 2024011400312970300_JOCES_113_23_4177C7
  article-title: The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.5.7.747
  contributor:
    fullname: Baum
– start-page: 295
  volume-title: In Telomeres (ed. E. H. Blackburn and C. W. Greider)
  year: 1995
  ident: 2024011400312970300_JOCES_113_23_4177C16
  contributor:
    fullname: Dernberg
– volume: 283
  start-page: 459
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C59
  article-title: Use of green fluorescent protein for intracellular protein localization in living fission yeast cells
  publication-title: Meth. Enzymol
  doi: 10.1016/S0076-6879(97)83037-6
  contributor:
    fullname: Nabeshima
– volume: 18
  start-page: 2424
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C29
  article-title: A Bub2p-dependent spindle checkpoint pathway regulates the Dbf2p kinase in budding yeast
  publication-title: EMBO J
  doi: 10.1093/emboj/18.9.2424
  contributor:
    fullname: Fesquet
– volume: 98
  start-page: 859
  year: 1984
  ident: 2024011400312970300_JOCES_113_23_4177C46
  article-title: Malorientation in half-bivalents at anaphase: analysis of autosomal laggards in untreated, cold-treated, and cold-recovering crane fly spermatocytes
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.98.3.859
  contributor:
    fullname: Janicke
– volume: 194
  start-page: 795
  year: 1991
  ident: 2024011400312970300_JOCES_113_23_4177C57
  article-title: Molecular genetic analysis of fission yeast Schizosaccharomyces pombe
  publication-title: Meth. Enzymol
  doi: 10.1016/0076-6879(91)94059-L
  contributor:
    fullname: Moreno
– volume: 58
  start-page: 687
  year: 1994
  ident: 2024011400312970300_JOCES_113_23_4177C15
  article-title: Structure and function of Schizosaccharomyces pombe centromeres
  publication-title: Cold Spring Harbor Symp. Quant. Biol
  doi: 10.1101/SQB.1993.058.01.076
  contributor:
    fullname: Clarke
– volume: 111
  start-page: 701
  year: 1998
  ident: 2024011400312970300_JOCES_113_23_4177C17
  article-title: Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.111.6.701
  contributor:
    fullname: Ding
– volume: 111
  start-page: 1603
  year: 1998
  ident: 2024011400312970300_JOCES_113_23_4177C37
  article-title: The fission yeast microtubule cytoskeleton
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.111.12.1603
  contributor:
    fullname: Hagan
– volume: 121
  start-page: 961
  year: 1993
  ident: 2024011400312970300_JOCES_113_23_4177C32
  article-title: Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.121.5.961
  contributor:
    fullname: Funabiki
– volume: 3
  start-page: 819
  year: 1992
  ident: 2024011400312970300_JOCES_113_23_4177C73
  article-title: A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.3.7.819
  contributor:
    fullname: Takahashi
– volume: 13
  start-page: 1664
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C34
  article-title: Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation
  publication-title: Genes Dev
  doi: 10.1101/gad.13.13.1664
  contributor:
    fullname: Goshima
– volume: 10
  start-page: 285
  year: 2000
  ident: 2024011400312970300_JOCES_113_23_4177C36
  article-title: Direct evidence for interphase chromosome movement during the mid-blastula transition in Drosophila
  publication-title: Curr. Biol
  doi: 10.1016/S0960-9822(00)00360-2
  contributor:
    fullname: Gunawardena
– volume: 143
  start-page: 139
  year: 1994
  ident: 2024011400312970300_JOCES_113_23_4177C52
  article-title: Switching gene swi6, involved in repression of silent mating type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals
  publication-title: Gene
  doi: 10.1016/0378-1119(94)90619-X
  contributor:
    fullname: Lorentz
– volume: 12
  start-page: 2697
  year: 1993
  ident: 2024011400312970300_JOCES_113_23_4177C28
  article-title: The S. pombe cdc16 gene is required both for maintenance of p34cdc2 kinase activity and regulation of septum formation: a link between mitosis and cytokinesis?
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1993.tb05931.x
  contributor:
    fullname: Fankhauser
– volume: 135
  start-page: 545
  year: 1996
  ident: 2024011400312970300_JOCES_113_23_4177C71
  article-title: Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.135.3.545
  contributor:
    fullname: Shelby
– volume: 94
  start-page: 7965
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C43
  article-title: The Schizosaccharomyces pombe spindle checkpoint protein Mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.94.15.7965
  contributor:
    fullname: He
– volume: 8
  start-page: 1461
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C19
  article-title: The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds
  publication-title: Mol. Biol Cell
  doi: 10.1091/mbc.8.8.1461
  contributor:
    fullname: Ding
– volume: 79
  start-page: 865
  year: 1994
  ident: 2024011400312970300_JOCES_113_23_4177C72
  article-title: A novel epigenetic affect can alter centromere function in fission yeast
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90075-2
  contributor:
    fullname: Steiner
– volume: 88
  start-page: 263
  year: 1991
  ident: 2024011400312970300_JOCES_113_23_4177C63
  article-title: The polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.88.1.263
  contributor:
    fullname: Paro
– volume: 336
  start-page: 251
  year: 1988
  ident: 2024011400312970300_JOCES_113_23_4177C10
  article-title: Movement and segregation of kinetochores experimentally detached from mammalian chromosomes
  publication-title: Nature
  doi: 10.1038/336251a0
  contributor:
    fullname: Brinkley
– volume: 112
  start-page: 651
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C77
  article-title: Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.112.5.651
  contributor:
    fullname: Trelles-Sticken
– volume: 16
  start-page: 193
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C14
  article-title: Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe
  publication-title: EMBO J
  doi: 10.1093/emboj/16.1.193
  contributor:
    fullname: Chikashige
– volume: 123
  start-page: 131
  year: 1993
  ident: 2024011400312970300_JOCES_113_23_4177C6
  article-title: TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility
  publication-title: Gene
  doi: 10.1016/0378-1119(93)90552-E
  contributor:
    fullname: Basi
– volume: 17
  start-page: 3305
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C61
  article-title: The centromere enhancer mediates centromere activation in Schizosaccharomyces pombe
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.17.6.3305
  contributor:
    fullname: Ngan
– volume: 15
  start-page: 6605
  year: 1996
  ident: 2024011400312970300_JOCES_113_23_4177C58
  article-title: The fission yeast dma1 gene is a component of the spindle assembly checkpoint, required to prevent septum formation and premature exit from mitosis if spindle function is compromised
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1996.tb01051.x
  contributor:
    fullname: Murone
– volume: 9
  start-page: 3211
  year: 1998
  ident: 2024011400312970300_JOCES_113_23_4177C60
  article-title: Dynamics of centromeres during metaphase-anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.9.11.3211
  contributor:
    fullname: Nabeshima
– volume: 389
  start-page: 640
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C5
  article-title: Mitotic chromatin regulates phosphorylation of Stathmin/Op18
  publication-title: Nature
  doi: 10.1038/39382
  contributor:
    fullname: Andersen
– volume: 11
  start-page: 1583
  year: 1992
  ident: 2024011400312970300_JOCES_113_23_4177C65
  article-title: Analysis of the BiP gene and identification of an ER retention signal in Schizosaccharomyces pombe
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1992.tb05203.x
  contributor:
    fullname: Pidoux
– volume: 26
  start-page: 4222
  year: 1998
  ident: 2024011400312970300_JOCES_113_23_4177C21
  article-title: The fission yeast chromo domain encoding gene chp1+ is required for chromosome segregation and shows a genetic interaction with alpha tubulin
  publication-title: Nucl. Acids Res
  doi: 10.1093/nar/26.18.4222
  contributor:
    fullname: Doe
– volume: 269
  start-page: 1429
  year: 1995
  ident: 2024011400312970300_JOCES_113_23_4177C23
  article-title: The chromo domain protein Swi6: A key component at fission yeast centromeres
  publication-title: Science
  doi: 10.1126/science.7660126
  contributor:
    fullname: Ekwall
– volume: 110
  start-page: 417
  year: 1990
  ident: 2024011400312970300_JOCES_113_23_4177C55
  article-title: In vitro reactivation of spindle elongation in fission yeast nuc2 mutant cells
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.110.2.417
  contributor:
    fullname: Masuda
– volume: 12
  start-page: 308
  year: 2000
  ident: 2024011400312970300_JOCES_113_23_4177C66
  article-title: Centromeres: getting a grip of chromosomes
  publication-title: Curr. Opin. Cell Biol
  doi: 10.1016/S0955-0674(00)00094-6
  contributor:
    fullname: Pidoux
– volume-title: In The Yeast Nucleus
  year: 2000
  ident: 2024011400312970300_JOCES_113_23_4177C67
  contributor:
    fullname: Pidoux
– volume: 10
  start-page: 154
  year: 2000
  ident: 2024011400312970300_JOCES_113_23_4177C33
  article-title: The spindle checkpoint: two transitions, two pathways
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(00)01727-X
  contributor:
    fullname: Gardner
– volume: 91
  start-page: 1021
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C25
  article-title: Transient inhibition of histone acetylation alters the structural and functional imprint at fission yeast centromeres
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80492-4
  contributor:
    fullname: Ekwall
– volume: 9
  start-page: 206
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C20
  article-title: Centromere proteins and chromosome inheritance: a complex affair
  publication-title: Curr. Opin. Genet. Dev
  doi: 10.1016/S0959-437X(99)80031-8
  contributor:
    fullname: Dobie
– volume: 136
  start-page: 229
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C47
  article-title: Chromosome fragments possessing only one kinetochore can congress to the spindle equator
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.136.2.229
  contributor:
    fullname: Khodjakov
– volume: 123
  start-page: 127
  year: 1993
  ident: 2024011400312970300_JOCES_113_23_4177C56
  article-title: Thiamine-repressible expression vectors pREP and pRIP for fission yeast
  publication-title: Gene
  doi: 10.1016/0378-1119(93)90551-D
  contributor:
    fullname: Maundrell
– volume: 264
  start-page: 270
  year: 1994
  ident: 2024011400312970300_JOCES_113_23_4177C13
  article-title: Telomere-led premeiotic chromosome movement in fission yeast
  publication-title: Science
  doi: 10.1126/science.8146661
  contributor:
    fullname: Chikashige
– volume: 39
  start-page: 403
  year: 1972
  ident: 2024011400312970300_JOCES_113_23_4177C31
  article-title: Morphological studies on the structure of univalent sex chromosomes during anaphase movement in spermatocytes of the crane fly Pales ferruginea
  publication-title: Chromosoma
  doi: 10.1007/BF00326175
  contributor:
    fullname: Fuge
– volume: 120
  start-page: 141
  year: 1993
  ident: 2024011400312970300_JOCES_113_23_4177C18
  article-title: Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.120.1.141
  contributor:
    fullname: Ding
– volume: 5
  start-page: 1145
  year: 1994
  ident: 2024011400312970300_JOCES_113_23_4177C74
  article-title: Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.5.10.1145
  contributor:
    fullname: Takahashi
– volume: 90
  start-page: 131
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C70
  article-title: Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialised chromatin required for equal segregation
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80320-7
  contributor:
    fullname: Saitoh
– volume: 109
  start-page: 2637
  year: 1996
  ident: 2024011400312970300_JOCES_113_23_4177C24
  article-title: Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.109.11.2637
  contributor:
    fullname: Ekwall
– volume: 7
  start-page: 930
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C54
  article-title: Interphase chromosomes undergo constrained diffusional motion in living cells
  publication-title: Curr. Biol
  doi: 10.1016/S0960-9822(06)00412-X
  contributor:
    fullname: Marshall
– volume: 14
  start-page: 783
  year: 2000
  ident: 2024011400312970300_JOCES_113_23_4177C64
  article-title: Distinct protein interaction domains and protein spreading in a complex centromere
  publication-title: Genes Dev
  doi: 10.1101/gad.14.7.783
  contributor:
    fullname: Partridge
– volume: 96
  start-page: 4989
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C50
  article-title: Bifurcation of the mitotic checkpoint pathway in budding yeast
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.96.9.4989
  contributor:
    fullname: Li
– volume: 112
  start-page: 3103
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C8
  article-title: The S. pombe zfs1 gene is required to prevent septation if mitotic progression is inhibited
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.112.18.3103
  contributor:
    fullname: Beltraminelli
– volume: 145
  start-page: 979
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C30
  article-title: Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.145.5.979
  contributor:
    fullname: Fraschini
– start-page: 38
  volume-title: In Chromosome Structural Analysis: a Practical Approach (ed. W. A. Bickmore)
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C26
  contributor:
    fullname: Ekwall
– volume: 129
  start-page: 1033
  year: 1995
  ident: 2024011400312970300_JOCES_113_23_4177C40
  article-title: The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.129.4.1033
  contributor:
    fullname: Hagan
– volume: 233
  start-page: 436
  year: 1992
  ident: 2024011400312970300_JOCES_113_23_4177C51
  article-title: The switching gene swi6 affects recombination and gene expression in the mating-type region of Schizosaccharomyces pombe
  publication-title: Mol. Gen. Genet
  doi: 10.1007/BF00265441
  contributor:
    fullname: Lorentz
– volume: 9
  start-page: 218
  year: 1995
  ident: 2024011400312970300_JOCES_113_23_4177C3
  article-title: Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation
  publication-title: Genes Dev
  doi: 10.1101/gad.9.2.218
  contributor:
    fullname: Allshire
– volume: 9
  start-page: R562
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C76
  article-title: Chromosome segregation: dual control ensures fidelity
  publication-title: Curr. Biol
  doi: 10.1016/S0960-9822(99)80355-8
  contributor:
    fullname: Taylor
– volume: 76
  start-page: 157
  year: 1994
  ident: 2024011400312970300_JOCES_113_23_4177C1
  article-title: Position effect variegation at fission yeast centromeres
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90180-5
  contributor:
    fullname: Allshire
– volume: 110
  start-page: 1851
  year: 1997
  ident: 2024011400312970300_JOCES_113_23_4177C41
  article-title: Evidence for cell cycle-specific, spindle pole body-mediated, nuclear positioning in the fission yeast Schizosaccharomyces pombe
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.110.16.1851
  contributor:
    fullname: Hagan
– volume: 6
  start-page: 419
  year: 1986
  ident: 2024011400312970300_JOCES_113_23_4177C49
  article-title: Malorientation and abnormal segregation of chromosomes during recovery from colcemid and nocodazole
  publication-title: Cell Motil. Cytoskel
  doi: 10.1002/cm.970060407
  contributor:
    fullname: Ladrach
– volume: 316
  start-page: 168
  year: 1985
  ident: 2024011400312970300_JOCES_113_23_4177C11
  article-title: In vitro reactivation of anaphase spindle elongation using isolated diatom spindles
  publication-title: Nature
  doi: 10.1038/316168a0
  contributor:
    fullname: Cande
– volume: 153
  start-page: 1153
  year: 1999
  ident: 2024011400312970300_JOCES_113_23_4177C27
  article-title: Novel fission yeast mutants which alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation
  publication-title: Genetics
  doi: 10.1093/genetics/153.3.1153
  contributor:
    fullname: Ekwall
– volume: 111
  start-page: 1635
  year: 1998
  ident: 2024011400312970300_JOCES_113_23_4177C44
  article-title: Mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe
  publication-title: J Cell Sci
  doi: 10.1242/jcs.111.12.1635
  contributor:
    fullname: He
– volume: 8
  start-page: 310
  year: 1998
  ident: 2024011400312970300_JOCES_113_23_4177C68
  article-title: The vertebrate cell kinetochore and its roles during mitosis
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(98)01299-9
  contributor:
    fullname: Rieder
– volume-title: Molecular Cloning
  year: 1989
  ident: 2024011400312970300_JOCES_113_23_4177C69
  contributor:
    fullname: Sambrook
– volume: 11
  start-page: 2206
  year: 1991
  ident: 2024011400312970300_JOCES_113_23_4177C42
  article-title: Identification of DNA regions required for mitotic and meiotic functions within the centromere of Schizosaccharomyces pombe chromosome I
  publication-title: Mol. Cell. Biol
  contributor:
    fullname: Hahnenberger
– volume: 143
  start-page: 1775
  year: 1998
  ident: 2024011400312970300_JOCES_113_23_4177C9
  article-title: Fission yeast Bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.143.7.1775
  contributor:
    fullname: Bernard
– volume: 109
  start-page: 2257
  year: 1989
  ident: 2024011400312970300_JOCES_113_23_4177C78
  article-title: Biotin-tubulin incorporates into kinetochore fiber microtubules during early but not late anaphase
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.109.5.2257
  contributor:
    fullname: Wadsworth
SSID ssj0007297
Score 2.0247176
Snippet The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 4177
SubjectTerms Anaphase - physiology
Cell Nucleus - physiology
Chromosome Segregation - genetics
Chromosomes, Fungal - physiology
Fungal Proteins - genetics
Gene Expression Regulation, Fungal
Genes, Reporter
Green Fluorescent Proteins
Indicators and Reagents - metabolism
Kinetochores - physiology
Luminescent Proteins - genetics
Meiosis - physiology
Mitosis - physiology
Mutagenesis - physiology
Saccharomyces cerevisiae Proteins
Schizosaccharomyces - cytology
Schizosaccharomyces - genetics
Schizosaccharomyces pombe
Spindle Apparatus - genetics
Transcription Factors - genetics
Title Live analysis of lagging chromosomes during anaphase and their effect on spindle elongation rate in fission yeast
URI https://www.ncbi.nlm.nih.gov/pubmed/11069763
https://search.proquest.com/docview/18191358
Volume 113 Pt 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiDfl6QMHpCgliZvXESFghRDqoSv1FvzcjbSblDYV7P56ZmK7TRcqAZcoSiwnmvk0nhmPvyHkdVomsChmLDQmgQCFZUh5a3QoJURiOhfSiL7K92t2fDL9vEgXo9G3QdXSphMTefXHcyX_o1V4BnrFU7L_oNntpPAA7kG_cAUNw_WvdPwFy374gFbknJ_2TYfkGVbZrVtkYtoeROTLM1iyfMlkvXK1HLhdsF7WSLYQ6PO2ObWQQAoJTIaYGutkm-ASm_wccGUx-x-4tXRra2vVbn5a07NNMJ9c8R98L-E60yu7kT8bnInAxHZf_Of2TXxWYljh4U8JxLg1zPYsbcyCWRckbGAxp7Ft4_KbKQffAU25XGPbmUnCJtdHgi6WF71mwYXJSm8o99mz_asb5CZSJWJ3hU-LXREQhBauqa_9W0f-BN9-e-3LyC7r5tp3YQ7EJb1_Mr9L7jht0HcWJffISDf3yS3bavTyAfmOWKEeK7Q11GGFDrBCLVaoxwrcKNpjhVqs0LahDit0hxWKWKF1Qx1WaI-Vh2T-8cP8_XHo2m2EkmVxFwqtIs1FXsosMVNdqFJIVjJjClGmClx1JY0qSohzMp6zgnGIrWEMeLiZRhbFR-SoaRv9hNA8yoXiEecK6QTTQshExKWUeRQppQo5Jm-8AKulJVWpMBgFsVcgdohKWZWwCsU-Jq-8gCswfIhn3uh2A4Mw1cDSYkweW7nvpnJ6enrwzTNyewfa5-SoW230C3AuO_Gyx8cv57148g
link.rule.ids 314,780,784,27924,27925
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Live+analysis+of+lagging+chromosomes+during+anaphase+and+their+effect+on+spindle+elongation+rate+in+fission+yeast&rft.jtitle=Journal+of+cell+science&rft.au=Pidoux%2C+A+L&rft.au=Uzawa%2C+S&rft.au=Perry%2C+P+E&rft.au=Cande%2C+W+Z&rft.date=2000-12-01&rft.issn=0021-9533&rft.volume=113+Pt+23&rft.spage=4177&rft_id=info:doi/10.1242%2Fjcs.113.23.4177&rft_id=info%3Apmid%2F11069763&rft.externalDocID=11069763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon