R-CNN-Based Ship Detection from High Resolution Remote Sensing Imagery

Offshore and inland river ship detection has been studied on both synthetic aperture radar (SAR) and optical remote sensing imagery. However, the classic ship detection methods based on SAR images can cause a high false alarm ratio and be influenced by the sea surface model, especially on inland riv...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 6; p. 631
Main Authors Zhang, Shaoming, Wu, Ruize, Xu, Kunyuan, Wang, Jianmei, Sun, Weiwei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Offshore and inland river ship detection has been studied on both synthetic aperture radar (SAR) and optical remote sensing imagery. However, the classic ship detection methods based on SAR images can cause a high false alarm ratio and be influenced by the sea surface model, especially on inland rivers and in offshore areas. The classic detection methods based on optical images do not perform well on small and gathering ships. This paper adopts the idea of deep networks and presents a fast regional-based convolutional neural network (R-CNN) method to detect ships from high-resolution remote sensing imagery. First, we choose GaoFen-2 optical remote sensing images with a resolution of 1 m and preprocess the images with a support vector machine (SVM) to divide the large detection area into small regions of interest (ROI) that may contain ships. Then, we apply ship detection algorithms based on a region-based convolutional neural network (R-CNN) on ROI images. To improve the detection result of small and gathering ships, we adopt an effective target detection framework, Faster-RCNN, and improve the structure of its original convolutional neural network (CNN), VGG16, by using multiresolution convolutional features and performing ROI pooling on a larger feature map in a region proposal network (RPN). Finally, we compare the most effective classic ship detection method, the deformable part model (DPM), another two widely used target detection frameworks, the single shot multibox detector (SSD) and YOLOv2, the original VGG16-based Faster-RCNN, and our improved Faster-RCNN. Experimental results show that our improved Faster-RCNN method achieves a higher recall and accuracy for small ships and gathering ships. Therefore, it provides a very effective method for offshore and inland river ship detection based on high-resolution remote sensing imagery.
AbstractList Offshore and inland river ship detection has been studied on both synthetic aperture radar (SAR) and optical remote sensing imagery. However, the classic ship detection methods based on SAR images can cause a high false alarm ratio and be influenced by the sea surface model, especially on inland rivers and in offshore areas. The classic detection methods based on optical images do not perform well on small and gathering ships. This paper adopts the idea of deep networks and presents a fast regional-based convolutional neural network (R-CNN) method to detect ships from high-resolution remote sensing imagery. First, we choose GaoFen-2 optical remote sensing images with a resolution of 1 m and preprocess the images with a support vector machine (SVM) to divide the large detection area into small regions of interest (ROI) that may contain ships. Then, we apply ship detection algorithms based on a region-based convolutional neural network (R-CNN) on ROI images. To improve the detection result of small and gathering ships, we adopt an effective target detection framework, Faster-RCNN, and improve the structure of its original convolutional neural network (CNN), VGG16, by using multiresolution convolutional features and performing ROI pooling on a larger feature map in a region proposal network (RPN). Finally, we compare the most effective classic ship detection method, the deformable part model (DPM), another two widely used target detection frameworks, the single shot multibox detector (SSD) and YOLOv2, the original VGG16-based Faster-RCNN, and our improved Faster-RCNN. Experimental results show that our improved Faster-RCNN method achieves a higher recall and accuracy for small ships and gathering ships. Therefore, it provides a very effective method for offshore and inland river ship detection based on high-resolution remote sensing imagery.
Author Zhang, Shaoming
Wang, Jianmei
Xu, Kunyuan
Wu, Ruize
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Shaoming
  surname: Zhang
  fullname: Zhang, Shaoming
– sequence: 2
  givenname: Ruize
  surname: Wu
  fullname: Wu, Ruize
– sequence: 3
  givenname: Kunyuan
  surname: Xu
  fullname: Xu, Kunyuan
– sequence: 4
  givenname: Jianmei
  surname: Wang
  fullname: Wang, Jianmei
– sequence: 5
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
BookMark eNptkE1PwzAMhiMEEjC48AsqcUMq2EmbNUcYX5MQSBucozR1RqatGUl34N_TMQQI4Yst6_Vr-zlku21oibEThHMhFFzEhAgSpMAddsBhyPOCK777q95nxynNoQ8hUEFxwG4n-ejxMb8yiZps-upX2TV1ZDsf2szFsMzu_ew1m1AKi_Vnc0LL0FE2pTb5dpaNl2ZG8f2I7TmzSHT8lQfs5fbmeXSfPzzdjUeXD7kVEru8FmrIpVUEtsaqHKIreeUQqCLLDfES6v4BskYYKsrGStdwrC0WZCSqqhYDNt76NsHM9Sr6pYnvOhivPxshzrSJnbcL0hWgAygVyqYqCJTqKTiioXW1wbKSvdfp1msVw9uaUqfnYR3b_nzNBRSAXPacBuxsq7IxpBTJfW9F0Bvs-gd7L4Y_Yus7s-HWReMX_418AOfAg_o
CitedBy_id crossref_primary_10_3389_frai_2025_1508664
crossref_primary_10_1109_JSTARS_2021_3123080
crossref_primary_10_3390_rs13193933
crossref_primary_10_1155_2022_3391391
crossref_primary_10_1155_2020_4813183
crossref_primary_10_1109_TGRS_2020_3002850
crossref_primary_10_1109_JSTARS_2020_2993731
crossref_primary_10_1080_22797254_2024_2307613
crossref_primary_10_3390_s23052424
crossref_primary_10_3390_rs13030364
crossref_primary_10_1109_JSTARS_2021_3137811
crossref_primary_10_3390_rs14071544
crossref_primary_10_3390_jmse13020366
crossref_primary_10_3390_rs11182173
crossref_primary_10_3390_rs11101206
crossref_primary_10_3390_rs14215331
crossref_primary_10_3390_s19132941
crossref_primary_10_1016_j_engappai_2023_107742
crossref_primary_10_3389_fmars_2022_861395
crossref_primary_10_3390_math13010165
crossref_primary_10_3390_jmse11010191
crossref_primary_10_3390_app13042078
crossref_primary_10_3390_jmse11071259
crossref_primary_10_1109_JSTARS_2024_3514898
crossref_primary_10_3390_rs14246245
crossref_primary_10_1109_TGRS_2022_3180894
crossref_primary_10_3390_drones6010019
crossref_primary_10_3390_rs13163168
crossref_primary_10_3390_rs13234840
crossref_primary_10_3390_rs14215297
crossref_primary_10_32604_cmc_2023_044735
crossref_primary_10_3390_rs14236053
crossref_primary_10_1080_2150704X_2020_1820612
crossref_primary_10_1109_TGRS_2021_3051641
crossref_primary_10_1109_ACCESS_2020_2985637
crossref_primary_10_3390_jmse11101916
crossref_primary_10_3390_rs11232862
crossref_primary_10_1088_1742_6596_1611_1_012061
crossref_primary_10_3390_rs12091435
crossref_primary_10_3390_rs13163192
crossref_primary_10_1109_ACCESS_2019_2958264
crossref_primary_10_3389_fmars_2023_1113669
crossref_primary_10_1109_TGRS_2020_2995477
crossref_primary_10_3390_w12082258
crossref_primary_10_3390_s20174938
crossref_primary_10_3390_electronics11050739
crossref_primary_10_1016_j_eswa_2023_119588
crossref_primary_10_17714_gumusfenbil_1012519
crossref_primary_10_1016_j_jag_2023_103496
crossref_primary_10_1007_s40747_022_00683_z
crossref_primary_10_3390_rs15082008
crossref_primary_10_3390_rs12020339
crossref_primary_10_3390_jmse11020452
crossref_primary_10_3390_jmse11091700
crossref_primary_10_1016_j_engappai_2023_107332
crossref_primary_10_5194_essd_15_3547_2023
crossref_primary_10_3390_electronics9091459
crossref_primary_10_1007_s11042_024_18866_w
crossref_primary_10_3390_rs14092177
crossref_primary_10_1109_TGRS_2020_3008993
crossref_primary_10_1117_1_JRS_18_036510
crossref_primary_10_33298_2226_8553_2024_1_39_16
crossref_primary_10_3390_s20102931
crossref_primary_10_1007_s10044_024_01333_5
crossref_primary_10_3389_fmars_2023_1112955
crossref_primary_10_4236_ojapps_2023_134045
crossref_primary_10_1007_s12601_024_00141_6
crossref_primary_10_1109_ACCESS_2019_2962513
crossref_primary_10_3390_rs12183053
crossref_primary_10_1109_JSTARS_2022_3227322
crossref_primary_10_1109_TIP_2022_3231058
crossref_primary_10_1016_j_oceaneng_2024_117552
crossref_primary_10_1016_j_asr_2024_10_028
crossref_primary_10_1109_TGRS_2022_3160617
crossref_primary_10_3390_rs14195048
crossref_primary_10_1016_j_scitotenv_2022_160363
crossref_primary_10_1016_j_srs_2025_100202
crossref_primary_10_1080_01431161_2020_1811422
crossref_primary_10_3390_rs16081444
crossref_primary_10_1080_17445302_2024_2365019
crossref_primary_10_14358_PERS_22_00086R2
crossref_primary_10_3390_rs14236092
crossref_primary_10_1093_jcde_qwab053
crossref_primary_10_3390_rs14143441
crossref_primary_10_3390_rs13214255
crossref_primary_10_3390_rs12071196
crossref_primary_10_3390_rs13112155
crossref_primary_10_3390_rs16050733
crossref_primary_10_1109_JSTARS_2024_3359252
crossref_primary_10_3390_jimaging10120303
crossref_primary_10_1016_j_jvcir_2020_102985
crossref_primary_10_3390_rs12020246
crossref_primary_10_1109_ACCESS_2019_2951030
crossref_primary_10_1109_TGRS_2019_2963243
crossref_primary_10_34133_2021_9824843
crossref_primary_10_3390_rs14010141
crossref_primary_10_3390_jmse9090932
crossref_primary_10_1109_TGRS_2022_3227938
crossref_primary_10_3390_rs14215476
crossref_primary_10_32604_csse_2023_024997
crossref_primary_10_3390_jmse12071180
crossref_primary_10_3390_w14213400
crossref_primary_10_1016_j_cja_2020_09_022
crossref_primary_10_1016_j_sigpro_2024_109488
crossref_primary_10_3233_MGS_200330
crossref_primary_10_1049_ipr2_12959
crossref_primary_10_3390_ijgi11080445
crossref_primary_10_3390_rs15081999
crossref_primary_10_3390_rs11131529
crossref_primary_10_1109_JSTARS_2024_3486922
crossref_primary_10_1016_j_rsase_2023_101025
crossref_primary_10_1109_MGRS_2023_3312347
Cites_doi 10.1007/s11760-016-0879-4
10.7780/kjrs.2017.33.1.9
10.1007/s11432-017-9405-6
10.1109/LGRS.2016.2618385
10.1109/TGRS.2014.2335751
10.1109/TGRS.2013.2282355
10.1109/IGARSS.2017.8127693
10.3390/app7090961
10.3390/ijgi6060159
10.1109/TGRS.2010.2046330
10.1109/ICIG.2011.19
10.1109/JSTARS.2014.2329330
10.1109/RSIP.2017.7958815
10.1109/TPAMI.2016.2577031
10.1109/LGRS.2014.2307952
10.1109/CVPR.2017.690
10.1007/978-3-319-46448-0_2
10.1109/LGRS.2016.2618604
10.1109/LGRS.2012.2214022
10.1109/LGRS.2013.2272492
10.1109/TGRS.2003.811998
10.1109/36.508418
10.1109/TGRS.2014.2374218
10.1109/CVPR.2008.4587597
10.12783/dtcse/aita2016/7564
10.1109/IGARSS.2013.6723202
10.1007/BF00994018
10.1016/j.isprsjprs.2013.08.001
10.1007/978-3-319-10590-1_53
10.1007/s12524-018-0787-x
10.1109/TGRS.2008.2006504
10.3390/rs10030400
10.1109/LGRS.2014.2309695
10.1109/TGRS.2013.2282820
10.1109/IGARSS.2016.7729017
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs11060631
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_801f005916d84e099207fee7cfba1586
10_3390_rs11060631
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-b39726c9e0cb18571f528f10e8ec2ae250b060eca3ae45dc6fd21bc14ea6198b3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:28:14 EDT 2025
Fri Jul 25 12:09:32 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Tue Jul 01 04:14:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b39726c9e0cb18571f528f10e8ec2ae250b060eca3ae45dc6fd21bc14ea6198b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/801f005916d84e099207fee7cfba1586
PQID 2304012600
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_801f005916d84e099207fee7cfba1586
proquest_journals_2304012600
crossref_primary_10_3390_rs11060631
crossref_citationtrail_10_3390_rs11060631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cui (ref_2) 2014; 11
Cortes (ref_18) 1995; 20
Wang (ref_7) 2016; 10
Liu (ref_25) 2014; 11
Chen (ref_28) 2014; 11
An (ref_3) 2014; 52
ref_14
Pan (ref_40) 2015; 1
Liu (ref_22) 2013; 10
ref_35
Dai (ref_10) 2016; 13
ref_34
ref_11
ref_33
ref_32
ref_31
Tang (ref_36) 2015; 53
Gao (ref_9) 2009; 47
ref_19
ref_39
ref_16
Chen (ref_27) 2014; 7
ref_38
Zhao (ref_13) 2019; 62
Shi (ref_26) 2014; 52
Eldhuset (ref_6) 1996; 34
Han (ref_29) 2015; 53
Hong (ref_17) 2006; 33
Zeng (ref_1) 2015; 58
Cheng (ref_21) 2013; 85
Ma (ref_12) 2015; 58
ref_23
ref_45
ref_44
Li (ref_15) 2016; 13
ref_43
Dalar (ref_20) 2005; 1
ref_42
ref_41
Wang (ref_30) 2018; 4
Kuo (ref_4) 2003; 41
Hwang (ref_8) 2017; 33
Zhu (ref_24) 2010; 48
ref_5
Ren (ref_37) 2016; 39
References_xml – volume: 58
  start-page: 1
  year: 2015
  ident: ref_12
  article-title: A waterborne salient ship detection method on SAR imagery
  publication-title: Sci. China Inf. Sci.
– volume: 10
  start-page: 1219
  year: 2016
  ident: ref_7
  article-title: Adaptive ship detection in SAR images using variance WIE-based method
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-016-0879-4
– ident: ref_5
– volume: 1
  start-page: 3
  year: 2015
  ident: ref_40
  article-title: The technical characteristics of GaoFen-2 satellite
  publication-title: Aerosp. China
– volume: 33
  start-page: 89
  year: 2017
  ident: ref_8
  article-title: An efficient ship detection method for KOMPSAT-5 synthetic aperture radar imagery based on adaptive filtering approach
  publication-title: Korean J. Remote Sens.
  doi: 10.7780/kjrs.2017.33.1.9
– volume: 62
  start-page: 42301
  year: 2019
  ident: ref_13
  article-title: A coupled convolutional neural network for small and densely clustered ship detection in SAR images
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-017-9405-6
– volume: 13
  start-page: 1920
  year: 2016
  ident: ref_15
  article-title: A Novel Inshore Ship Detection via Ship Head Classification and Body Boundary Determination
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2618385
– volume: 53
  start-page: 1174
  year: 2015
  ident: ref_36
  article-title: Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2335751
– volume: 52
  start-page: 4511
  year: 2014
  ident: ref_26
  article-title: Ship Detection in High-Resolution Optical Imagery Based on Anomaly Detector and Local Shape Feature
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2282355
– ident: ref_34
  doi: 10.1109/IGARSS.2017.8127693
– ident: ref_31
  doi: 10.3390/app7090961
– ident: ref_16
  doi: 10.3390/ijgi6060159
– volume: 48
  start-page: 3446
  year: 2010
  ident: ref_24
  article-title: A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2046330
– ident: ref_14
  doi: 10.1109/ICIG.2011.19
– volume: 7
  start-page: 2094
  year: 2014
  ident: ref_27
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref_32
  doi: 10.1109/RSIP.2017.7958815
– volume: 39
  start-page: 1137
  year: 2016
  ident: ref_37
  article-title: Faster-RCNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 11
  start-page: 1752
  year: 2014
  ident: ref_2
  article-title: A Comparative Study of Statistical Models for Multilook SAR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2307952
– ident: ref_42
– ident: ref_44
– ident: ref_45
  doi: 10.1109/CVPR.2017.690
– volume: 33
  start-page: 273
  year: 2006
  ident: ref_17
  article-title: Fast ship detection based on multi-threshold image segmentation
  publication-title: Comput. Sci.
– ident: ref_41
  doi: 10.1007/978-3-319-46448-0_2
– volume: 58
  start-page: 1
  year: 2015
  ident: ref_1
  article-title: A novel subsidence monitoring technique based on space-surface bistatic differential interferometry using GNSS as transmitters
  publication-title: Sci. China Inf. Sci.
– volume: 13
  start-page: 1925
  year: 2016
  ident: ref_10
  article-title: A modified CFAR algorithm based on object proposals for ship target detection in SAR images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2618604
– volume: 10
  start-page: 573
  year: 2013
  ident: ref_22
  article-title: Aircraft recognition in high-resolution satellite images using coarse-to-fine shape prior
  publication-title: Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2214022
– volume: 11
  start-page: 617
  year: 2014
  ident: ref_25
  article-title: A New Method on Inshore Ship Detection in High-Resolution Satellite Images Using Shape and Context Information
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2272492
– volume: 41
  start-page: 1506
  year: 2003
  ident: ref_4
  article-title: The Application of Wavelets Correlator for Ship Wake Detection in SAR Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.811998
– volume: 34
  start-page: 1010
  year: 1996
  ident: ref_6
  article-title: An Automatic Ship and Ship Wake Detection System for Spaceborne SAR Images in Coastal Regions
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.508418
– volume: 53
  start-page: 3325
  year: 2015
  ident: ref_29
  article-title: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2374218
– ident: ref_23
  doi: 10.1109/CVPR.2008.4587597
– ident: ref_35
  doi: 10.12783/dtcse/aita2016/7564
– ident: ref_11
  doi: 10.1109/IGARSS.2013.6723202
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_18
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 85
  start-page: 32
  year: 2013
  ident: ref_21
  article-title: Object detection in remote sensing imagery using a discriminatively trained mixture model
  publication-title: J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.08.001
– ident: ref_38
– ident: ref_39
  doi: 10.1007/978-3-319-10590-1_53
– volume: 4
  start-page: 1413
  year: 2018
  ident: ref_30
  article-title: Study on the Combined Application of CFAR and Deep Learning in Ship Detection
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/s12524-018-0787-x
– volume: 47
  start-page: 1685
  year: 2009
  ident: ref_9
  article-title: An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2006504
– ident: ref_19
  doi: 10.3390/rs10030400
– volume: 11
  start-page: 1797
  year: 2014
  ident: ref_28
  article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/LGRS.2014.2309695
– ident: ref_43
– volume: 1
  start-page: 886
  year: 2005
  ident: ref_20
  article-title: Histograms of Oriented Gradients for Human Detection
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 52
  start-page: 4585
  year: 2014
  ident: ref_3
  article-title: An Improved Iterative Censoring Scheme for CFAR Ship Detection with SAR Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2282820
– ident: ref_33
  doi: 10.1109/IGARSS.2016.7729017
SSID ssj0000331904
Score 2.5342915
Snippet Offshore and inland river ship detection has been studied on both synthetic aperture radar (SAR) and optical remote sensing imagery. However, the classic ship...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 631
SubjectTerms Algorithms
Artificial neural networks
Deep learning
Deformation effects
Detection
Earth science
False alarms
Feature maps
Formability
GaoFen-2 remote sensing image
gathering ship
High resolution
Image detection
Image resolution
Methods
Neural networks
Pattern recognition
regional convolutional neural network
Remote sensing
Rivers
ship detection
Ships
small ship
Support vector machines
Synthetic aperture radar
Target detection
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDI1gO8AF8SkGA0WCC4eIps3a7ITYYBpITIgxiVvVJA5Dgm5s47B_j9NmmxCIW9XmEtuxn13nmZBz9PoAlmsWZJlkwmqLflBYBpEAHgZKauFuIz_04u5A3L80XnzBberbKhc-sXDUZqRdjfzSFS_RmWJ8vhp_Mjc1yv1d9SM01kkVXbCUFVJt3fYen5ZVliBCEwtEyUsaYX5_OZliwEPUHvEfkagg7P_lj4sg09kmWx4d0utSnTtkDfJdsuEHlQ_ne6TzxNq9Hmth7DG0P3wb0xuYFd1UOXU3Rajr26CuJl9aFD6iLoD2XZ96_krvPhxnxXyfDDq3z-0u86MQmI5iPmMKYUMY6yYEWjn2Jm4bobQ8AAk6zABxjMJNgc6iDETD6NiakCvNBWSYIUkVHZBKPsrhkFCpLCAqFEqGTWEgQSUalSSYdpnYgAxr5GIhllR7nnA3ruI9xXzBiTBdibBGzpZrxyU7xp-rWk66yxWO0bp4MZq8pv6ApBgprbsJy2MjBSBuDYPEAiTaqow3ZFwj9YVuUn_MpunKKI7-_3xMNhHpNMvmsTqpzCZfcIJoYqZOvcl8A3nryX8
  priority: 102
  providerName: ProQuest
Title R-CNN-Based Ship Detection from High Resolution Remote Sensing Imagery
URI https://www.proquest.com/docview/2304012600
https://doaj.org/article/801f005916d84e099207fee7cfba1586
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60HvQiPrFay4JePIRmk22yPfZpFRuktdBbyG5mraCxtPHQf-9sktaKghdPCWEgyczuzDfLzDeEXKPXB9BMWXYUCYtrpdEPcm2By4E5thSKm27kQeD1x_x-Up9sjPoyNWE5PXCuuBp6UG06JJkXCw6IZxzb1wC-0jJidZGRbWPM20imMh_s4tKyec5H6mJeX5svMNAhWnfZtwiUEfX_8MNZcOkdkP0CFdJm_jWHZAuSI7JbDCifLo9Jb2i1g8BqYcyJ6Wj6MqMdSLMqqoSaDhFq6jWoOYvPVxLeog2Ajkx9evJM794MV8XyhIx73ad23ypGIFjK9VhqSYQLjqcaYCtpWJuYrjtCMxsEKCcCxC8SfwpU5EbA67HydOwwqRiHCDMjId1TUkreEzgjVEgNiAa5FE6Dx-Cj8WLp-5huxV4MwimTm5VaQlXwg5sxFa8h5glGheGXCsvkai07y1kxfpVqGe2uJQyTdfYA7RsW9g3_sm-ZVFa2CYvttQjNSTZGVgRr5__xjguyhziokZeWVUgpnX_AJWKNVFbJtujdVslOszN4GOG11Q0eh9VssX0CS6TURw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigXxFMEClgCDhys2l5n1zkg1AchoW0OtJV6W9becYsEm5AEofwpfmNn9pEKgbj1tlpbPow_zzdjzwPgNWl9xKiDVEXhpI0hkh60UWJiURvlXbCcjXw8SUdn9tN5_3wDfne5MBxW2enEWlGX08B35Dt8eUnKlPj5_eyH5K5R_LratdBoYHGIq1_ksi3ejQ9of98YM_xwuj-SbVcBGZJUL6UnBjZpGKAKngsh6dg3LmqFDoMpkEwCr1KFoUgKtP0ypLE02gdtsSBnw_mE1r0Ft21C63Bm-vDj-k5HJQRoZZsqqDSuduYLolfyERL9B-_V7QH-0v41pQ3vwd3WFhW7DXjuwwZWD2CrbYt-uXoIw89yfzKRe8R0pTi5_DoTB7isY7cqwXkpgqNEBL8ANPilT9p5FCccFV9diPF3rpCxegRnNyKix7BZTSt8AsL5iGSDWu_MwJaYEWRKn2Xk5JVpic704G0nljy0Vcm5Oca3nLwTFmF-LcIevFrPnTW1OP45a4-lu57B9bPrH9P5Rd4ex5x4OXLerU5LZ5GsZKOyiJiF6Avdd2kPtru9ydtDvcivIfj0_8MvYWt0enyUH40nh8_gDtlYgyZsbRs2l_Of-JzsmKV_UYNHwJebRusVEUcFxg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiKea0oIl4MBhFdvr7DoHhJqmUUNhVbVU6m1Z2-MWqd2kSRDKX-PXMd5HKgTi1ttqd7SH8ef5Zux5ALwlq4_ohY14UehIeevJDiofYaxQSG60VaEa-UuWHJ6pT-f98w341dbChLTK1iZWhtpNbTgj74XDSzKmxM8936RFHI_GH2c3UZggFW5a23EaNUSOcPWTwrfFh8mI1vqdlOODr_uHUTNhILJxIpaRITaWiR0gtyY0RRK-L7UXHDVaWSC5B4YnHG0RF6j6zibeSWGsUFhQ4KFNTP-9B5tpiIo6sDk8yI5P1ic8PCZ4c1X3RI3jAe_NF0S2FDHE4g8WrIYF_MUFFcGNH8OjxjNlezWUnsAGlk_hQTMk_XL1DMYn0X6WRUPiPcdOL7_P2AiXVSZXyUKVCgs5IyzcB9RopkfCAbLTkCNfXrDJdeiXsXoOZ3eipBfQKaclbgHTxiN5pMpoOVAOUwKQM2lKIZ9LHGrZhfetWnLb9CgPozKucopVggrzWxV24c1adlZ35vin1DBody0RumlXL6bzi7zZnDmxtA9VuCJxWiH5zJKnHjG13hSir5Mu7LRrkzdbfJHfAnL7_59fw31Cav55kh29hIfkcA3qHLYd6CznP3CXnJqledWgh8G3uwbsb3RwC1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=R-CNN-Based+Ship+Detection+from+High+Resolution+Remote+Sensing+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Shaoming+Zhang&rft.au=Ruize+Wu&rft.au=Kunyuan+Xu&rft.au=Jianmei+Wang&rft.date=2019-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=6&rft.spage=631&rft_id=info:doi/10.3390%2Frs11060631&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_801f005916d84e099207fee7cfba1586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon