Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition
EEG signals have been reported to be informative and reliable for emotion recognition in recent years. However, the inter-subject variability of emotion-related EEG signals still poses a great challenge for the practical applications of EEG-based emotion recognition. Inspired by recent neuroscience...
Saved in:
Published in | IEEE transactions on affective computing Vol. 14; no. 3; pp. 2496 - 2511 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | EEG signals have been reported to be informative and reliable for emotion recognition in recent years. However, the inter-subject variability of emotion-related EEG signals still poses a great challenge for the practical applications of EEG-based emotion recognition. Inspired by recent neuroscience studies on inter-subject correlation, we proposed a Contrastive Learning method for Inter-Subject Alignment (CLISA) to tackle the cross-subject emotion recognition problem. Contrastive learning was employed to minimize the inter-subject differences by maximizing the similarity in EEG signkal representations across subjects when they received the same emotional stimuli in contrast to different ones. Specifically, a convolutional neural network was applied to learn inter-subject aligned spatiotemporal representations from EEG time series in contrastive learning. The aligned representations were subsequently used to extract differential entropy features for emotion classification. CLISA achieved state-of-the-art cross-subject emotion recognition performance on our THU-EP dataset with 80 subjects and the publicly available SEED dataset with 15 subjects. It could generalize to unseen subjects or unseen emotional stimuli in testing. Furthermore, the spatiotemporal representations learned by CLISA could provide insights into the neural mechanisms of human emotion processing. |
---|---|
AbstractList | EEG signals have been reported to be informative and reliable for emotion recognition in recent years. However, the inter-subject variability of emotion-related EEG signals still poses a great challenge for the practical applications of EEG-based emotion recognition. Inspired by recent neuroscience studies on inter-subject correlation, we proposed a Contrastive Learning method for Inter-Subject Alignment (CLISA) to tackle the cross-subject emotion recognition problem. Contrastive learning was employed to minimize the inter-subject differences by maximizing the similarity in EEG signkal representations across subjects when they received the same emotional stimuli in contrast to different ones. Specifically, a convolutional neural network was applied to learn inter-subject aligned spatiotemporal representations from EEG time series in contrastive learning. The aligned representations were subsequently used to extract differential entropy features for emotion classification. CLISA achieved state-of-the-art cross-subject emotion recognition performance on our THU-EP dataset with 80 subjects and the publicly available SEED dataset with 15 subjects. It could generalize to unseen subjects or unseen emotional stimuli in testing. Furthermore, the spatiotemporal representations learned by CLISA could provide insights into the neural mechanisms of human emotion processing. |
Author | Liu, Xianggen Zhang, Dan Song, Sen Shen, Xinke Hu, Xin |
Author_xml | – sequence: 1 givenname: Xinke orcidid: 0000-0001-8531-5033 surname: Shen fullname: Shen, Xinke email: sxk17@mails.tsinghua.edu.cn organization: Department of Biomedical Engineering and with the Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China – sequence: 2 givenname: Xianggen surname: Liu fullname: Liu, Xianggen email: liuxianggen@scu.edu.cn organization: College of Computer Science, Sichuan University, Chengdu, Sichuan, China – sequence: 3 givenname: Xin orcidid: 0000-0003-0714-689X surname: Hu fullname: Hu, Xin email: huxin530@gmail.com organization: Department of Psychology and with the Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China – sequence: 4 givenname: Dan orcidid: 0000-0002-7592-3200 surname: Zhang fullname: Zhang, Dan email: dzhang@tsinghua.edu.cn organization: Department of Psychology and with the Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China – sequence: 5 givenname: Sen orcidid: 0000-0001-5587-0730 surname: Song fullname: Song, Sen email: songsen@tsinghua.edu.cn organization: Department of Biomedical Engineering and with the Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China |
BookMark | eNp9kF9LwzAUxYNMcM59AX0p-NyZP03aPI7SzcFA0Plc0jQdGVsyk2zgtze1Q8QH85JD7vnde3NuwchYowC4R3CGEORPm_liUc4wxHhGEMsoYldgjHjGUwIzOvqlb8DU-x2MhxDCcD4GsrQmOOGDPqtkrYQz2mwT2yVvp2anZEhX5iycFiYkVbVMXtXRKa9MEEFb45POuqR01vv04k-qg-1L0Snt1uhe34HrTuy9ml7uCXhfVJvyOV2_LFflfJ1KwlBIm6aFqKUNy7EgsqE5ZQXMBcFZSyDjBeFFQTvSxrrkgncivuZUYskojyIjE_A49D06-3FSPtQ7e3ImjqxxwVjWd4DRVQwu2e_tVFdLPXwn5qD3NYJ1n2r9nWrdp1pfUo0o_oMenT4I9_k_9DBAWin1A_A8K-LW5AukEYRy |
CODEN | ITACBQ |
CitedBy_id | crossref_primary_10_1039_D4AY01970A crossref_primary_10_1111_coin_12659 crossref_primary_10_1007_s00422_023_00967_8 crossref_primary_10_1109_TBME_2024_3432934 crossref_primary_10_1109_TAFFC_2023_3315973 crossref_primary_10_3390_en18051155 crossref_primary_10_1145_3674975 crossref_primary_10_1016_j_neucom_2024_128624 crossref_primary_10_1016_j_eswa_2024_126081 crossref_primary_10_11834_jig_230031 crossref_primary_10_1145_3712259 crossref_primary_10_1016_j_eswa_2024_126282 crossref_primary_10_3389_fnins_2025_1557287 crossref_primary_10_1109_TAFFC_2024_3433470 crossref_primary_10_3390_brainsci14070688 crossref_primary_10_3390_s24227324 crossref_primary_10_1007_s11571_024_10193_y crossref_primary_10_1109_ACCESS_2023_3344531 crossref_primary_10_1016_j_engappai_2024_109502 crossref_primary_10_1016_j_engappai_2024_109825 crossref_primary_10_3390_electronics14020251 crossref_primary_10_1109_ACCESS_2025_3536549 crossref_primary_10_1109_JBHI_2023_3264521 crossref_primary_10_34133_cbsystems_0028 crossref_primary_10_1016_j_neunet_2025_107337 crossref_primary_10_1016_j_eswa_2024_125420 crossref_primary_10_3390_s24061894 crossref_primary_10_1016_j_eswa_2024_126028 crossref_primary_10_1016_j_neuroimage_2024_120890 crossref_primary_10_1109_JTEHM_2024_3506556 crossref_primary_10_31083_j_jin2301018 crossref_primary_10_1109_JBHI_2024_3486251 crossref_primary_10_1109_JBHI_2024_3357168 crossref_primary_10_1007_s10489_023_04971_0 crossref_primary_10_1109_TCDS_2024_3417534 crossref_primary_10_1007_s11257_024_09424_y crossref_primary_10_1088_1741_2552_ad5048 crossref_primary_10_1049_cit2_12174 crossref_primary_10_1088_1741_2552_ad3986 crossref_primary_10_1109_JBHI_2024_3456441 crossref_primary_10_1016_j_aei_2024_102971 crossref_primary_10_1109_TCYB_2024_3415369 crossref_primary_10_1109_TBME_2023_3328942 crossref_primary_10_1080_09540091_2024_2426812 crossref_primary_10_1016_j_aej_2025_02_001 crossref_primary_10_1016_j_eswa_2024_125452 crossref_primary_10_1109_TAFFC_2024_3385651 crossref_primary_10_3390_e26070540 crossref_primary_10_1109_ACCESS_2023_3344476 crossref_primary_10_1038_s41597_023_02650_w crossref_primary_10_1016_j_bspc_2025_107511 crossref_primary_10_1007_s13534_023_00316_5 crossref_primary_10_1016_j_jneumeth_2024_110223 crossref_primary_10_1109_TIM_2025_3533618 crossref_primary_10_7717_peerj_cs_2610 crossref_primary_10_1109_JBHI_2024_3452410 crossref_primary_10_1145_3666002 crossref_primary_10_1016_j_heliyon_2024_e31485 crossref_primary_10_1016_j_neunet_2023_12_034 crossref_primary_10_3390_brainsci13091326 crossref_primary_10_1007_s11571_024_10205_x |
Cites_doi | 10.1109/TKDE.2021.3119326 10.1109/TAFFC.2020.3025777 10.1109/TAFFC.2017.2714671 10.1109/MCI.2015.2501545 10.1162/089976698300017467 10.1016/j.tics.2016.03.011 10.1109/CVPR.2017.195 10.1126/science.1089506 10.1007/978-981-13-0908-3_10 10.1093/scan/nsz037 10.1109/NER.2013.6695876 10.1093/cercor/bhv001 10.1038/s41598-018-19707-1 10.1109/TAFFC.2017.2660485 10.1109/TNN.2010.2091281 10.1109/TAFFC.2020.2994159 10.1109/TBME.2019.2897651 10.1109/TCDS.2020.2999337 10.1371/journal.pcbi.1004066 10.1038/ncomms5567 10.1109/TAFFC.2018.2817622 10.1016/S0959-4388(02)00301-X 10.1109/TAFFC.2021.3130387 10.1037/1528-3542.7.4.715 10.1109/TAFFC.2018.2885474 10.1109/JBHI.2020.2995767 10.1609/aaai.v35i1.16169 10.1155/2011/156869 10.1016/S0065-2601(08)00404-8 10.1016/j.knosys.2017.05.010 10.1186/1475-925X-9-45 10.3390/s17051014 10.1016/j.compbiomed.2016.10.019 10.1109/JBHI.2017.2688239 10.1155/2011/879716 10.1145/2647868.2654916 10.3389/fnhum.2019.00120 10.1016/j.tics.2012.07.006 10.1109/TCDS.2019.2949306 10.1109/TAFFC.2017.2786207 10.1109/IJCNN.2010.5596746 10.1111/sjop.12209 10.1109/TAFFC.2018.2849758 10.1177/2096595819896200 10.1371/journal.pcbi.1009284 10.1109/EMBC44109.2020.9175482 10.1109/CVPR.2017.243 10.1093/scan/nsab031 10.1038/srep01692 10.1109/TAFFC.2020.3008775 10.1016/j.neucom.2020.07.123 10.1080/02699930903274322 10.1080/02699930802204677 10.1109/TAMD.2015.2431497 10.1006/nimg.2001.0825 10.3390/s18072074 10.1093/bib/bbab109 10.1109/TCYB.2019.2904052 10.3389/fnins.2021.626277 10.1109/T-AFFC.2011.15 10.1016/j.conb.2004.03.010 10.3389/fpsyg.2014.00996 10.1109/NER49283.2021.9441368 10.1080/2326263X.2014.912881 10.1109/TCDS.2020.3007453 10.1162/neco.1995.7.6.1129 10.1109/TAFFC.2014.2339834 10.1088/1741-2552/abca18 10.1109/TAFFC.2017.2712143 10.3389/fnhum.2012.00112 10.1080/02699931.2016.1140020 10.1109/TAFFC.2021.3051332 10.3389/fnhum.2017.00026 10.1016/j.knosys.2020.106243 10.1371/journal.pone.0128833 10.1007/978-3-030-36708-4_3 10.1016/j.neuroimage.2013.10.067 10.1016/j.neuroimage.2018.01.035 10.1007/11866763_8 10.1007/s11432-021-3439-2 10.1007/s11517-016-1479-8 10.1093/acprof:oso/9780195050387.001.0001 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2022.3164516 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 2511 |
ExternalDocumentID | 10_1109_TAFFC_2022_3164516 9748967 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guoqiang Institute – fundername: National Key Research and Development Program of China grantid: 2021ZD0200300 – fundername: National Natural Science Foundation of China grantid: 61977041; 61836004 funderid: 10.13039/501100001809 – fundername: Beijing Academy of Artificial Intelligence – fundername: Spring Breeze Fund grantid: 2021Z99CFY037 – fundername: Center for Brain-inspired Computing Research, Beijing Innovation Center for Future Chips – fundername: Tsinghua University Initiative Scientific Research Program grantid: 20197010009 – fundername: IDG/McGovern Institute for Brain Research – fundername: Tsinghua University funderid: 10.13039/501100004147 – fundername: Key Scientific Technological Innovation Project by Ministry of Education |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-bbd01d5b672a3cb5756807a324d3069839885f3d672c9a9fa30675c2c65967543 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Sun Jun 29 16:21:56 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Tue Jul 01 02:57:54 EDT 2025 Wed Aug 27 02:47:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-bbd01d5b672a3cb5756807a324d3069839885f3d672c9a9fa30675c2c65967543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8531-5033 0000-0002-7592-3200 0000-0001-5587-0730 0000-0003-0714-689X |
PQID | 2866483980 |
PQPubID | 2040414 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2866483980 ieee_primary_9748967 crossref_citationtrail_10_1109_TAFFC_2022_3164516 crossref_primary_10_1109_TAFFC_2022_3164516 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | TAFFC |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref59 ref58 ref53 ref54 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 amari (ref83) 1995 ref37 shi (ref10) 2013 ref36 ref31 ref30 ref33 ref32 cui (ref20) 2020; 205 ref38 oord (ref62) 2018 sundararajan (ref92) 2017 chai (ref51) 2017; 17 ref24 ref23 ref26 ref25 ref22 nair (ref90) 2010 ref21 loshchilov (ref86) 2016 ref28 ref27 fernando (ref52) 2014 ref29 devlin (ref56) 2019 ganin (ref39) 2016; 17 ref13 ref12 ref15 ref14 pascual-marqui (ref97) 2002; 24 ekman (ref76) 1994 ref96 ref11 ref99 ref98 mohsenvand (ref60) 2020 ref17 zheng (ref47) 2016 ref16 ref19 ref18 chen (ref55) 2020 kingma (ref85) 2015 ref93 ref95 ref94 ref89 ref88 ref87 parra (ref91) 2018 ref82 ref81 ref84 clevert (ref71) 2016 ref80 ref79 ref78 lawhern (ref70) 2016; 15 ref75 ref74 ref77 ref102 ref2 ref1 hu (ref64) 2021; 147 ref73 ref72 ref67 he (ref68) 2016 ref69 ref63 ref66 ref65 ref61 |
References_xml | – ident: ref59 doi: 10.1109/TKDE.2021.3119326 – ident: ref21 doi: 10.1109/TAFFC.2020.3025777 – ident: ref2 doi: 10.1109/TAFFC.2017.2714671 – ident: ref27 doi: 10.1109/MCI.2015.2501545 – ident: ref49 doi: 10.1162/089976698300017467 – ident: ref35 doi: 10.1016/j.tics.2016.03.011 – start-page: 6627 year: 2013 ident: ref10 article-title: Differential entropy feature for EEG-based vigilance estimation publication-title: Proc IEEE Conf Eng Med Biol Soc – ident: ref72 doi: 10.1109/CVPR.2017.195 – ident: ref43 doi: 10.1126/science.1089506 – ident: ref46 doi: 10.1007/978-981-13-0908-3_10 – ident: ref63 doi: 10.1093/scan/nsz037 – ident: ref9 doi: 10.1109/NER.2013.6695876 – volume: 24 start-page: 5 year: 2002 ident: ref97 article-title: Standardized low-resolution brain electromagnetic tomography (Sloreta): Technical details publication-title: Methods Find Exp Clin Pharmacol – ident: ref99 doi: 10.1093/cercor/bhv001 – ident: ref67 doi: 10.1038/s41598-018-19707-1 – ident: ref78 doi: 10.1109/TAFFC.2017.2660485 – ident: ref48 doi: 10.1109/TNN.2010.2091281 – ident: ref13 doi: 10.1109/TAFFC.2020.2994159 – volume: 15 start-page: 56013.1 year: 2016 ident: ref70 article-title: EEGNet: A compact convolutional network for EEG-based brain-computer interfaces publication-title: J Neural Eng – ident: ref18 doi: 10.1109/TBME.2019.2897651 – start-page: 238 year: 2020 ident: ref60 article-title: Contrastive representation learning for electroencephalogram classification publication-title: Proc Mach Learn Health NeurIPS Workshop – ident: ref12 doi: 10.1109/TCDS.2020.2999337 – ident: ref100 doi: 10.1371/journal.pcbi.1004066 – year: 2016 ident: ref86 article-title: SGDR: Stochastic gradient descent with warm restarts publication-title: Proc Int Conf Learn Representation – ident: ref41 doi: 10.1038/ncomms5567 – ident: ref16 doi: 10.1109/TAFFC.2018.2817622 – start-page: 4171 year: 2019 ident: ref56 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics – ident: ref34 doi: 10.1016/S0959-4388(02)00301-X – ident: ref22 doi: 10.1109/TAFFC.2021.3130387 – ident: ref79 doi: 10.1037/1528-3542.7.4.715 – ident: ref11 doi: 10.1109/TAFFC.2018.2885474 – year: 2018 ident: ref91 article-title: Correlated components analysis - extracting reliable dimensions in multivariate data – ident: ref7 doi: 10.1109/JBHI.2020.2995767 – ident: ref54 doi: 10.1609/aaai.v35i1.16169 – ident: ref80 doi: 10.1155/2011/156869 – ident: ref98 doi: 10.1016/S0065-2601(08)00404-8 – ident: ref88 doi: 10.1016/j.knosys.2017.05.010 – ident: ref95 doi: 10.1186/1475-925X-9-45 – start-page: 807 year: 2010 ident: ref90 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proc Int Conf Mach Learn – volume: 17 year: 2017 ident: ref51 article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography (EEG)-based emotion recognition publication-title: SENSORS doi: 10.3390/s17051014 – year: 2018 ident: ref62 article-title: Representation learning with contrastive predictive coding – ident: ref53 doi: 10.1016/j.compbiomed.2016.10.019 – ident: ref24 doi: 10.1109/JBHI.2017.2688239 – ident: ref94 doi: 10.1155/2011/879716 – ident: ref50 doi: 10.1145/2647868.2654916 – start-page: 770 year: 2016 ident: ref68 article-title: Deep residual learning for image recognition publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit – start-page: 2732 year: 2016 ident: ref47 article-title: Personalizing EEG-based affective models with transfer learning publication-title: Proc Int Joint Artif Intell Conf – ident: ref74 doi: 10.3389/fnhum.2019.00120 – ident: ref37 doi: 10.1016/j.tics.2012.07.006 – ident: ref29 doi: 10.1109/TCDS.2019.2949306 – volume: 17 start-page: 2096 year: 2016 ident: ref39 article-title: Domain-adversarial training of neural networks publication-title: J Mach Learn Res – ident: ref31 doi: 10.1109/TAFFC.2017.2786207 – ident: ref89 doi: 10.1109/IJCNN.2010.5596746 – ident: ref75 doi: 10.1111/sjop.12209 – ident: ref4 doi: 10.1109/TAFFC.2018.2849758 – ident: ref5 doi: 10.1177/2096595819896200 – start-page: 2960 year: 2014 ident: ref52 article-title: Unsupervised visual domain adaptation using subspace alignment publication-title: Proc IEEE Int Conf Comput Vis – ident: ref58 doi: 10.1371/journal.pcbi.1009284 – start-page: 3319 year: 2017 ident: ref92 article-title: Axiomatic attribution for deep networks publication-title: Proc Int Conf Mach Learn – ident: ref19 doi: 10.1109/EMBC44109.2020.9175482 – ident: ref69 doi: 10.1109/CVPR.2017.243 – year: 1994 ident: ref76 publication-title: The Nature of Emotion Fundamental Questions – ident: ref45 doi: 10.1093/scan/nsab031 – ident: ref44 doi: 10.1038/srep01692 – ident: ref32 doi: 10.1109/TAFFC.2020.3008775 – ident: ref33 doi: 10.1016/j.neucom.2020.07.123 – ident: ref77 doi: 10.1080/02699930903274322 – ident: ref36 doi: 10.1080/02699930802204677 – ident: ref14 doi: 10.1109/TAMD.2015.2431497 – ident: ref66 doi: 10.1006/nimg.2001.0825 – ident: ref1 doi: 10.3390/s18072074 – ident: ref57 doi: 10.1093/bib/bbab109 – ident: ref25 doi: 10.1109/TCYB.2019.2904052 – ident: ref84 doi: 10.3389/fnins.2021.626277 – ident: ref23 doi: 10.1109/T-AFFC.2011.15 – ident: ref30 doi: 10.1016/j.conb.2004.03.010 – ident: ref101 doi: 10.3389/fpsyg.2014.00996 – year: 2016 ident: ref71 article-title: Fast and accurate deep network learning by exponential linear units (Elus) publication-title: Proc Int Conf Learn Represent – ident: ref28 doi: 10.1109/NER49283.2021.9441368 – ident: ref3 doi: 10.1080/2326263X.2014.912881 – ident: ref38 doi: 10.1109/TCDS.2020.3007453 – ident: ref82 doi: 10.1162/neco.1995.7.6.1129 – ident: ref6 doi: 10.1109/TAFFC.2014.2339834 – ident: ref61 doi: 10.1088/1741-2552/abca18 – ident: ref15 doi: 10.1109/TAFFC.2017.2712143 – ident: ref42 doi: 10.3389/fnhum.2012.00112 – ident: ref102 doi: 10.1080/02699931.2016.1140020 – ident: ref17 doi: 10.1109/TAFFC.2021.3051332 – volume: 147 year: 2021 ident: ref64 article-title: Similar brains blend emotion in similar ways: Neural representations of individual difference in emotion profiles publication-title: NeuroImage – year: 2015 ident: ref85 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Representation – ident: ref73 doi: 10.3389/fnhum.2017.00026 – volume: 205 year: 2020 ident: ref20 article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolution-al neural network publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.106243 – ident: ref40 doi: 10.1371/journal.pone.0128833 – ident: ref26 doi: 10.1007/978-3-030-36708-4_3 – ident: ref93 doi: 10.1016/j.neuroimage.2013.10.067 – start-page: 757 year: 1995 ident: ref83 article-title: A new learning algorithm for blind signal separation publication-title: Proc Adv Neural Inf Process Syst – ident: ref81 doi: 10.1016/j.neuroimage.2018.01.035 – ident: ref96 doi: 10.1007/11866763_8 – ident: ref8 doi: 10.1007/s11432-021-3439-2 – ident: ref87 doi: 10.1007/s11517-016-1479-8 – start-page: 1597 year: 2020 ident: ref55 article-title: A simple framework for contrastive learning of visual representations publication-title: Proc Int Conf Mach Learn – ident: ref65 doi: 10.1093/acprof:oso/9780195050387.001.0001 |
SSID | ssj0000333627 |
Score | 2.6214821 |
Snippet | EEG signals have been reported to be informative and reliable for emotion recognition in recent years. However, the inter-subject variability of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2496 |
SubjectTerms | Artificial neural networks Brain modeling brain-computer interface contrastive learning cross-subject Datasets EEG Electroencephalography Emotion recognition Emotions Feature extraction Learning Neuroscience Representations Stimuli Testing Training |
Title | Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/9748967 https://www.proquest.com/docview/2866483980 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFL0qnVgoUBCFgjywgds8nWSsqoSCBEPVSt2i2HEYQClqUwa-nmvHicRDiC1SbMnOsa_Pce4D4DqzeaZ4OpVC5tRzgoJyP0SpIvF88i3JQqGzfT6x2dJ7WPmrDty2sTBSSu18JkfqUf_Lz9dip67KxpFKlcKCPdhD4VbHarX3KZbroi0OmrgYKxovJkkyRQXoOChMmSpI--Xs0cVUflhgfawkPXhsBlR7k7yMdhUfiY9vuRr_O-JDODD8kkzqBXEEHVkeQ6-p3UDMVu6DUGmpNtlWWTtikqw-k3VB0JKoqxl6X76jjMbvTuL4jsy1w6yJUyq3BKkumapJUtOexHU9IDJvPJLW5Qksk3gxnVFTcIEKl9kV5Ty37NznLHAyV3Bkciy0ggw5V47KIkIuFYZ-4eb4XkRZVGRabwhHMB8n6XvuKXTLdSnPgHihz1E7spC5nsdRpbEidxlH8pMXtiiKAdgNFKkw2chVUYzXVKsSK0o1fKmCLzXwDeCm7fNW5-L4s3Vf4dG2NFAMYNggnprtuk2dkDFPTc86_73XBeyrOvO1n-4QutVmJy-RjVT8Si_DT4Rm3As |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBCgYIoFPDABil52UnGqmppoe1QtVK3KHYcBlCK-mDg13N2nEo8hNgixZZ8Ofvu-5x7ANwkDk8UTrekkKnlu0FmcRoiVZHon6gtWSh0tc8x68_8xzmdV-BumwsjpdTBZ7KlHvW__HQhNuqq7D5SpVJYsAO76PepU2RrbW9UbM9DaxyUmTF2dD9t93od5ICui9SUqZa0X7yPbqfywwZrx9KrwahcUhFP8tLarHlLfHyr1vjfNR_CgUGYpF1siSOoyPwYamX3BmIOcx2EKky1TFbK3hFTZvWZLDKCtkRdzliD_B2JNH550u0-kIkOmTWZSvmKINglHSWkZcaTbtERiEzKmKRFfgKzXnfa6Vum5YIlPOasLc5T20kpZ4GbeIIjlmOhHSSIulLkFhGiqTCkmZfiexElUZZoxiFcwSgKSX3vFKr5IpdnQPyQcmSPLGSe73PkaSxLPcYR_qSZI7KsAU6piliYeuSqLcZrrHmJHcVafbFSX2zU14Db7Zy3ohrHn6PrSh_bkUYVDWiWGo_NgV3FbsiYr8Szz3-fdQ17_eloGA8H46cL2Fdd54uo3SZU18uNvERssuZXekt-AicZ31Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrastive+Learning+of+Subject-Invariant+EEG+Representations+for+Cross-Subject+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Shen%2C+Xinke&rft.au=Liu%2C+Xianggen&rft.au=Hu%2C+Xin&rft.au=Zhang%2C+Dan&rft.date=2023-07-01&rft.issn=1949-3045&rft.eissn=1949-3045&rft.volume=14&rft.issue=3&rft.spage=2496&rft.epage=2511&rft_id=info:doi/10.1109%2FTAFFC.2022.3164516&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAFFC_2022_3164516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |