PET Image Reconstruction Incorporating Deep Image Prior and a Forward Projection Model
Convolutional neural networks (CNNs) have recently achieved remarkable performance in positron emission tomography (PET) image reconstruction. In particular, CNN-based PET image reconstruction, which directly generates the reconstructed image from a sinogram, has potential applicability in PET image...
Saved in:
Published in | IEEE transactions on radiation and plasma medical sciences Vol. 6; no. 8; pp. 841 - 846 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Convolutional neural networks (CNNs) have recently achieved remarkable performance in positron emission tomography (PET) image reconstruction. In particular, CNN-based PET image reconstruction, which directly generates the reconstructed image from a sinogram, has potential applicability in PET image enhancement because it does not require image reconstruction algorithms, which often produce artifacts. However, these deep learning-based PET image reconstruction algorithms have the disadvantage that they require a large number of high-quality training datasets. In this study, we propose an unsupervised PET image reconstruction method that incorporates a deep image prior (DIP) framework. Our proposed method incorporates a forward projection model with a loss function to achieve unsupervised PET image reconstruction from sinograms. To compare our proposed image reconstruction method with filtered back projection (FBP), maximum-likelihood expectation-maximization (ML-EM), and the other DIP-based reconstruction algorithm, we evaluated our method using Monte Carlo simulation data of a brain [18F]fluoro-2-deoxy-D-glucose (FDG) PET scan and real data of a rhesus monkey brain [18F]FDG PET scan. The results demonstrate that our proposed image reconstruction method quantitatively and qualitatively outperforms the FBP and ML-EM algorithms; furthermore, it showed comparable performance and faster calculation time compared to the other DIP-based image reconstruction method. |
---|---|
AbstractList | Convolutional neural networks (CNNs) have recently achieved remarkable performance in positron emission tomography (PET) image reconstruction. In particular, CNN-based PET image reconstruction, which directly generates the reconstructed image from a sinogram, has potential applicability in PET image enhancement because it does not require image reconstruction algorithms, which often produce artifacts. However, these deep learning-based PET image reconstruction algorithms have the disadvantage that they require a large number of high-quality training datasets. In this study, we propose an unsupervised PET image reconstruction method that incorporates a deep image prior (DIP) framework. Our proposed method incorporates a forward projection model with a loss function to achieve unsupervised PET image reconstruction from sinograms. To compare our proposed image reconstruction method with filtered back projection (FBP), maximum-likelihood expectation–maximization (ML-EM), and the other DIP-based reconstruction algorithm, we evaluated our method using Monte Carlo simulation data of a brain [18F]fluoro-2-deoxy-D-glucose (FDG) PET scan and real data of a rhesus monkey brain [18F]FDG PET scan. The results demonstrate that our proposed image reconstruction method quantitatively and qualitatively outperforms the FBP and ML-EM algorithms; furthermore, it showed comparable performance and faster calculation time compared to the other DIP-based image reconstruction method. |
Author | Ote, Kibo Onishi, Yuya Hashimoto, Fumio |
Author_xml | – sequence: 1 givenname: Fumio orcidid: 0000-0003-2352-0538 surname: Hashimoto fullname: Hashimoto, Fumio email: fumio.hashimoto@crl.hpk.co.jp organization: Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan – sequence: 2 givenname: Kibo orcidid: 0000-0003-1826-5739 surname: Ote fullname: Ote, Kibo email: kibou@crl.hpk.co.jp organization: Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan – sequence: 3 givenname: Yuya orcidid: 0000-0001-9715-4636 surname: Onishi fullname: Onishi, Yuya email: yuya.onishi@hpk.co.jp organization: Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan |
BookMark | eNp9kE9PAjEQxRuDiYh8Ab1s4hnsH9pujwZBSSASRK9Nt50lS6Bdu0uM397FJRw8eJrJ5P1m5r1r1PHBA0K3BA8JwephvVou3oYUUzpkRBAu1AXq0pFQA8kw65x7Qq5Qv6q2GGMiU6pGvIs-lpN1MtubDSQrsMFXdTzYugg-mXkbYhmiqQu_SZ4AypNuGYsQE-NdYpJpiF8mumYWttByi-Bgd4Muc7OroH-qPfQ-nazHL4P56_Ns_DgfWCZIPciUs1wpQl1uMJNWUXBmxDkWmbMZNlZaAS5v3k-ZdJnMicA55qk0UoEgjPXQfbu3jOHzAFWtt-EQfXNS08YwZankvFHRVmVjqKoIuS5jsTfxWxOsjxHq3wj1MUJ9irCB0j-QLWpztFhHU-z-R-9atACA8y0lmZKcsR8I3YCq |
CODEN | ITRPFI |
CitedBy_id | crossref_primary_10_1093_bjrai_ubae013 crossref_primary_10_1007_s12149_023_01862_9 crossref_primary_10_1088_1361_6560_ace49c crossref_primary_10_1088_1748_0221_19_01_C01001 crossref_primary_10_1007_s11042_023_17326_1 crossref_primary_10_1007_s12194_024_00831_9 crossref_primary_10_1177_14727978251319398 crossref_primary_10_1109_TRPMS_2024_3441526 crossref_primary_10_3390_s23135783 crossref_primary_10_1109_TRPMS_2023_3280674 crossref_primary_10_1109_ACCESS_2024_3510600 crossref_primary_10_1088_1361_6560_ada717 crossref_primary_10_1016_j_media_2024_103180 crossref_primary_10_1109_TMI_2023_3239596 crossref_primary_10_6009_jjrt_2024_2365 crossref_primary_10_1007_s12194_024_00780_3 crossref_primary_10_1109_TRPMS_2023_3280907 crossref_primary_10_1088_1361_6560_ad40f6 crossref_primary_10_3389_fradi_2024_1466498 crossref_primary_10_1259_bjr_20230292 crossref_primary_10_1109_TIM_2024_3369160 |
Cites_doi | 10.1109/23.552756 10.1109/TRPMS.2020.3014786 10.1088/1361-6560/abcd1a 10.1007/s12149-007-0044-9 10.1007/s12194-017-0406-5 10.1016/j.media.2019.03.013 10.1109/TMI.2003.812249 10.1016/j.media.2021.102226 10.1007/s12149-020-01550-y 10.1109/TRPMS.2020.3000221 10.1109/TMI.2011.2173766 10.1016/j.media.2017.07.005 10.1109/TMI.2018.2869871 10.1007/s00259-019-04468-4 10.1145/279232.279236 10.1371/journal.pone.0081390 10.1088/0031-9155/47/1/301 10.1109/TRPMS.2020.3004408 10.1016/j.neuroimage.2018.03.045 10.1109/42.52985 10.1109/TRPMS.2020.3033172 10.1007/s11263-020-01303-4 10.1117/1.JMI.7.3.032503 10.1109/TRPMS.2018.2869936 10.1007/s12149-021-01611-w 10.1109/TRPMS.2018.2877644 10.2967/jnumed.119.239327 10.1109/ACCESS.2019.2929230 10.1088/0031-9155/41/9/015 10.1038/nature25988 10.1088/0031-9155/54/23/002 10.1109/TMI.2018.2888491 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7QO 8FD F28 FR3 K9. NAPCQ P64 |
DOI | 10.1109/TRPMS.2022.3161569 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Biotechnology Research Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database ANTE: Abstracts in New Technology & Engineering Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2469-7303 |
EndPage | 846 |
ExternalDocumentID | 10_1109_TRPMS_2022_3161569 9739753 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION RIG 7QO 8FD F28 FR3 K9. NAPCQ P64 |
ID | FETCH-LOGICAL-c361t-b9dc59912dfa037c92eda45506bdcb0ac7c6edf469837db7f160f0587a79e6133 |
IEDL.DBID | RIE |
ISSN | 2469-7311 |
IngestDate | Mon Jun 30 18:03:51 EDT 2025 Tue Jul 01 03:04:16 EDT 2025 Thu Apr 24 22:51:27 EDT 2025 Wed Aug 27 02:29:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-b9dc59912dfa037c92eda45506bdcb0ac7c6edf469837db7f160f0587a79e6133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2352-0538 0000-0003-1826-5739 0000-0001-9715-4636 |
PQID | 2731238755 |
PQPubID | 4437208 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2731238755 crossref_primary_10_1109_TRPMS_2022_3161569 crossref_citationtrail_10_1109_TRPMS_2022_3161569 ieee_primary_9739753 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on radiation and plasma medical sciences |
PublicationTitleAbbrev | TRPMS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 Phelps (ref1) 2012 ref21 (ref34) 2021 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref32 doi: 10.1109/23.552756 – ident: ref19 doi: 10.1109/TRPMS.2020.3014786 – ident: ref29 doi: 10.1088/1361-6560/abcd1a – ident: ref6 doi: 10.1007/s12149-007-0044-9 – ident: ref13 doi: 10.1007/s12194-017-0406-5 – ident: ref23 doi: 10.1016/j.media.2019.03.013 – ident: ref12 doi: 10.1109/TMI.2003.812249 – ident: ref30 doi: 10.1016/j.media.2021.102226 – ident: ref4 doi: 10.1007/s12149-020-01550-y – ident: ref5 doi: 10.1109/TRPMS.2020.3000221 – ident: ref9 doi: 10.1109/TMI.2011.2173766 – ident: ref14 doi: 10.1016/j.media.2017.07.005 – ident: ref20 doi: 10.1109/TMI.2018.2869871 – ident: ref27 doi: 10.1007/s00259-019-04468-4 – ident: ref33 doi: 10.1145/279232.279236 – ident: ref3 doi: 10.1371/journal.pone.0081390 – ident: ref7 doi: 10.1088/0031-9155/47/1/301 – ident: ref21 doi: 10.1109/TRPMS.2020.3004408 – ident: ref16 doi: 10.1016/j.neuroimage.2018.03.045 – ident: ref10 doi: 10.1109/42.52985 – ident: ref25 doi: 10.1109/TRPMS.2020.3033172 – ident: ref26 doi: 10.1007/s11263-020-01303-4 – ident: ref24 doi: 10.1117/1.JMI.7.3.032503 – ident: ref2 doi: 10.1109/TRPMS.2018.2869936 – ident: ref15 doi: 10.1007/s12149-021-01611-w – volume-title: PET: Molecular Imaging and Its Biological Applications year: 2012 ident: ref1 – start-page: 286 volume-title: Photomultiplier Tubes: Basics and Applications year: 2021 ident: ref34 – ident: ref17 doi: 10.1109/TRPMS.2018.2877644 – ident: ref18 doi: 10.2967/jnumed.119.239327 – ident: ref28 doi: 10.1109/ACCESS.2019.2929230 – ident: ref11 doi: 10.1088/0031-9155/41/9/015 – ident: ref22 doi: 10.1038/nature25988 – ident: ref8 doi: 10.1088/0031-9155/54/23/002 – ident: ref31 doi: 10.1109/TMI.2018.2888491 |
SSID | ssj0001782945 |
Score | 2.4232938 |
Snippet | Convolutional neural networks (CNNs) have recently achieved remarkable performance in positron emission tomography (PET) image reconstruction. In particular,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 841 |
SubjectTerms | Algorithms Artificial neural networks Brain Deep image prior (DIP) Deep learning Fluorine isotopes forward projection model Glucose Image enhancement Image filters Image processing Image reconstruction Machine learning Medical imaging Monte Carlo simulation Neural networks Positron emission Positron emission tomography positron emission tomography (PET) Projection model Reconstruction algorithms |
Title | PET Image Reconstruction Incorporating Deep Image Prior and a Forward Projection Model |
URI | https://ieeexplore.ieee.org/document/9739753 https://www.proquest.com/docview/2731238755 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qQfDiq4rVKjl40233neYo2tIKlYKt9LbktSDWbenj4q93kt1tRUW8LUsSlkyS-b7szHwA1wjrdegL6nCpqRPKOHRYivtKC0kRHoWBsFoEg6e4Nw4fJ9GkArebXBittQ0-003zaP_lq5lcm6uyFqOByQPdgR0kbnmu1vY-BV0ds5rEPjI-hwaeV-bIuKw1QhL_jGzQ95GkohM38c1f_JAVVvlxGlsX0z2AQflxeWTJW3O9Ek358a1u43-__hD2C6xJ7vLFcQQVnR3Dro35lMsavAw7I9J_xwOFGBK6LSVL-qa4pS1wjI6NPGg9L9oNF6-zBeGZIpx0ZwsTcYvv7F2O6WeE1aYnMO52Rvc9p5BZcGQQeytHMCUjhIm-SrkbUMl8rbhJdo6FksLlkspYq9RITQZUCZp6sZu6UZtyyjSigeAUqtks02dAmJty1W6LNMIRPD8VwoRkRWGI9ucBa9fBKyc9kUUNciOFMU0sF3FZYg2VGEMlhaHqcLPpM88rcPzZumZmftOymPQ6NErbJsUmXSaI3NBvI2GLzn_vdQF7Zuw89bABVTSDvkQMshJXdvF9AoGl1xs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCMGFHVFWH7hBSnbHRwStWmirSrSot8hbJERpq7Zc-HrGTlIQIMQtiuwk8th-85yZeQAX6Nbr0BfU4VJTJ5Rx6LAM15UWkqJ7FAbCahG0O3GjH94PosESXC1yYbTWNvhMV82l_ZevxvLNHJVdMxqYPNBlWEXcj7w8W-vzRAXBjllVYh85n0MDzyuzZFx23UMa_4h80PeRpiKMmwjnL0hkpVV-7McWZOpb0C4_L48team-zUVVvn-r3Pjf79-GzcLbJDf59NiBJT3ahTUb9Slne_DUrfVI8xW3FGJo6GcxWdI05S1tiWOENnKn9aRo150-j6eEjxThpD6emphbvGdPc0w_I6023Id-vda7bTiF0IIjg9ibO4IpGaGj6KuMuwGVzNeKm3TnWCgpXC6pjLXKjNhkQJWgmRe7mRsllFOm0R8IDmBlNB7pQyDMzbhKEpFF-ATPz4QwQVlRGOIM4AFLKuCVg57Kogq5EcMYppaNuCy1hkqNodLCUBW4XPSZ5DU4_my9Z0Z-0bIY9AqclLZNi2U6S9F3Q-RGyhYd_d7rHNYbvXYrbTU7D8ewYd6TJyKewAqaRJ-iRzIXZ3YifgDlm9pk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PET+Image+Reconstruction+Incorporating+Deep+Image+Prior+and+a+Forward+Projection+Model&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Hashimoto%2C+Fumio&rft.au=Ote%2C+Kibo&rft.au=Onishi%2C+Yuya&rft.date=2022-11-01&rft.issn=2469-7311&rft.eissn=2469-7303&rft.volume=6&rft.issue=8&rft.spage=841&rft.epage=846&rft_id=info:doi/10.1109%2FTRPMS.2022.3161569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRPMS_2022_3161569 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon |