R-CNN-Based Ship Detection from High Resolution Remote Sensing Imagery
Offshore and inland river ship detection has been studied on both synthetic aperture radar (SAR) and optical remote sensing imagery. However, the classic ship detection methods based on SAR images can cause a high false alarm ratio and be influenced by the sea surface model, especially on inland riv...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 6; p. 631 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Offshore and inland river ship detection has been studied on both synthetic aperture radar (SAR) and optical remote sensing imagery. However, the classic ship detection methods based on SAR images can cause a high false alarm ratio and be influenced by the sea surface model, especially on inland rivers and in offshore areas. The classic detection methods based on optical images do not perform well on small and gathering ships. This paper adopts the idea of deep networks and presents a fast regional-based convolutional neural network (R-CNN) method to detect ships from high-resolution remote sensing imagery. First, we choose GaoFen-2 optical remote sensing images with a resolution of 1 m and preprocess the images with a support vector machine (SVM) to divide the large detection area into small regions of interest (ROI) that may contain ships. Then, we apply ship detection algorithms based on a region-based convolutional neural network (R-CNN) on ROI images. To improve the detection result of small and gathering ships, we adopt an effective target detection framework, Faster-RCNN, and improve the structure of its original convolutional neural network (CNN), VGG16, by using multiresolution convolutional features and performing ROI pooling on a larger feature map in a region proposal network (RPN). Finally, we compare the most effective classic ship detection method, the deformable part model (DPM), another two widely used target detection frameworks, the single shot multibox detector (SSD) and YOLOv2, the original VGG16-based Faster-RCNN, and our improved Faster-RCNN. Experimental results show that our improved Faster-RCNN method achieves a higher recall and accuracy for small ships and gathering ships. Therefore, it provides a very effective method for offshore and inland river ship detection based on high-resolution remote sensing imagery. |
---|---|
AbstractList | Offshore and inland river ship detection has been studied on both synthetic aperture radar (SAR) and optical remote sensing imagery. However, the classic ship detection methods based on SAR images can cause a high false alarm ratio and be influenced by the sea surface model, especially on inland rivers and in offshore areas. The classic detection methods based on optical images do not perform well on small and gathering ships. This paper adopts the idea of deep networks and presents a fast regional-based convolutional neural network (R-CNN) method to detect ships from high-resolution remote sensing imagery. First, we choose GaoFen-2 optical remote sensing images with a resolution of 1 m and preprocess the images with a support vector machine (SVM) to divide the large detection area into small regions of interest (ROI) that may contain ships. Then, we apply ship detection algorithms based on a region-based convolutional neural network (R-CNN) on ROI images. To improve the detection result of small and gathering ships, we adopt an effective target detection framework, Faster-RCNN, and improve the structure of its original convolutional neural network (CNN), VGG16, by using multiresolution convolutional features and performing ROI pooling on a larger feature map in a region proposal network (RPN). Finally, we compare the most effective classic ship detection method, the deformable part model (DPM), another two widely used target detection frameworks, the single shot multibox detector (SSD) and YOLOv2, the original VGG16-based Faster-RCNN, and our improved Faster-RCNN. Experimental results show that our improved Faster-RCNN method achieves a higher recall and accuracy for small ships and gathering ships. Therefore, it provides a very effective method for offshore and inland river ship detection based on high-resolution remote sensing imagery. |
Author | Zhang, Shaoming Wang, Jianmei Xu, Kunyuan Wu, Ruize Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Shaoming surname: Zhang fullname: Zhang, Shaoming – sequence: 2 givenname: Ruize surname: Wu fullname: Wu, Ruize – sequence: 3 givenname: Kunyuan surname: Xu fullname: Xu, Kunyuan – sequence: 4 givenname: Jianmei surname: Wang fullname: Wang, Jianmei – sequence: 5 givenname: Weiwei surname: Sun fullname: Sun, Weiwei |
BookMark | eNptkE1PwzAMhiMEEjC48AsqcUMq2EmbNUcYX5MQSBucozR1RqatGUl34N_TMQQI4Yst6_Vr-zlku21oibEThHMhFFzEhAgSpMAddsBhyPOCK777q95nxynNoQ8hUEFxwG4n-ejxMb8yiZps-upX2TV1ZDsf2szFsMzu_ew1m1AKi_Vnc0LL0FE2pTb5dpaNl2ZG8f2I7TmzSHT8lQfs5fbmeXSfPzzdjUeXD7kVEru8FmrIpVUEtsaqHKIreeUQqCLLDfES6v4BskYYKsrGStdwrC0WZCSqqhYDNt76NsHM9Sr6pYnvOhivPxshzrSJnbcL0hWgAygVyqYqCJTqKTiioXW1wbKSvdfp1msVw9uaUqfnYR3b_nzNBRSAXPacBuxsq7IxpBTJfW9F0Bvs-gd7L4Y_Yus7s-HWReMX_418AOfAg_o |
CitedBy_id | crossref_primary_10_3389_frai_2025_1508664 crossref_primary_10_1109_JSTARS_2021_3123080 crossref_primary_10_3390_rs13193933 crossref_primary_10_1155_2022_3391391 crossref_primary_10_1155_2020_4813183 crossref_primary_10_1109_TGRS_2020_3002850 crossref_primary_10_1109_JSTARS_2020_2993731 crossref_primary_10_1080_22797254_2024_2307613 crossref_primary_10_3390_s23052424 crossref_primary_10_3390_rs13030364 crossref_primary_10_1109_JSTARS_2021_3137811 crossref_primary_10_3390_rs14071544 crossref_primary_10_3390_jmse13020366 crossref_primary_10_3390_rs11182173 crossref_primary_10_3390_rs11101206 crossref_primary_10_3390_rs14215331 crossref_primary_10_3390_s19132941 crossref_primary_10_1016_j_engappai_2023_107742 crossref_primary_10_3389_fmars_2022_861395 crossref_primary_10_3390_math13010165 crossref_primary_10_3390_jmse11010191 crossref_primary_10_3390_app13042078 crossref_primary_10_3390_jmse11071259 crossref_primary_10_1109_JSTARS_2024_3514898 crossref_primary_10_3390_rs14246245 crossref_primary_10_1109_TGRS_2022_3180894 crossref_primary_10_3390_drones6010019 crossref_primary_10_3390_rs13163168 crossref_primary_10_3390_rs13234840 crossref_primary_10_3390_rs14215297 crossref_primary_10_32604_cmc_2023_044735 crossref_primary_10_3390_rs14236053 crossref_primary_10_1080_2150704X_2020_1820612 crossref_primary_10_1109_TGRS_2021_3051641 crossref_primary_10_1109_ACCESS_2020_2985637 crossref_primary_10_3390_jmse11101916 crossref_primary_10_3390_rs11232862 crossref_primary_10_1088_1742_6596_1611_1_012061 crossref_primary_10_3390_rs12091435 crossref_primary_10_3390_rs13163192 crossref_primary_10_1109_ACCESS_2019_2958264 crossref_primary_10_3389_fmars_2023_1113669 crossref_primary_10_1109_TGRS_2020_2995477 crossref_primary_10_3390_w12082258 crossref_primary_10_3390_s20174938 crossref_primary_10_3390_electronics11050739 crossref_primary_10_1016_j_eswa_2023_119588 crossref_primary_10_17714_gumusfenbil_1012519 crossref_primary_10_1016_j_jag_2023_103496 crossref_primary_10_1007_s40747_022_00683_z crossref_primary_10_3390_rs15082008 crossref_primary_10_3390_rs12020339 crossref_primary_10_3390_jmse11020452 crossref_primary_10_3390_jmse11091700 crossref_primary_10_1016_j_engappai_2023_107332 crossref_primary_10_5194_essd_15_3547_2023 crossref_primary_10_3390_electronics9091459 crossref_primary_10_1007_s11042_024_18866_w crossref_primary_10_3390_rs14092177 crossref_primary_10_1109_TGRS_2020_3008993 crossref_primary_10_1117_1_JRS_18_036510 crossref_primary_10_33298_2226_8553_2024_1_39_16 crossref_primary_10_3390_s20102931 crossref_primary_10_1007_s10044_024_01333_5 crossref_primary_10_3389_fmars_2023_1112955 crossref_primary_10_4236_ojapps_2023_134045 crossref_primary_10_1007_s12601_024_00141_6 crossref_primary_10_1109_ACCESS_2019_2962513 crossref_primary_10_3390_rs12183053 crossref_primary_10_1109_JSTARS_2022_3227322 crossref_primary_10_1109_TIP_2022_3231058 crossref_primary_10_1016_j_oceaneng_2024_117552 crossref_primary_10_1016_j_asr_2024_10_028 crossref_primary_10_1109_TGRS_2022_3160617 crossref_primary_10_3390_rs14195048 crossref_primary_10_1016_j_scitotenv_2022_160363 crossref_primary_10_1016_j_srs_2025_100202 crossref_primary_10_1080_01431161_2020_1811422 crossref_primary_10_3390_rs16081444 crossref_primary_10_1080_17445302_2024_2365019 crossref_primary_10_14358_PERS_22_00086R2 crossref_primary_10_3390_rs14236092 crossref_primary_10_1093_jcde_qwab053 crossref_primary_10_3390_rs14143441 crossref_primary_10_3390_rs13214255 crossref_primary_10_3390_rs12071196 crossref_primary_10_3390_rs13112155 crossref_primary_10_3390_rs16050733 crossref_primary_10_1109_JSTARS_2024_3359252 crossref_primary_10_3390_jimaging10120303 crossref_primary_10_1016_j_jvcir_2020_102985 crossref_primary_10_3390_rs12020246 crossref_primary_10_1109_ACCESS_2019_2951030 crossref_primary_10_1109_TGRS_2019_2963243 crossref_primary_10_34133_2021_9824843 crossref_primary_10_3390_rs14010141 crossref_primary_10_3390_jmse9090932 crossref_primary_10_1109_TGRS_2022_3227938 crossref_primary_10_3390_rs14215476 crossref_primary_10_32604_csse_2023_024997 crossref_primary_10_3390_jmse12071180 crossref_primary_10_3390_w14213400 crossref_primary_10_1016_j_cja_2020_09_022 crossref_primary_10_1016_j_sigpro_2024_109488 crossref_primary_10_3233_MGS_200330 crossref_primary_10_1049_ipr2_12959 crossref_primary_10_3390_ijgi11080445 crossref_primary_10_3390_rs15081999 crossref_primary_10_3390_rs11131529 crossref_primary_10_1109_JSTARS_2024_3486922 crossref_primary_10_1016_j_rsase_2023_101025 crossref_primary_10_1109_MGRS_2023_3312347 |
Cites_doi | 10.1007/s11760-016-0879-4 10.7780/kjrs.2017.33.1.9 10.1007/s11432-017-9405-6 10.1109/LGRS.2016.2618385 10.1109/TGRS.2014.2335751 10.1109/TGRS.2013.2282355 10.1109/IGARSS.2017.8127693 10.3390/app7090961 10.3390/ijgi6060159 10.1109/TGRS.2010.2046330 10.1109/ICIG.2011.19 10.1109/JSTARS.2014.2329330 10.1109/RSIP.2017.7958815 10.1109/TPAMI.2016.2577031 10.1109/LGRS.2014.2307952 10.1109/CVPR.2017.690 10.1007/978-3-319-46448-0_2 10.1109/LGRS.2016.2618604 10.1109/LGRS.2012.2214022 10.1109/LGRS.2013.2272492 10.1109/TGRS.2003.811998 10.1109/36.508418 10.1109/TGRS.2014.2374218 10.1109/CVPR.2008.4587597 10.12783/dtcse/aita2016/7564 10.1109/IGARSS.2013.6723202 10.1007/BF00994018 10.1016/j.isprsjprs.2013.08.001 10.1007/978-3-319-10590-1_53 10.1007/s12524-018-0787-x 10.1109/TGRS.2008.2006504 10.3390/rs10030400 10.1109/LGRS.2014.2309695 10.1109/TGRS.2013.2282820 10.1109/IGARSS.2016.7729017 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs11060631 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_801f005916d84e099207fee7cfba1586 10_3390_rs11060631 |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-b39726c9e0cb18571f528f10e8ec2ae250b060eca3ae45dc6fd21bc14ea6198b3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:28:14 EDT 2025 Fri Jul 25 12:09:32 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Tue Jul 01 04:14:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-b39726c9e0cb18571f528f10e8ec2ae250b060eca3ae45dc6fd21bc14ea6198b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/801f005916d84e099207fee7cfba1586 |
PQID | 2304012600 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_801f005916d84e099207fee7cfba1586 proquest_journals_2304012600 crossref_primary_10_3390_rs11060631 crossref_citationtrail_10_3390_rs11060631 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cui (ref_2) 2014; 11 Cortes (ref_18) 1995; 20 Wang (ref_7) 2016; 10 Liu (ref_25) 2014; 11 Chen (ref_28) 2014; 11 An (ref_3) 2014; 52 ref_14 Pan (ref_40) 2015; 1 Liu (ref_22) 2013; 10 ref_35 Dai (ref_10) 2016; 13 ref_34 ref_11 ref_33 ref_32 ref_31 Tang (ref_36) 2015; 53 Gao (ref_9) 2009; 47 ref_19 ref_39 ref_16 Chen (ref_27) 2014; 7 ref_38 Zhao (ref_13) 2019; 62 Shi (ref_26) 2014; 52 Eldhuset (ref_6) 1996; 34 Han (ref_29) 2015; 53 Hong (ref_17) 2006; 33 Zeng (ref_1) 2015; 58 Cheng (ref_21) 2013; 85 Ma (ref_12) 2015; 58 ref_23 ref_45 ref_44 Li (ref_15) 2016; 13 ref_43 Dalar (ref_20) 2005; 1 ref_42 ref_41 Wang (ref_30) 2018; 4 Kuo (ref_4) 2003; 41 Hwang (ref_8) 2017; 33 Zhu (ref_24) 2010; 48 ref_5 Ren (ref_37) 2016; 39 |
References_xml | – volume: 58 start-page: 1 year: 2015 ident: ref_12 article-title: A waterborne salient ship detection method on SAR imagery publication-title: Sci. China Inf. Sci. – volume: 10 start-page: 1219 year: 2016 ident: ref_7 article-title: Adaptive ship detection in SAR images using variance WIE-based method publication-title: Signal Image Video Process doi: 10.1007/s11760-016-0879-4 – ident: ref_5 – volume: 1 start-page: 3 year: 2015 ident: ref_40 article-title: The technical characteristics of GaoFen-2 satellite publication-title: Aerosp. China – volume: 33 start-page: 89 year: 2017 ident: ref_8 article-title: An efficient ship detection method for KOMPSAT-5 synthetic aperture radar imagery based on adaptive filtering approach publication-title: Korean J. Remote Sens. doi: 10.7780/kjrs.2017.33.1.9 – volume: 62 start-page: 42301 year: 2019 ident: ref_13 article-title: A coupled convolutional neural network for small and densely clustered ship detection in SAR images publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-017-9405-6 – volume: 13 start-page: 1920 year: 2016 ident: ref_15 article-title: A Novel Inshore Ship Detection via Ship Head Classification and Body Boundary Determination publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2618385 – volume: 53 start-page: 1174 year: 2015 ident: ref_36 article-title: Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2335751 – volume: 52 start-page: 4511 year: 2014 ident: ref_26 article-title: Ship Detection in High-Resolution Optical Imagery Based on Anomaly Detector and Local Shape Feature publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2282355 – ident: ref_34 doi: 10.1109/IGARSS.2017.8127693 – ident: ref_31 doi: 10.3390/app7090961 – ident: ref_16 doi: 10.3390/ijgi6060159 – volume: 48 start-page: 3446 year: 2010 ident: ref_24 article-title: A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2046330 – ident: ref_14 doi: 10.1109/ICIG.2011.19 – volume: 7 start-page: 2094 year: 2014 ident: ref_27 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2329330 – ident: ref_32 doi: 10.1109/RSIP.2017.7958815 – volume: 39 start-page: 1137 year: 2016 ident: ref_37 article-title: Faster-RCNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 11 start-page: 1752 year: 2014 ident: ref_2 article-title: A Comparative Study of Statistical Models for Multilook SAR Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2307952 – ident: ref_42 – ident: ref_44 – ident: ref_45 doi: 10.1109/CVPR.2017.690 – volume: 33 start-page: 273 year: 2006 ident: ref_17 article-title: Fast ship detection based on multi-threshold image segmentation publication-title: Comput. Sci. – ident: ref_41 doi: 10.1007/978-3-319-46448-0_2 – volume: 58 start-page: 1 year: 2015 ident: ref_1 article-title: A novel subsidence monitoring technique based on space-surface bistatic differential interferometry using GNSS as transmitters publication-title: Sci. China Inf. Sci. – volume: 13 start-page: 1925 year: 2016 ident: ref_10 article-title: A modified CFAR algorithm based on object proposals for ship target detection in SAR images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2618604 – volume: 10 start-page: 573 year: 2013 ident: ref_22 article-title: Aircraft recognition in high-resolution satellite images using coarse-to-fine shape prior publication-title: Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2012.2214022 – volume: 11 start-page: 617 year: 2014 ident: ref_25 article-title: A New Method on Inshore Ship Detection in High-Resolution Satellite Images Using Shape and Context Information publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2272492 – volume: 41 start-page: 1506 year: 2003 ident: ref_4 article-title: The Application of Wavelets Correlator for Ship Wake Detection in SAR Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.811998 – volume: 34 start-page: 1010 year: 1996 ident: ref_6 article-title: An Automatic Ship and Ship Wake Detection System for Spaceborne SAR Images in Coastal Regions publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.508418 – volume: 53 start-page: 3325 year: 2015 ident: ref_29 article-title: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2374218 – ident: ref_23 doi: 10.1109/CVPR.2008.4587597 – ident: ref_35 doi: 10.12783/dtcse/aita2016/7564 – ident: ref_11 doi: 10.1109/IGARSS.2013.6723202 – volume: 20 start-page: 273 year: 1995 ident: ref_18 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 85 start-page: 32 year: 2013 ident: ref_21 article-title: Object detection in remote sensing imagery using a discriminatively trained mixture model publication-title: J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.08.001 – ident: ref_38 – ident: ref_39 doi: 10.1007/978-3-319-10590-1_53 – volume: 4 start-page: 1413 year: 2018 ident: ref_30 article-title: Study on the Combined Application of CFAR and Deep Learning in Ship Detection publication-title: J. Indian Soc. Remote Sens. doi: 10.1007/s12524-018-0787-x – volume: 47 start-page: 1685 year: 2009 ident: ref_9 article-title: An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2006504 – ident: ref_19 doi: 10.3390/rs10030400 – volume: 11 start-page: 1797 year: 2014 ident: ref_28 article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/LGRS.2014.2309695 – ident: ref_43 – volume: 1 start-page: 886 year: 2005 ident: ref_20 article-title: Histograms of Oriented Gradients for Human Detection publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 52 start-page: 4585 year: 2014 ident: ref_3 article-title: An Improved Iterative Censoring Scheme for CFAR Ship Detection with SAR Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2282820 – ident: ref_33 doi: 10.1109/IGARSS.2016.7729017 |
SSID | ssj0000331904 |
Score | 2.5342915 |
Snippet | Offshore and inland river ship detection has been studied on both synthetic aperture radar (SAR) and optical remote sensing imagery. However, the classic ship... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 631 |
SubjectTerms | Algorithms Artificial neural networks Deep learning Deformation effects Detection Earth science False alarms Feature maps Formability GaoFen-2 remote sensing image gathering ship High resolution Image detection Image resolution Methods Neural networks Pattern recognition regional convolutional neural network Remote sensing Rivers ship detection Ships small ship Support vector machines Synthetic aperture radar Target detection |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDI1gO8AF8SkGA0WCC4eIps3a7ITYYBpITIgxiVvVJA5Dgm5s47B_j9NmmxCIW9XmEtuxn13nmZBz9PoAlmsWZJlkwmqLflBYBpEAHgZKauFuIz_04u5A3L80XnzBberbKhc-sXDUZqRdjfzSFS_RmWJ8vhp_Mjc1yv1d9SM01kkVXbCUFVJt3fYen5ZVliBCEwtEyUsaYX5_OZliwEPUHvEfkagg7P_lj4sg09kmWx4d0utSnTtkDfJdsuEHlQ_ne6TzxNq9Hmth7DG0P3wb0xuYFd1UOXU3Rajr26CuJl9aFD6iLoD2XZ96_krvPhxnxXyfDDq3z-0u86MQmI5iPmMKYUMY6yYEWjn2Jm4bobQ8AAk6zABxjMJNgc6iDETD6NiakCvNBWSYIUkVHZBKPsrhkFCpLCAqFEqGTWEgQSUalSSYdpnYgAxr5GIhllR7nnA3ruI9xXzBiTBdibBGzpZrxyU7xp-rWk66yxWO0bp4MZq8pv6ApBgprbsJy2MjBSBuDYPEAiTaqow3ZFwj9YVuUn_MpunKKI7-_3xMNhHpNMvmsTqpzCZfcIJoYqZOvcl8A3nryX8 priority: 102 providerName: ProQuest |
Title | R-CNN-Based Ship Detection from High Resolution Remote Sensing Imagery |
URI | https://www.proquest.com/docview/2304012600 https://doaj.org/article/801f005916d84e099207fee7cfba1586 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60HvQiPrFay4JePIRmk22yPfZpFRuktdBbyG5mraCxtPHQf-9sktaKghdPCWEgyczuzDfLzDeEXKPXB9BMWXYUCYtrpdEPcm2By4E5thSKm27kQeD1x_x-Up9sjPoyNWE5PXCuuBp6UG06JJkXCw6IZxzb1wC-0jJidZGRbWPM20imMh_s4tKyec5H6mJeX5svMNAhWnfZtwiUEfX_8MNZcOkdkP0CFdJm_jWHZAuSI7JbDCifLo9Jb2i1g8BqYcyJ6Wj6MqMdSLMqqoSaDhFq6jWoOYvPVxLeog2Ajkx9evJM794MV8XyhIx73ad23ypGIFjK9VhqSYQLjqcaYCtpWJuYrjtCMxsEKCcCxC8SfwpU5EbA67HydOwwqRiHCDMjId1TUkreEzgjVEgNiAa5FE6Dx-Cj8WLp-5huxV4MwimTm5VaQlXwg5sxFa8h5glGheGXCsvkai07y1kxfpVqGe2uJQyTdfYA7RsW9g3_sm-ZVFa2CYvttQjNSTZGVgRr5__xjguyhziokZeWVUgpnX_AJWKNVFbJtujdVslOszN4GOG11Q0eh9VssX0CS6TURw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigXxFMEClgCDhys2l5n1zkg1AchoW0OtJV6W9becYsEm5AEofwpfmNn9pEKgbj1tlpbPow_zzdjzwPgNWl9xKiDVEXhpI0hkh60UWJiURvlXbCcjXw8SUdn9tN5_3wDfne5MBxW2enEWlGX08B35Dt8eUnKlPj5_eyH5K5R_LratdBoYHGIq1_ksi3ejQ9of98YM_xwuj-SbVcBGZJUL6UnBjZpGKAKngsh6dg3LmqFDoMpkEwCr1KFoUgKtP0ypLE02gdtsSBnw_mE1r0Ft21C63Bm-vDj-k5HJQRoZZsqqDSuduYLolfyERL9B-_V7QH-0v41pQ3vwd3WFhW7DXjuwwZWD2CrbYt-uXoIw89yfzKRe8R0pTi5_DoTB7isY7cqwXkpgqNEBL8ANPilT9p5FCccFV9diPF3rpCxegRnNyKix7BZTSt8AsL5iGSDWu_MwJaYEWRKn2Xk5JVpic704G0nljy0Vcm5Oca3nLwTFmF-LcIevFrPnTW1OP45a4-lu57B9bPrH9P5Rd4ex5x4OXLerU5LZ5GsZKOyiJiF6Avdd2kPtru9ydtDvcivIfj0_8MvYWt0enyUH40nh8_gDtlYgyZsbRs2l_Of-JzsmKV_UYNHwJebRusVEUcFxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiKea0oIl4MBhFdvr7DoHhJqmUUNhVbVU6m1Z2-MWqd2kSRDKX-PXMd5HKgTi1ttqd7SH8ef5Zux5ALwlq4_ohY14UehIeevJDiofYaxQSG60VaEa-UuWHJ6pT-f98w341dbChLTK1iZWhtpNbTgj74XDSzKmxM8936RFHI_GH2c3UZggFW5a23EaNUSOcPWTwrfFh8mI1vqdlOODr_uHUTNhILJxIpaRITaWiR0gtyY0RRK-L7UXHDVaWSC5B4YnHG0RF6j6zibeSWGsUFhQ4KFNTP-9B5tpiIo6sDk8yI5P1ic8PCZ4c1X3RI3jAe_NF0S2FDHE4g8WrIYF_MUFFcGNH8OjxjNlezWUnsAGlk_hQTMk_XL1DMYn0X6WRUPiPcdOL7_P2AiXVSZXyUKVCgs5IyzcB9RopkfCAbLTkCNfXrDJdeiXsXoOZ3eipBfQKaclbgHTxiN5pMpoOVAOUwKQM2lKIZ9LHGrZhfetWnLb9CgPozKucopVggrzWxV24c1adlZ35vin1DBody0RumlXL6bzi7zZnDmxtA9VuCJxWiH5zJKnHjG13hSir5Mu7LRrkzdbfJHfAnL7_59fw31Cav55kh29hIfkcA3qHLYd6CznP3CXnJqledWgh8G3uwbsb3RwC1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=R-CNN-Based+Ship+Detection+from+High+Resolution+Remote+Sensing+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Shaoming+Zhang&rft.au=Ruize+Wu&rft.au=Kunyuan+Xu&rft.au=Jianmei+Wang&rft.date=2019-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=6&rft.spage=631&rft_id=info:doi/10.3390%2Frs11060631&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_801f005916d84e099207fee7cfba1586 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |