PET Image Reconstruction Incorporating Deep Image Prior and a Forward Projection Model

Convolutional neural networks (CNNs) have recently achieved remarkable performance in positron emission tomography (PET) image reconstruction. In particular, CNN-based PET image reconstruction, which directly generates the reconstructed image from a sinogram, has potential applicability in PET image...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on radiation and plasma medical sciences Vol. 6; no. 8; pp. 841 - 846
Main Authors Hashimoto, Fumio, Ote, Kibo, Onishi, Yuya
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Convolutional neural networks (CNNs) have recently achieved remarkable performance in positron emission tomography (PET) image reconstruction. In particular, CNN-based PET image reconstruction, which directly generates the reconstructed image from a sinogram, has potential applicability in PET image enhancement because it does not require image reconstruction algorithms, which often produce artifacts. However, these deep learning-based PET image reconstruction algorithms have the disadvantage that they require a large number of high-quality training datasets. In this study, we propose an unsupervised PET image reconstruction method that incorporates a deep image prior (DIP) framework. Our proposed method incorporates a forward projection model with a loss function to achieve unsupervised PET image reconstruction from sinograms. To compare our proposed image reconstruction method with filtered back projection (FBP), maximum-likelihood expectation-maximization (ML-EM), and the other DIP-based reconstruction algorithm, we evaluated our method using Monte Carlo simulation data of a brain [18F]fluoro-2-deoxy-D-glucose (FDG) PET scan and real data of a rhesus monkey brain [18F]FDG PET scan. The results demonstrate that our proposed image reconstruction method quantitatively and qualitatively outperforms the FBP and ML-EM algorithms; furthermore, it showed comparable performance and faster calculation time compared to the other DIP-based image reconstruction method.
AbstractList Convolutional neural networks (CNNs) have recently achieved remarkable performance in positron emission tomography (PET) image reconstruction. In particular, CNN-based PET image reconstruction, which directly generates the reconstructed image from a sinogram, has potential applicability in PET image enhancement because it does not require image reconstruction algorithms, which often produce artifacts. However, these deep learning-based PET image reconstruction algorithms have the disadvantage that they require a large number of high-quality training datasets. In this study, we propose an unsupervised PET image reconstruction method that incorporates a deep image prior (DIP) framework. Our proposed method incorporates a forward projection model with a loss function to achieve unsupervised PET image reconstruction from sinograms. To compare our proposed image reconstruction method with filtered back projection (FBP), maximum-likelihood expectation–maximization (ML-EM), and the other DIP-based reconstruction algorithm, we evaluated our method using Monte Carlo simulation data of a brain [18F]fluoro-2-deoxy-D-glucose (FDG) PET scan and real data of a rhesus monkey brain [18F]FDG PET scan. The results demonstrate that our proposed image reconstruction method quantitatively and qualitatively outperforms the FBP and ML-EM algorithms; furthermore, it showed comparable performance and faster calculation time compared to the other DIP-based image reconstruction method.
Author Ote, Kibo
Onishi, Yuya
Hashimoto, Fumio
Author_xml – sequence: 1
  givenname: Fumio
  orcidid: 0000-0003-2352-0538
  surname: Hashimoto
  fullname: Hashimoto, Fumio
  email: fumio.hashimoto@crl.hpk.co.jp
  organization: Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
– sequence: 2
  givenname: Kibo
  orcidid: 0000-0003-1826-5739
  surname: Ote
  fullname: Ote, Kibo
  email: kibou@crl.hpk.co.jp
  organization: Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
– sequence: 3
  givenname: Yuya
  orcidid: 0000-0001-9715-4636
  surname: Onishi
  fullname: Onishi, Yuya
  email: yuya.onishi@hpk.co.jp
  organization: Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
BookMark eNp9kE9PAjEQxRuDiYh8Ab1s4hnsH9pujwZBSSASRK9Nt50lS6Bdu0uM397FJRw8eJrJ5P1m5r1r1PHBA0K3BA8JwephvVou3oYUUzpkRBAu1AXq0pFQA8kw65x7Qq5Qv6q2GGMiU6pGvIs-lpN1MtubDSQrsMFXdTzYugg-mXkbYhmiqQu_SZ4AypNuGYsQE-NdYpJpiF8mumYWttByi-Bgd4Muc7OroH-qPfQ-nazHL4P56_Ns_DgfWCZIPciUs1wpQl1uMJNWUXBmxDkWmbMZNlZaAS5v3k-ZdJnMicA55qk0UoEgjPXQfbu3jOHzAFWtt-EQfXNS08YwZankvFHRVmVjqKoIuS5jsTfxWxOsjxHq3wj1MUJ9irCB0j-QLWpztFhHU-z-R-9atACA8y0lmZKcsR8I3YCq
CODEN ITRPFI
CitedBy_id crossref_primary_10_1093_bjrai_ubae013
crossref_primary_10_1007_s12149_023_01862_9
crossref_primary_10_1088_1361_6560_ace49c
crossref_primary_10_1088_1748_0221_19_01_C01001
crossref_primary_10_1007_s11042_023_17326_1
crossref_primary_10_1007_s12194_024_00831_9
crossref_primary_10_1177_14727978251319398
crossref_primary_10_1109_TRPMS_2024_3441526
crossref_primary_10_3390_s23135783
crossref_primary_10_1109_TRPMS_2023_3280674
crossref_primary_10_1109_ACCESS_2024_3510600
crossref_primary_10_1088_1361_6560_ada717
crossref_primary_10_1016_j_media_2024_103180
crossref_primary_10_1109_TMI_2023_3239596
crossref_primary_10_6009_jjrt_2024_2365
crossref_primary_10_1007_s12194_024_00780_3
crossref_primary_10_1109_TRPMS_2023_3280907
crossref_primary_10_1088_1361_6560_ad40f6
crossref_primary_10_3389_fradi_2024_1466498
crossref_primary_10_1259_bjr_20230292
crossref_primary_10_1109_TIM_2024_3369160
Cites_doi 10.1109/23.552756
10.1109/TRPMS.2020.3014786
10.1088/1361-6560/abcd1a
10.1007/s12149-007-0044-9
10.1007/s12194-017-0406-5
10.1016/j.media.2019.03.013
10.1109/TMI.2003.812249
10.1016/j.media.2021.102226
10.1007/s12149-020-01550-y
10.1109/TRPMS.2020.3000221
10.1109/TMI.2011.2173766
10.1016/j.media.2017.07.005
10.1109/TMI.2018.2869871
10.1007/s00259-019-04468-4
10.1145/279232.279236
10.1371/journal.pone.0081390
10.1088/0031-9155/47/1/301
10.1109/TRPMS.2020.3004408
10.1016/j.neuroimage.2018.03.045
10.1109/42.52985
10.1109/TRPMS.2020.3033172
10.1007/s11263-020-01303-4
10.1117/1.JMI.7.3.032503
10.1109/TRPMS.2018.2869936
10.1007/s12149-021-01611-w
10.1109/TRPMS.2018.2877644
10.2967/jnumed.119.239327
10.1109/ACCESS.2019.2929230
10.1088/0031-9155/41/9/015
10.1038/nature25988
10.1088/0031-9155/54/23/002
10.1109/TMI.2018.2888491
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
DOI 10.1109/TRPMS.2022.3161569
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Nursing & Allied Health Premium

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2469-7303
EndPage 846
ExternalDocumentID 10_1109_TRPMS_2022_3161569
9739753
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
ID FETCH-LOGICAL-c361t-b9dc59912dfa037c92eda45506bdcb0ac7c6edf469837db7f160f0587a79e6133
IEDL.DBID RIE
ISSN 2469-7311
IngestDate Mon Jun 30 18:03:51 EDT 2025
Tue Jul 01 03:04:16 EDT 2025
Thu Apr 24 22:51:27 EDT 2025
Wed Aug 27 02:29:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b9dc59912dfa037c92eda45506bdcb0ac7c6edf469837db7f160f0587a79e6133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2352-0538
0000-0003-1826-5739
0000-0001-9715-4636
PQID 2731238755
PQPubID 4437208
PageCount 6
ParticipantIDs proquest_journals_2731238755
crossref_primary_10_1109_TRPMS_2022_3161569
crossref_citationtrail_10_1109_TRPMS_2022_3161569
ieee_primary_9739753
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on radiation and plasma medical sciences
PublicationTitleAbbrev TRPMS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
Phelps (ref1) 2012
ref21
(ref34) 2021
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref32
  doi: 10.1109/23.552756
– ident: ref19
  doi: 10.1109/TRPMS.2020.3014786
– ident: ref29
  doi: 10.1088/1361-6560/abcd1a
– ident: ref6
  doi: 10.1007/s12149-007-0044-9
– ident: ref13
  doi: 10.1007/s12194-017-0406-5
– ident: ref23
  doi: 10.1016/j.media.2019.03.013
– ident: ref12
  doi: 10.1109/TMI.2003.812249
– ident: ref30
  doi: 10.1016/j.media.2021.102226
– ident: ref4
  doi: 10.1007/s12149-020-01550-y
– ident: ref5
  doi: 10.1109/TRPMS.2020.3000221
– ident: ref9
  doi: 10.1109/TMI.2011.2173766
– ident: ref14
  doi: 10.1016/j.media.2017.07.005
– ident: ref20
  doi: 10.1109/TMI.2018.2869871
– ident: ref27
  doi: 10.1007/s00259-019-04468-4
– ident: ref33
  doi: 10.1145/279232.279236
– ident: ref3
  doi: 10.1371/journal.pone.0081390
– ident: ref7
  doi: 10.1088/0031-9155/47/1/301
– ident: ref21
  doi: 10.1109/TRPMS.2020.3004408
– ident: ref16
  doi: 10.1016/j.neuroimage.2018.03.045
– ident: ref10
  doi: 10.1109/42.52985
– ident: ref25
  doi: 10.1109/TRPMS.2020.3033172
– ident: ref26
  doi: 10.1007/s11263-020-01303-4
– ident: ref24
  doi: 10.1117/1.JMI.7.3.032503
– ident: ref2
  doi: 10.1109/TRPMS.2018.2869936
– ident: ref15
  doi: 10.1007/s12149-021-01611-w
– volume-title: PET: Molecular Imaging and Its Biological Applications
  year: 2012
  ident: ref1
– start-page: 286
  volume-title: Photomultiplier Tubes: Basics and Applications
  year: 2021
  ident: ref34
– ident: ref17
  doi: 10.1109/TRPMS.2018.2877644
– ident: ref18
  doi: 10.2967/jnumed.119.239327
– ident: ref28
  doi: 10.1109/ACCESS.2019.2929230
– ident: ref11
  doi: 10.1088/0031-9155/41/9/015
– ident: ref22
  doi: 10.1038/nature25988
– ident: ref8
  doi: 10.1088/0031-9155/54/23/002
– ident: ref31
  doi: 10.1109/TMI.2018.2888491
SSID ssj0001782945
Score 2.4232938
Snippet Convolutional neural networks (CNNs) have recently achieved remarkable performance in positron emission tomography (PET) image reconstruction. In particular,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 841
SubjectTerms Algorithms
Artificial neural networks
Brain
Deep image prior (DIP)
Deep learning
Fluorine isotopes
forward projection model
Glucose
Image enhancement
Image filters
Image processing
Image reconstruction
Machine learning
Medical imaging
Monte Carlo simulation
Neural networks
Positron emission
Positron emission tomography
positron emission tomography (PET)
Projection model
Reconstruction algorithms
Title PET Image Reconstruction Incorporating Deep Image Prior and a Forward Projection Model
URI https://ieeexplore.ieee.org/document/9739753
https://www.proquest.com/docview/2731238755
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qQfDiq4rVKjl40233neYo2tIKlYKt9LbktSDWbenj4q93kt1tRUW8LUsSlkyS-b7szHwA1wjrdegL6nCpqRPKOHRYivtKC0kRHoWBsFoEg6e4Nw4fJ9GkArebXBittQ0-003zaP_lq5lcm6uyFqOByQPdgR0kbnmu1vY-BV0ds5rEPjI-hwaeV-bIuKw1QhL_jGzQ95GkohM38c1f_JAVVvlxGlsX0z2AQflxeWTJW3O9Ek358a1u43-__hD2C6xJ7vLFcQQVnR3Dro35lMsavAw7I9J_xwOFGBK6LSVL-qa4pS1wjI6NPGg9L9oNF6-zBeGZIpx0ZwsTcYvv7F2O6WeE1aYnMO52Rvc9p5BZcGQQeytHMCUjhIm-SrkbUMl8rbhJdo6FksLlkspYq9RITQZUCZp6sZu6UZtyyjSigeAUqtks02dAmJty1W6LNMIRPD8VwoRkRWGI9ucBa9fBKyc9kUUNciOFMU0sF3FZYg2VGEMlhaHqcLPpM88rcPzZumZmftOymPQ6NErbJsUmXSaI3NBvI2GLzn_vdQF7Zuw89bABVTSDvkQMshJXdvF9AoGl1xs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCMGFHVFWH7hBSnbHRwStWmirSrSot8hbJERpq7Zc-HrGTlIQIMQtiuwk8th-85yZeQAX6Nbr0BfU4VJTJ5Rx6LAM15UWkqJ7FAbCahG0O3GjH94PosESXC1yYbTWNvhMV82l_ZevxvLNHJVdMxqYPNBlWEXcj7w8W-vzRAXBjllVYh85n0MDzyuzZFx23UMa_4h80PeRpiKMmwjnL0hkpVV-7McWZOpb0C4_L48team-zUVVvn-r3Pjf79-GzcLbJDf59NiBJT3ahTUb9Slne_DUrfVI8xW3FGJo6GcxWdI05S1tiWOENnKn9aRo150-j6eEjxThpD6emphbvGdPc0w_I6023Id-vda7bTiF0IIjg9ibO4IpGaGj6KuMuwGVzNeKm3TnWCgpXC6pjLXKjNhkQJWgmRe7mRsllFOm0R8IDmBlNB7pQyDMzbhKEpFF-ATPz4QwQVlRGOIM4AFLKuCVg57Kogq5EcMYppaNuCy1hkqNodLCUBW4XPSZ5DU4_my9Z0Z-0bIY9AqclLZNi2U6S9F3Q-RGyhYd_d7rHNYbvXYrbTU7D8ewYd6TJyKewAqaRJ-iRzIXZ3YifgDlm9pk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PET+Image+Reconstruction+Incorporating+Deep+Image+Prior+and+a+Forward+Projection+Model&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Hashimoto%2C+Fumio&rft.au=Ote%2C+Kibo&rft.au=Onishi%2C+Yuya&rft.date=2022-11-01&rft.issn=2469-7311&rft.eissn=2469-7303&rft.volume=6&rft.issue=8&rft.spage=841&rft.epage=846&rft_id=info:doi/10.1109%2FTRPMS.2022.3161569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRPMS_2022_3161569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon