Optical Recrystallization of Nanocrystalline Silicon Ribbons

The Silicon on Dust Substrate (SDS) is a gas-to-wafer process that produces multicrystalline silicon ribbons directly from gaseous feedstock (silane), avoiding the standard industry steps of polysilicon deposition, crystal growth, and wafering. The SDS technique consists of three main steps: (i) mic...

Full description

Saved in:
Bibliographic Details
Published inMetals (Basel ) Vol. 13; no. 3; p. 452
Main Authors Serra, Filipe, Costa, Ivo, Silva, José A., Serra, João M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Silicon on Dust Substrate (SDS) is a gas-to-wafer process that produces multicrystalline silicon ribbons directly from gaseous feedstock (silane), avoiding the standard industry steps of polysilicon deposition, crystal growth, and wafering. The SDS technique consists of three main steps: (i) micrometric-sized silicon powder production by grinding silicon chunks; (ii) chemical vapor deposition (CVD) of silicon over this silicon powder substrate; and (iii) zone-melting recrystallization (ZMR) of the nanocrystalline pre-ribbon obtained in the CVD step. Several samples were produced by this technique. During CVD, mechanically self-sustained nanocrystalline pre-ribbons were grown over silicon powder substrates, with growth rates in the order of 50 µm/min. The ZMR process performance is substantially impacted by the pre-ribbon physical characteristics. The best and largest recrystallizations were achieved on pre-ribbons grown over powder substrates with smaller particle sizes, which also have lower substrate powder incorporation ratios. Multicrystalline silicon ribbons with crystalline areas as large as 2 × 4 cm2 were successfully produced. These areas have visible columnar crystal growth with crystal lengths up to 1 cm. The SDS ribbons’ measured resistivity confirmed the high powder content of the resulting material. The ability to produce solar cells on SDS multicrystalline silicon ribbons was demonstrated.
AbstractList The Silicon on Dust Substrate (SDS) is a gas-to-wafer process that produces multicrystalline silicon ribbons directly from gaseous feedstock (silane), avoiding the standard industry steps of polysilicon deposition, crystal growth, and wafering. The SDS technique consists of three main steps: (i) micrometric-sized silicon powder production by grinding silicon chunks; (ii) chemical vapor deposition (CVD) of silicon over this silicon powder substrate; and (iii) zone-melting recrystallization (ZMR) of the nanocrystalline pre-ribbon obtained in the CVD step. Several samples were produced by this technique. During CVD, mechanically self-sustained nanocrystalline pre-ribbons were grown over silicon powder substrates, with growth rates in the order of 50 µm/min. The ZMR process performance is substantially impacted by the pre-ribbon physical characteristics. The best and largest recrystallizations were achieved on pre-ribbons grown over powder substrates with smaller particle sizes, which also have lower substrate powder incorporation ratios. Multicrystalline silicon ribbons with crystalline areas as large as 2 × 4 cm2 were successfully produced. These areas have visible columnar crystal growth with crystal lengths up to 1 cm. The SDS ribbons’ measured resistivity confirmed the high powder content of the resulting material. The ability to produce solar cells on SDS multicrystalline silicon ribbons was demonstrated.
The Silicon on Dust Substrate (SDS) is a gas-to-wafer process that produces multicrystalline silicon ribbons directly from gaseous feedstock (silane), avoiding the standard industry steps of polysilicon deposition, crystal growth, and wafering. The SDS technique consists of three main steps: (i) micrometric-sized silicon powder production by grinding silicon chunks; (ii) chemical vapor deposition (CVD) of silicon over this silicon powder substrate; and (iii) zone-melting recrystallization (ZMR) of the nanocrystalline pre-ribbon obtained in the CVD step. Several samples were produced by this technique. During CVD, mechanically self-sustained nanocrystalline pre-ribbons were grown over silicon powder substrates, with growth rates in the order of 50 µm/min. The ZMR process performance is substantially impacted by the pre-ribbon physical characteristics. The best and largest recrystallizations were achieved on pre-ribbons grown over powder substrates with smaller particle sizes, which also have lower substrate powder incorporation ratios. Multicrystalline silicon ribbons with crystalline areas as large as 2 × 4 cm[sup.2] were successfully produced. These areas have visible columnar crystal growth with crystal lengths up to 1 cm. The SDS ribbons' measured resistivity confirmed the high powder content of the resulting material. The ability to produce solar cells on SDS multicrystalline silicon ribbons was demonstrated.
Audience Academic
Author Silva, José A
Costa, Ivo
Serra, João M
Serra, Filipe
Author_xml – sequence: 1
  givenname: Filipe
  orcidid: 0000-0003-0819-2660
  surname: Serra
  fullname: Serra, Filipe
– sequence: 2
  givenname: Ivo
  surname: Costa
  fullname: Costa, Ivo
– sequence: 3
  givenname: José A.
  orcidid: 0000-0002-9052-4435
  surname: Silva
  fullname: Silva, José A.
– sequence: 4
  givenname: João M.
  orcidid: 0000-0002-1477-5515
  surname: Serra
  fullname: Serra, João M.
BookMark eNpNkUtrAjEUhUNpoda66h8QuizavDOBbkT6EKSCdR9uMhmJjBObGRf21zfWImaTcHLux7n33qHrJjYeoQeCx4xp_Lz1HWGYYS7oFepRrMSIK0yuL963aNC2G5xPQSXWuodeFrsuOKiHS-_Soe2grsMPdCE2w1gNP6GJZ7nxw69QB5e_lsHa2LT36KaCuvWD_7uPVm-vq-nHaL54n00n85FjknQjy4iyRCpCmXbKWii4KKyT1JaCl2VFuWIcvKcOuCJOlMJzpay0EjuhC9ZHsxO2jLAxuxS2kA4mQjB_QkxrAyl3UXujeMaVzIFjFddUWO90KZTgEoO0DmfW44m1S_F779vObOI-NTm9oUrnkJoWMrvGJ9caMjQ0VewSZCiUfnscgK9C1ieKMyVVwVgueDoVuBTbNvnqHJNgc9yOudgO-wWRCoLh
Cites_doi 10.1016/j.solmat.2007.08.002
10.1007/s10854-007-9177-9
10.1557/PROC-485-3
10.1016/j.seppur.2013.10.014
10.1016/j.jcrysgro.2015.07.008
10.1016/S0081-1947(08)60158-7
10.1088/0953-8984/16/50/R03
10.1109/JPHOTOV.2016.2567070
10.1063/1.5123895
10.1021/ac60168a009
10.1016/j.spc.2021.03.033
10.1109/PVSC.2010.5614096
10.1016/j.promfg.2018.02.156
10.1016/j.surfcoat.2007.04.089
10.1039/c2ee03489a
10.1557/jmr.2015.309
10.1016/j.jcrysgro.2012.07.050
10.1063/1.2799057
10.1016/j.solmat.2019.110108
10.1016/j.jcrysgro.2005.11.051
10.1016/S0927-0248(01)00159-3
10.1016/j.solener.2004.08.020
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/met13030452
DatabaseName CrossRef
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Materials Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
METADEX
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-4701
ExternalDocumentID oai_doaj_org_article_74df2d3cac3f4925bec9d575460a6bc0
A743767833
10_3390_met13030452
GeographicLocations Portugal
GeographicLocations_xml – name: Portugal
GroupedDBID .4S
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PIMPY
PROAC
RIG
TUS
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-b317b1671239c7bba8458bc62bd54ddf24734aee2ca471c5d5e477b6b60c5983
IEDL.DBID DOA
ISSN 2075-4701
IngestDate Tue Oct 22 14:58:46 EDT 2024
Thu Oct 10 16:55:59 EDT 2024
Tue Nov 12 23:02:19 EST 2024
Thu Sep 26 17:14:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b317b1671239c7bba8458bc62bd54ddf24734aee2ca471c5d5e477b6b60c5983
ORCID 0000-0002-9052-4435
0000-0003-0819-2660
0000-0002-1477-5515
OpenAccessLink https://doaj.org/article/74df2d3cac3f4925bec9d575460a6bc0
PQID 2791679286
PQPubID 2032361
ParticipantIDs doaj_primary_oai_doaj_org_article_74df2d3cac3f4925bec9d575460a6bc0
proquest_journals_2791679286
gale_infotracacademiconefile_A743767833
crossref_primary_10_3390_met13030452
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Metals (Basel )
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Reber (ref_9) 2006; 287
Dubois (ref_30) 2007; 102
Aguilera (ref_11) 2021; 28
Powell (ref_12) 2012; 5
ref_13
Green (ref_18) 2007; 18
Pfann (ref_6) 1960; 32
Silva (ref_29) 2015; 428
ref_15
Kalejs (ref_16) 2002; 72
Serra (ref_14) 2019; 2147
Schmich (ref_20) 2007; 201
Kumar (ref_24) 2018; 21
Ishihara (ref_7) 1997; 485
(ref_19) 2004; 77
ref_21
Tomono (ref_25) 2013; 120
ref_1
ref_3
ref_2
Bellanger (ref_23) 2016; 6
Radhakrishnan (ref_10) 2019; 203
Pfann (ref_5) 1957; 4
Niepelt (ref_22) 2015; 30
Bellanger (ref_27) 2012; 359
Hahn (ref_17) 2004; 16
ref_26
Silva (ref_28) 2007; 91
ref_8
ref_4
References_xml – volume: 91
  start-page: 1948
  year: 2007
  ident: ref_28
  article-title: Sprayed boric acid as a dopant source for silicon ribbons
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2007.08.002
  contributor:
    fullname: Silva
– volume: 18
  start-page: 15
  year: 2007
  ident: ref_18
  article-title: Thin-film solar cells: Review of materials, technologies and commercial status
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-007-9177-9
  contributor:
    fullname: Green
– ident: ref_3
– ident: ref_26
– volume: 485
  start-page: 3
  year: 1997
  ident: ref_7
  article-title: Development of High Efficiency Thin Film Polycrystalline Silicon Solar Cells Using VEST Process
  publication-title: MRS Online Proc. Libr.
  doi: 10.1557/PROC-485-3
  contributor:
    fullname: Ishihara
– volume: 120
  start-page: 304
  year: 2013
  ident: ref_25
  article-title: Recycling of kerf loss silicon derived from diamond-wire saw cutting process by chemical approach
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2013.10.014
  contributor:
    fullname: Tomono
– volume: 428
  start-page: 29
  year: 2015
  ident: ref_29
  article-title: New doping method to obtain n-type silicon ribbons
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2015.07.008
  contributor:
    fullname: Silva
– volume: 4
  start-page: 423
  year: 1957
  ident: ref_5
  article-title: Techniques of zone melting and crystal growing
  publication-title: Solid State Phys.
  doi: 10.1016/S0081-1947(08)60158-7
  contributor:
    fullname: Pfann
– volume: 16
  start-page: R1615
  year: 2004
  ident: ref_17
  article-title: New crystalline silicon ribbon materials for photovoltaics
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/16/50/R03
  contributor:
    fullname: Hahn
– volume: 6
  start-page: 1115
  year: 2016
  ident: ref_23
  article-title: First Solar Cells on Exfoliated Silicon Foils Obtained at Room Temperature by the SLIM-Cut Technique Using an Epoxy Layer
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2016.2567070
  contributor:
    fullname: Bellanger
– ident: ref_1
– volume: 2147
  start-page: 140008
  year: 2019
  ident: ref_14
  article-title: Zone melting recrystallization of microcrystalline silicon ribbons obtained by chemical vapor deposition
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5123895
  contributor:
    fullname: Serra
– volume: 32
  start-page: 1574
  year: 1960
  ident: ref_6
  article-title: Applications of zone melting to analytical chemistry
  publication-title: Anal. Chem.
  doi: 10.1021/ac60168a009
  contributor:
    fullname: Pfann
– volume: 28
  start-page: 164
  year: 2021
  ident: ref_11
  article-title: A set of principles for applying Circular Economy to the PV industry: Modeling a closed-loop material cycle system for crystalline photovoltaic panels
  publication-title: Sustain. Prod. Consum.
  doi: 10.1016/j.spc.2021.03.033
  contributor:
    fullname: Aguilera
– ident: ref_21
  doi: 10.1109/PVSC.2010.5614096
– volume: 21
  start-page: 549
  year: 2018
  ident: ref_24
  article-title: Diamond Wire Sawing of Solar Silicon Wafers: A Sustainable Manufacturing Alternative to Loose Abrasive Slurry Sawing
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2018.02.156
  contributor:
    fullname: Kumar
– ident: ref_8
– ident: ref_4
– volume: 201
  start-page: 9325
  year: 2007
  ident: ref_20
  article-title: Silicon CVD deposition for low-cost applications in photovoltaics
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.04.089
  contributor:
    fullname: Schmich
– ident: ref_2
– volume: 5
  start-page: 5874
  year: 2012
  ident: ref_12
  article-title: Crystalline silicon photovoltaics: A cost analysis framework for determining technology pathways to reach baseload electricity costs
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03489a
  contributor:
    fullname: Powell
– volume: 30
  start-page: 3227
  year: 2015
  ident: ref_22
  article-title: Kerfless exfoliated thin crystalline Si wafers with Al metallization layers for solar cells
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2015.309
  contributor:
    fullname: Niepelt
– ident: ref_15
– volume: 359
  start-page: 92
  year: 2012
  ident: ref_27
  article-title: New method of fabricating silicon wafer for the photovoltaic application based on sintering and recrystallization steps
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2012.07.050
  contributor:
    fullname: Bellanger
– volume: 102
  start-page: 083525
  year: 2007
  ident: ref_30
  article-title: Effect of intentional bulk contamination with iron on multicrystalline silicon solar cell properties
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2799057
  contributor:
    fullname: Dubois
– ident: ref_13
– volume: 203
  start-page: 110108
  year: 2019
  ident: ref_10
  article-title: Freestanding and supported processing of sub-70 μm kerfless epitaxial Si and thinned Cz/FZ Si foils into solar cells: An overview of recent progress and challenges
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.110108
  contributor:
    fullname: Radhakrishnan
– volume: 287
  start-page: 391
  year: 2006
  ident: ref_9
  article-title: High-throughput zone-melting recrystallization for crystalline silicon thin-film solar cells
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.11.051
  contributor:
    fullname: Reber
– volume: 72
  start-page: 139
  year: 2002
  ident: ref_16
  article-title: Silicon ribbons and foils—State of the art
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(01)00159-3
  contributor:
    fullname: Kalejs
– volume: 77
  start-page: 667
  year: 2004
  ident: ref_19
  article-title: Status of thin film solar cells in research, production and the market
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2004.08.020
SSID ssj0000826099
Score 2.2929568
Snippet The Silicon on Dust Substrate (SDS) is a gas-to-wafer process that produces multicrystalline silicon ribbons directly from gaseous feedstock (silane), avoiding...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 452
SubjectTerms Aluminum
Atmospheric pressure
Chemical vapor deposition
Crystal growth
Efficiency
Energy
Fluidized bed reactors
Grain size
Manufacturing
metallurgy
Methods
Nanocrystals
photovoltaic
Photovoltaic cells
Physical properties
Polysilicon
Powders
Radiation
Raw materials
Recrystallization
Ribbons
Silicon
silicon feedstock
silicon powder
silicon ribbons
Silicon substrates
Silicon wafers
Solar cells
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqJQUIZKTFFbPxMJCRVEqRhAgiJ1s-IXqlSS0oaBf885cUsZYHU8OHfn-74723cItamCGBmUDcYrcEwdtbHCjMSWC82ZMKmub_k-8uErfRizcUi4LcK1yqVPrBy1KbTPkXewSP2JAU749ewj9l2j_OlqaKGxibZ6WAgffCWD-1WOBeCNAwOqn-URiO4777b0TtvXEf8FRFW9_r-8cgU1gz20Gzhi1K-Vuo82bH6AdtYqBx6iq6dZlYSOPO37AoY3nYYHlVHhInCZxWo4t9HLZAoKz6PniVJgZUdoNLgb3Q7j0Agh1oT3ylgByCv4e0CZVAulsoSyRGmOlWHUGIepIDSzFusMsEYzwywVQnHFu5qlCTlGjbzI7QmKWAqA7ayjlDmqDc6wU1g7akjKFRWmidpLochZXe5CQpjgZSfXZNdEN15gqym-RnU1UMzfZDB5KSiszBCdaeJ8CUSwltQAO6S8m3Glu0106cUt_U4q5xnMqx8EwEp9TSrZB3IjAEsJaaLWUiMybLGF_DGI0_8_n6Ft3yO-vjjWQo1y_mnPgUmU6qIyl28_yMhU
  priority: 102
  providerName: ProQuest
Title Optical Recrystallization of Nanocrystalline Silicon Ribbons
URI https://www.proquest.com/docview/2791679286
https://doaj.org/article/74df2d3cac3f4925bec9d575460a6bc0
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFL342OhCfGK1llkIrgbbPGfAjZXW4qKKD3AXJi8o1Gmp48K_92YylboQN25DYMK5yT3nZpITgHOmsUbGYOPklSRlnrlUE05TJ6QRXNrcxFO-YzF6YXev_HXlqa9wJizaA0fgLiWznlhqCkN9MNLDb-YWNQYT3UJoE6v1br5STNU5GFUzap94IY9iXX_55qqQroOD-A8Kqp36f8vHNckMd2GnUYfJdRzVHqy5ch-2VzwDD-Dqfl5vPydB8H2itptOm6uUycwnmCxn382lS54mUwx1mTxOtMb5dQjPw8HzzShtnkBIDRW9KtVI77onJPJLbqTWRcZ4po0g2nJmERkmKSucI6ZAljHccsek1EKLruF5Ro9go5yV7hgSniNVe-cZ454ZSwriNTGeWZoLzaRtwfkSFDWPRhcKC4SAnVrBrgX9ANh3l-BOXTdgzFQTM_VXzFpwEeBWYQ1ViwL7xasAONLgRqWuUdZIZFFKW9BeRkQ1i-tdEZmHn0ckEyf_MZpT2ApvyMeDZW3YqBYf7gyVRqU7sJ4Nbzuw2R-MHx479RT7Aoof1Ak
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwEB2x5bDLAQEL2i4FcqjEKWplj-1GQkIFUQqUIkFX6s2Kv1aVStJtw4F_zzhJu-Wwe3VysGfG88ZjzxuAPho6I5OyyXgVSzGgTw0TPPVSWSmUy2zzyncup1f4dSmWbcJt1z6r3PvE2lG70sYc-YCpLN4YsJF8v7lJY9eoeLvattA4gYfICatjpfjk8yHHQvAmKQJqyvI4ne4Hv30VnXbkEf8PiGq-_ru8cg01kyfwuI0Rk3Gj1KfwwBfP4NERc-A5vPuxqZPQSQz7_lKEt163BZVJGRJymeVhuPDJr9WaFF4kP1fGkJU9h8Xk0-LjNG0bIaSWVlWlhkDe0OoJZTKrjMlHKEbGSmacQOcCQ8Ux957ZnLDGCic8KmWkkUMrshF_AZ2iLPwFJCIjwA4-IIqA1rGcBcNsQMczaVC5LvT3QtGbhu5C0zEhyk4fya4LH6LADr9Ejup6oNxe69bktUKameM2tzxECkSylsxRdIhymEtjh114G8Wt406qtjn91xQE0EwjJ5UeU3CjCEs570JvrxHdbrGdvjWIy_s_v4HT6eL7TM--zL-9hLPYL755RNaDTrX9419RVFGZ17Xp_AO0WMs2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9tAEB3RIFXlgEpbhCEtPkTqyUq6n7aEhELbENoqrQqVuK28XxVSaodgDvx7Zu1NoAe4rn1YzbydN7s7-wZgwDTukdHZCF5JMuaZyzThNHNCGsGlLUxX5TsT0z_s2yW_jPVPN7GschUT20BtaxPOyIdEFuHGgORi6GNZxK8vk-PFdRY6SIWb1thO4wVsIiuKgPl8cro-b0GqE5gNdU_0KO70h_9cEwJ40BT_j5Ra7f6nInRLO5PXsB3zxXTcOXgHNlz1BrYeqQi-haOfi_ZAOg0p4B1me_N5fFyZ1j7F8FmvhyuXnl_N0flV-vtKa0TcO7iYfL34PM1iU4TMUPGpyTQSvkZLIOMURmpd5ozn2giiLWfWesIkZaVzxJTIO4Zb7piUWmgxMrzI6S70qrpye5DyAsnbO88Y98xYUhKvifHM0kJoJm0Cg5VR1KKTvlC4ZQi2U49sl8BJMNj6l6BX3Q7Uy78qwl9JhjOz1JSG-iCHiMgpLGaKTIxKoc0ogY_B3CqsqmZZ4n_d4wCcadCnUmN0qURepTSB_sojKi63G_UAjv3nPx_CS0SN-nE2-34Ar0Lr-K6erA-9Znnr3mOC0egPLXLuAQynz24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Recrystallization+of+Nanocrystalline+Silicon+Ribbons&rft.jtitle=Metals+%28Basel+%29&rft.au=Serra%2C+Filipe&rft.au=Costa%2C+Ivo&rft.au=Silva%2C+Jos%C3%A9+A&rft.au=Serra%2C+Jo%C3%A3o+M&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.issn=2075-4701&rft.eissn=2075-4701&rft.volume=13&rft.issue=3&rft_id=info:doi/10.3390%2Fmet13030452&rft.externalDocID=A743767833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4701&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4701&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4701&client=summon