Optical Recrystallization of Nanocrystalline Silicon Ribbons
The Silicon on Dust Substrate (SDS) is a gas-to-wafer process that produces multicrystalline silicon ribbons directly from gaseous feedstock (silane), avoiding the standard industry steps of polysilicon deposition, crystal growth, and wafering. The SDS technique consists of three main steps: (i) mic...
Saved in:
Published in | Metals (Basel ) Vol. 13; no. 3; p. 452 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Silicon on Dust Substrate (SDS) is a gas-to-wafer process that produces multicrystalline silicon ribbons directly from gaseous feedstock (silane), avoiding the standard industry steps of polysilicon deposition, crystal growth, and wafering. The SDS technique consists of three main steps: (i) micrometric-sized silicon powder production by grinding silicon chunks; (ii) chemical vapor deposition (CVD) of silicon over this silicon powder substrate; and (iii) zone-melting recrystallization (ZMR) of the nanocrystalline pre-ribbon obtained in the CVD step. Several samples were produced by this technique. During CVD, mechanically self-sustained nanocrystalline pre-ribbons were grown over silicon powder substrates, with growth rates in the order of 50 µm/min. The ZMR process performance is substantially impacted by the pre-ribbon physical characteristics. The best and largest recrystallizations were achieved on pre-ribbons grown over powder substrates with smaller particle sizes, which also have lower substrate powder incorporation ratios. Multicrystalline silicon ribbons with crystalline areas as large as 2 × 4 cm2 were successfully produced. These areas have visible columnar crystal growth with crystal lengths up to 1 cm. The SDS ribbons’ measured resistivity confirmed the high powder content of the resulting material. The ability to produce solar cells on SDS multicrystalline silicon ribbons was demonstrated. |
---|---|
AbstractList | The Silicon on Dust Substrate (SDS) is a gas-to-wafer process that produces multicrystalline silicon ribbons directly from gaseous feedstock (silane), avoiding the standard industry steps of polysilicon deposition, crystal growth, and wafering. The SDS technique consists of three main steps: (i) micrometric-sized silicon powder production by grinding silicon chunks; (ii) chemical vapor deposition (CVD) of silicon over this silicon powder substrate; and (iii) zone-melting recrystallization (ZMR) of the nanocrystalline pre-ribbon obtained in the CVD step. Several samples were produced by this technique. During CVD, mechanically self-sustained nanocrystalline pre-ribbons were grown over silicon powder substrates, with growth rates in the order of 50 µm/min. The ZMR process performance is substantially impacted by the pre-ribbon physical characteristics. The best and largest recrystallizations were achieved on pre-ribbons grown over powder substrates with smaller particle sizes, which also have lower substrate powder incorporation ratios. Multicrystalline silicon ribbons with crystalline areas as large as 2 × 4 cm2 were successfully produced. These areas have visible columnar crystal growth with crystal lengths up to 1 cm. The SDS ribbons’ measured resistivity confirmed the high powder content of the resulting material. The ability to produce solar cells on SDS multicrystalline silicon ribbons was demonstrated. The Silicon on Dust Substrate (SDS) is a gas-to-wafer process that produces multicrystalline silicon ribbons directly from gaseous feedstock (silane), avoiding the standard industry steps of polysilicon deposition, crystal growth, and wafering. The SDS technique consists of three main steps: (i) micrometric-sized silicon powder production by grinding silicon chunks; (ii) chemical vapor deposition (CVD) of silicon over this silicon powder substrate; and (iii) zone-melting recrystallization (ZMR) of the nanocrystalline pre-ribbon obtained in the CVD step. Several samples were produced by this technique. During CVD, mechanically self-sustained nanocrystalline pre-ribbons were grown over silicon powder substrates, with growth rates in the order of 50 µm/min. The ZMR process performance is substantially impacted by the pre-ribbon physical characteristics. The best and largest recrystallizations were achieved on pre-ribbons grown over powder substrates with smaller particle sizes, which also have lower substrate powder incorporation ratios. Multicrystalline silicon ribbons with crystalline areas as large as 2 × 4 cm[sup.2] were successfully produced. These areas have visible columnar crystal growth with crystal lengths up to 1 cm. The SDS ribbons' measured resistivity confirmed the high powder content of the resulting material. The ability to produce solar cells on SDS multicrystalline silicon ribbons was demonstrated. |
Audience | Academic |
Author | Silva, José A Costa, Ivo Serra, João M Serra, Filipe |
Author_xml | – sequence: 1 givenname: Filipe orcidid: 0000-0003-0819-2660 surname: Serra fullname: Serra, Filipe – sequence: 2 givenname: Ivo surname: Costa fullname: Costa, Ivo – sequence: 3 givenname: José A. orcidid: 0000-0002-9052-4435 surname: Silva fullname: Silva, José A. – sequence: 4 givenname: João M. orcidid: 0000-0002-1477-5515 surname: Serra fullname: Serra, João M. |
BookMark | eNpNkUtrAjEUhUNpoda66h8QuizavDOBbkT6EKSCdR9uMhmJjBObGRf21zfWImaTcHLux7n33qHrJjYeoQeCx4xp_Lz1HWGYYS7oFepRrMSIK0yuL963aNC2G5xPQSXWuodeFrsuOKiHS-_Soe2grsMPdCE2w1gNP6GJZ7nxw69QB5e_lsHa2LT36KaCuvWD_7uPVm-vq-nHaL54n00n85FjknQjy4iyRCpCmXbKWii4KKyT1JaCl2VFuWIcvKcOuCJOlMJzpay0EjuhC9ZHsxO2jLAxuxS2kA4mQjB_QkxrAyl3UXujeMaVzIFjFddUWO90KZTgEoO0DmfW44m1S_F779vObOI-NTm9oUrnkJoWMrvGJ9caMjQ0VewSZCiUfnscgK9C1ieKMyVVwVgueDoVuBTbNvnqHJNgc9yOudgO-wWRCoLh |
Cites_doi | 10.1016/j.solmat.2007.08.002 10.1007/s10854-007-9177-9 10.1557/PROC-485-3 10.1016/j.seppur.2013.10.014 10.1016/j.jcrysgro.2015.07.008 10.1016/S0081-1947(08)60158-7 10.1088/0953-8984/16/50/R03 10.1109/JPHOTOV.2016.2567070 10.1063/1.5123895 10.1021/ac60168a009 10.1016/j.spc.2021.03.033 10.1109/PVSC.2010.5614096 10.1016/j.promfg.2018.02.156 10.1016/j.surfcoat.2007.04.089 10.1039/c2ee03489a 10.1557/jmr.2015.309 10.1016/j.jcrysgro.2012.07.050 10.1063/1.2799057 10.1016/j.solmat.2019.110108 10.1016/j.jcrysgro.2005.11.051 10.1016/S0927-0248(01)00159-3 10.1016/j.solener.2004.08.020 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/met13030452 |
DatabaseName | CrossRef METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database ProQuest Materials Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China METADEX ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-4701 |
ExternalDocumentID | oai_doaj_org_article_74df2d3cac3f4925bec9d575460a6bc0 A743767833 10_3390_met13030452 |
GeographicLocations | Portugal |
GeographicLocations_xml | – name: Portugal |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PIMPY PROAC RIG TUS 8BQ 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c361t-b317b1671239c7bba8458bc62bd54ddf24734aee2ca471c5d5e477b6b60c5983 |
IEDL.DBID | DOA |
ISSN | 2075-4701 |
IngestDate | Tue Oct 22 14:58:46 EDT 2024 Thu Oct 10 16:55:59 EDT 2024 Tue Nov 12 23:02:19 EST 2024 Thu Sep 26 17:14:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-b317b1671239c7bba8458bc62bd54ddf24734aee2ca471c5d5e477b6b60c5983 |
ORCID | 0000-0002-9052-4435 0000-0003-0819-2660 0000-0002-1477-5515 |
OpenAccessLink | https://doaj.org/article/74df2d3cac3f4925bec9d575460a6bc0 |
PQID | 2791679286 |
PQPubID | 2032361 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_74df2d3cac3f4925bec9d575460a6bc0 proquest_journals_2791679286 gale_infotracacademiconefile_A743767833 crossref_primary_10_3390_met13030452 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Metals (Basel ) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Reber (ref_9) 2006; 287 Dubois (ref_30) 2007; 102 Aguilera (ref_11) 2021; 28 Powell (ref_12) 2012; 5 ref_13 Green (ref_18) 2007; 18 Pfann (ref_6) 1960; 32 Silva (ref_29) 2015; 428 ref_15 Kalejs (ref_16) 2002; 72 Serra (ref_14) 2019; 2147 Schmich (ref_20) 2007; 201 Kumar (ref_24) 2018; 21 Ishihara (ref_7) 1997; 485 (ref_19) 2004; 77 ref_21 Tomono (ref_25) 2013; 120 ref_1 ref_3 ref_2 Bellanger (ref_23) 2016; 6 Radhakrishnan (ref_10) 2019; 203 Pfann (ref_5) 1957; 4 Niepelt (ref_22) 2015; 30 Bellanger (ref_27) 2012; 359 Hahn (ref_17) 2004; 16 ref_26 Silva (ref_28) 2007; 91 ref_8 ref_4 |
References_xml | – volume: 91 start-page: 1948 year: 2007 ident: ref_28 article-title: Sprayed boric acid as a dopant source for silicon ribbons publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2007.08.002 contributor: fullname: Silva – volume: 18 start-page: 15 year: 2007 ident: ref_18 article-title: Thin-film solar cells: Review of materials, technologies and commercial status publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-007-9177-9 contributor: fullname: Green – ident: ref_3 – ident: ref_26 – volume: 485 start-page: 3 year: 1997 ident: ref_7 article-title: Development of High Efficiency Thin Film Polycrystalline Silicon Solar Cells Using VEST Process publication-title: MRS Online Proc. Libr. doi: 10.1557/PROC-485-3 contributor: fullname: Ishihara – volume: 120 start-page: 304 year: 2013 ident: ref_25 article-title: Recycling of kerf loss silicon derived from diamond-wire saw cutting process by chemical approach publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2013.10.014 contributor: fullname: Tomono – volume: 428 start-page: 29 year: 2015 ident: ref_29 article-title: New doping method to obtain n-type silicon ribbons publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2015.07.008 contributor: fullname: Silva – volume: 4 start-page: 423 year: 1957 ident: ref_5 article-title: Techniques of zone melting and crystal growing publication-title: Solid State Phys. doi: 10.1016/S0081-1947(08)60158-7 contributor: fullname: Pfann – volume: 16 start-page: R1615 year: 2004 ident: ref_17 article-title: New crystalline silicon ribbon materials for photovoltaics publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/16/50/R03 contributor: fullname: Hahn – volume: 6 start-page: 1115 year: 2016 ident: ref_23 article-title: First Solar Cells on Exfoliated Silicon Foils Obtained at Room Temperature by the SLIM-Cut Technique Using an Epoxy Layer publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2016.2567070 contributor: fullname: Bellanger – ident: ref_1 – volume: 2147 start-page: 140008 year: 2019 ident: ref_14 article-title: Zone melting recrystallization of microcrystalline silicon ribbons obtained by chemical vapor deposition publication-title: AIP Conf. Proc. doi: 10.1063/1.5123895 contributor: fullname: Serra – volume: 32 start-page: 1574 year: 1960 ident: ref_6 article-title: Applications of zone melting to analytical chemistry publication-title: Anal. Chem. doi: 10.1021/ac60168a009 contributor: fullname: Pfann – volume: 28 start-page: 164 year: 2021 ident: ref_11 article-title: A set of principles for applying Circular Economy to the PV industry: Modeling a closed-loop material cycle system for crystalline photovoltaic panels publication-title: Sustain. Prod. Consum. doi: 10.1016/j.spc.2021.03.033 contributor: fullname: Aguilera – ident: ref_21 doi: 10.1109/PVSC.2010.5614096 – volume: 21 start-page: 549 year: 2018 ident: ref_24 article-title: Diamond Wire Sawing of Solar Silicon Wafers: A Sustainable Manufacturing Alternative to Loose Abrasive Slurry Sawing publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2018.02.156 contributor: fullname: Kumar – ident: ref_8 – ident: ref_4 – volume: 201 start-page: 9325 year: 2007 ident: ref_20 article-title: Silicon CVD deposition for low-cost applications in photovoltaics publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.04.089 contributor: fullname: Schmich – ident: ref_2 – volume: 5 start-page: 5874 year: 2012 ident: ref_12 article-title: Crystalline silicon photovoltaics: A cost analysis framework for determining technology pathways to reach baseload electricity costs publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03489a contributor: fullname: Powell – volume: 30 start-page: 3227 year: 2015 ident: ref_22 article-title: Kerfless exfoliated thin crystalline Si wafers with Al metallization layers for solar cells publication-title: J. Mater. Res. doi: 10.1557/jmr.2015.309 contributor: fullname: Niepelt – ident: ref_15 – volume: 359 start-page: 92 year: 2012 ident: ref_27 article-title: New method of fabricating silicon wafer for the photovoltaic application based on sintering and recrystallization steps publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2012.07.050 contributor: fullname: Bellanger – volume: 102 start-page: 083525 year: 2007 ident: ref_30 article-title: Effect of intentional bulk contamination with iron on multicrystalline silicon solar cell properties publication-title: J. Appl. Phys. doi: 10.1063/1.2799057 contributor: fullname: Dubois – ident: ref_13 – volume: 203 start-page: 110108 year: 2019 ident: ref_10 article-title: Freestanding and supported processing of sub-70 μm kerfless epitaxial Si and thinned Cz/FZ Si foils into solar cells: An overview of recent progress and challenges publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.110108 contributor: fullname: Radhakrishnan – volume: 287 start-page: 391 year: 2006 ident: ref_9 article-title: High-throughput zone-melting recrystallization for crystalline silicon thin-film solar cells publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2005.11.051 contributor: fullname: Reber – volume: 72 start-page: 139 year: 2002 ident: ref_16 article-title: Silicon ribbons and foils—State of the art publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(01)00159-3 contributor: fullname: Kalejs – volume: 77 start-page: 667 year: 2004 ident: ref_19 article-title: Status of thin film solar cells in research, production and the market publication-title: Sol. Energy doi: 10.1016/j.solener.2004.08.020 |
SSID | ssj0000826099 |
Score | 2.2929568 |
Snippet | The Silicon on Dust Substrate (SDS) is a gas-to-wafer process that produces multicrystalline silicon ribbons directly from gaseous feedstock (silane), avoiding... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 452 |
SubjectTerms | Aluminum Atmospheric pressure Chemical vapor deposition Crystal growth Efficiency Energy Fluidized bed reactors Grain size Manufacturing metallurgy Methods Nanocrystals photovoltaic Photovoltaic cells Physical properties Polysilicon Powders Radiation Raw materials Recrystallization Ribbons Silicon silicon feedstock silicon powder silicon ribbons Silicon substrates Silicon wafers Solar cells |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqJQUIZKTFFbPxMJCRVEqRhAgiJ1s-IXqlSS0oaBf885cUsZYHU8OHfn-74723cItamCGBmUDcYrcEwdtbHCjMSWC82ZMKmub_k-8uErfRizcUi4LcK1yqVPrBy1KbTPkXewSP2JAU749ewj9l2j_OlqaKGxibZ6WAgffCWD-1WOBeCNAwOqn-URiO4777b0TtvXEf8FRFW9_r-8cgU1gz20Gzhi1K-Vuo82bH6AdtYqBx6iq6dZlYSOPO37AoY3nYYHlVHhInCZxWo4t9HLZAoKz6PniVJgZUdoNLgb3Q7j0Agh1oT3ylgByCv4e0CZVAulsoSyRGmOlWHUGIepIDSzFusMsEYzwywVQnHFu5qlCTlGjbzI7QmKWAqA7ayjlDmqDc6wU1g7akjKFRWmidpLochZXe5CQpjgZSfXZNdEN15gqym-RnU1UMzfZDB5KSiszBCdaeJ8CUSwltQAO6S8m3Glu0106cUt_U4q5xnMqx8EwEp9TSrZB3IjAEsJaaLWUiMybLGF_DGI0_8_n6Ft3yO-vjjWQo1y_mnPgUmU6qIyl28_yMhU priority: 102 providerName: ProQuest |
Title | Optical Recrystallization of Nanocrystalline Silicon Ribbons |
URI | https://www.proquest.com/docview/2791679286 https://doaj.org/article/74df2d3cac3f4925bec9d575460a6bc0 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFL342OhCfGK1llkIrgbbPGfAjZXW4qKKD3AXJi8o1Gmp48K_92YylboQN25DYMK5yT3nZpITgHOmsUbGYOPklSRlnrlUE05TJ6QRXNrcxFO-YzF6YXev_HXlqa9wJizaA0fgLiWznlhqCkN9MNLDb-YWNQYT3UJoE6v1br5STNU5GFUzap94IY9iXX_55qqQroOD-A8Kqp36f8vHNckMd2GnUYfJdRzVHqy5ch-2VzwDD-Dqfl5vPydB8H2itptOm6uUycwnmCxn382lS54mUwx1mTxOtMb5dQjPw8HzzShtnkBIDRW9KtVI77onJPJLbqTWRcZ4po0g2nJmERkmKSucI6ZAljHccsek1EKLruF5Ro9go5yV7hgSniNVe-cZ454ZSwriNTGeWZoLzaRtwfkSFDWPRhcKC4SAnVrBrgX9ANh3l-BOXTdgzFQTM_VXzFpwEeBWYQ1ViwL7xasAONLgRqWuUdZIZFFKW9BeRkQ1i-tdEZmHn0ckEyf_MZpT2ApvyMeDZW3YqBYf7gyVRqU7sJ4Nbzuw2R-MHx479RT7Aoof1Ak |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwEB2x5bDLAQEL2i4FcqjEKWplj-1GQkIFUQqUIkFX6s2Kv1aVStJtw4F_zzhJu-Wwe3VysGfG88ZjzxuAPho6I5OyyXgVSzGgTw0TPPVSWSmUy2zzyncup1f4dSmWbcJt1z6r3PvE2lG70sYc-YCpLN4YsJF8v7lJY9eoeLvattA4gYfICatjpfjk8yHHQvAmKQJqyvI4ne4Hv30VnXbkEf8PiGq-_ru8cg01kyfwuI0Rk3Gj1KfwwBfP4NERc-A5vPuxqZPQSQz7_lKEt163BZVJGRJymeVhuPDJr9WaFF4kP1fGkJU9h8Xk0-LjNG0bIaSWVlWlhkDe0OoJZTKrjMlHKEbGSmacQOcCQ8Ux957ZnLDGCic8KmWkkUMrshF_AZ2iLPwFJCIjwA4-IIqA1rGcBcNsQMczaVC5LvT3QtGbhu5C0zEhyk4fya4LH6LADr9Ejup6oNxe69bktUKameM2tzxECkSylsxRdIhymEtjh114G8Wt406qtjn91xQE0EwjJ5UeU3CjCEs570JvrxHdbrGdvjWIy_s_v4HT6eL7TM--zL-9hLPYL755RNaDTrX9419RVFGZ17Xp_AO0WMs2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9tAEB3RIFXlgEpbhCEtPkTqyUq6n7aEhELbENoqrQqVuK28XxVSaodgDvx7Zu1NoAe4rn1YzbydN7s7-wZgwDTukdHZCF5JMuaZyzThNHNCGsGlLUxX5TsT0z_s2yW_jPVPN7GschUT20BtaxPOyIdEFuHGgORi6GNZxK8vk-PFdRY6SIWb1thO4wVsIiuKgPl8cro-b0GqE5gNdU_0KO70h_9cEwJ40BT_j5Ra7f6nInRLO5PXsB3zxXTcOXgHNlz1BrYeqQi-haOfi_ZAOg0p4B1me_N5fFyZ1j7F8FmvhyuXnl_N0flV-vtKa0TcO7iYfL34PM1iU4TMUPGpyTQSvkZLIOMURmpd5ozn2giiLWfWesIkZaVzxJTIO4Zb7piUWmgxMrzI6S70qrpye5DyAsnbO88Y98xYUhKvifHM0kJoJm0Cg5VR1KKTvlC4ZQi2U49sl8BJMNj6l6BX3Q7Uy78qwl9JhjOz1JSG-iCHiMgpLGaKTIxKoc0ogY_B3CqsqmZZ4n_d4wCcadCnUmN0qURepTSB_sojKi63G_UAjv3nPx_CS0SN-nE2-34Ar0Lr-K6erA-9Znnr3mOC0egPLXLuAQynz24 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Recrystallization+of+Nanocrystalline+Silicon+Ribbons&rft.jtitle=Metals+%28Basel+%29&rft.au=Serra%2C+Filipe&rft.au=Costa%2C+Ivo&rft.au=Silva%2C+Jos%C3%A9+A&rft.au=Serra%2C+Jo%C3%A3o+M&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.issn=2075-4701&rft.eissn=2075-4701&rft.volume=13&rft.issue=3&rft_id=info:doi/10.3390%2Fmet13030452&rft.externalDocID=A743767833 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4701&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4701&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4701&client=summon |