Video-Based Human Action Recognition Using Spatial Pyramid Pooling and 3D Densely Convolutional Networks
In recent years, the application of deep neural networks to human behavior recognition has become a hot topic. Although remarkable achievements have been made in the field of image recognition, there are still many problems to be solved in the area of video. It is well known that convolutional neura...
Saved in:
Published in | Future internet Vol. 10; no. 12; p. 115 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the application of deep neural networks to human behavior recognition has become a hot topic. Although remarkable achievements have been made in the field of image recognition, there are still many problems to be solved in the area of video. It is well known that convolutional neural networks require a fixed size image input, which not only limits the network structure but also affects the recognition accuracy. Although this problem has been solved in the field of images, it has not yet been broken through in the field of video. To address the input problem of fixed size video frames in video recognition, we propose a three-dimensional (3D) densely connected convolutional network based on spatial pyramid pooling (3D-DenseNet-SPP). As the name implies, the network structure is mainly composed of three parts: 3DCNN, DenseNet, and SPPNet. Our models were evaluated on a KTH dataset and UCF101 dataset separately. The experimental results showed that our model has better performance in the field of video-based behavior recognition in comparison to the existing models. |
---|---|
AbstractList | In recent years, the application of deep neural networks to human behavior recognition has become a hot topic. Although remarkable achievements have been made in the field of image recognition, there are still many problems to be solved in the area of video. It is well known that convolutional neural networks require a fixed size image input, which not only limits the network structure but also affects the recognition accuracy. Although this problem has been solved in the field of images, it has not yet been broken through in the field of video. To address the input problem of fixed size video frames in video recognition, we propose a three-dimensional (3D) densely connected convolutional network based on spatial pyramid pooling (3D-DenseNet-SPP). As the name implies, the network structure is mainly composed of three parts: 3DCNN, DenseNet, and SPPNet. Our models were evaluated on a KTH dataset and UCF101 dataset separately. The experimental results showed that our model has better performance in the field of video-based behavior recognition in comparison to the existing models. |
Author | Gao, Mingke Huang, Chen Chen, Yimin Yang, Wanli |
Author_xml | – sequence: 1 givenname: Wanli surname: Yang fullname: Yang, Wanli – sequence: 2 givenname: Yimin surname: Chen fullname: Chen, Yimin – sequence: 3 givenname: Chen surname: Huang fullname: Huang, Chen – sequence: 4 givenname: Mingke surname: Gao fullname: Gao, Mingke |
BookMark | eNpNUdFuEzEQtFCRKKUvfIEl3pCO2l6f7_xYUqCVKqiA8mptzuvgcLGDfQHl73tpELAvOxrNzmg1z9lJyokYeynFGwArLkKUQiohZfuEnUprbdNaASf_4WfsvNa1mAesMqY7Zd-_RU-5eYuVPL_ebTDxy2GKOfHPNORVio_4vsa04l-2OEUc-d2-4CZ6fpfzeOAxeQ5X_IpSpXHPFzn9yuPucDiLP9L0O5cf9QV7GnCsdP5nn7H79---Lq6b208fbhaXt80ARk7Ncn4BTNuBDR2gVB6CBiOEQqNbQi21JeiFCrrrWq1QQQut6f1SKrAGPJyxm6Ovz7h22xI3WPYuY3SPRC4rh2WKw0guzDEQfI8GSPe0xE4E7EiS8spqDLPXq6PXtuSfO6qTW-ddmb-qTimQuu-N7GbV66NqKLnWQuFvqhTuUIz7Vww8AI4hf7U |
CitedBy_id | crossref_primary_10_1007_s00530_021_00773_x crossref_primary_10_3389_fnbot_2021_675827 crossref_primary_10_1002_fam_3045 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PIMPY PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/fi10120115 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection Computing Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1999-5903 |
ExternalDocumentID | oai_doaj_org_article_f5733fd8a63e48eba70fa7e1e2d294af 10_3390_fi10120115 |
GeographicLocations | Canada United States--US China |
GeographicLocations_xml | – name: China – name: Canada – name: United States--US |
GroupedDBID | -DT .4I 3V. 5VS 7WY 8FE 8FG 8FL AADQD AAFWJ AAKPC AAYXX ABDBF ABUWG ACIHN ADBBV AEAQA AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z EAP EBS EJD ESX FRNLG GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_DOAJ HCIFZ IAO IPNFZ K60 K6V K6~ K7- KQ8 M0C M0N MODMG M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RIG RNS TR2 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c361t-b101365739f73a12d3f436002a645ea4149e3802f477542a2353568db123963d3 |
IEDL.DBID | BENPR |
ISSN | 1999-5903 |
IngestDate | Tue Oct 22 15:15:02 EDT 2024 Thu Oct 10 19:03:33 EDT 2024 Fri Aug 23 04:09:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-b101365739f73a12d3f436002a645ea4149e3802f477542a2353568db123963d3 |
OpenAccessLink | https://www.proquest.com/docview/2231488617?pq-origsite=%requestingapplication% |
PQID | 2231488617 |
PQPubID | 2032396 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f5733fd8a63e48eba70fa7e1e2d294af proquest_journals_2231488617 crossref_primary_10_3390_fi10120115 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Future internet |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
SSID | ssj0000392667 |
Score | 2.149316 |
Snippet | In recent years, the application of deep neural networks to human behavior recognition has become a hot topic. Although remarkable achievements have been made... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 115 |
SubjectTerms | 3D convolution Accuracy action recognition Artificial intelligence Artificial neural networks Classification CNN dense connectivity Human activity recognition Human behavior Human motion Information seeking behavior International conferences Internet Neural networks Object recognition Pattern recognition spatial pyramid pooling Success Surveillance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-yJ30QP3E6JaCvZW2SNunjPhxDcAxxsreSNonuwU62Key_9y7tdOKDL76VEtpwd7n7XXL5HSE30jGNPHuBUkkcCKN1kCsNWYqThZR5yHKDG_r3o2Q4EXfTeLrV6gtrwip64EpwbYeEfc4onXArlM21DJ2WNrLMsFRo571vmG4lU94HQ9hPElnxkXLI69tuhkxWCIB-RCBP1P_LD_vgMjgg-zUqpJ1qNodkx5ZHZG-LK_CYvDzNjJ0HXYg6hvqtd9rxdxLow6YGCJ59BQDFPsNgV3S8XujXmaHjObbmeaa6NJT3ad_iNfQ17c3Lj9ryYPCoKghfnpDJ4PaxNwzqNglBwZNoFeQR8q6BmFInuY6Y4U5wPG7TiYitFpADWa5C5gSy3THNeMzjRJkcghYsP8NPSaOcl_aM0Ig7ZQr4QgpIRWC7FO2sEKwoLAcgEDfJ9UZ02VvFhpFBFoECzr4F3CRdlOrXCGSw9i9Ar1mt1-wvvTZJa6OTrF5WywywDKRvClDX-X_844LswoRVVZ3SIo3V4t1eAsZY5VfenD4BGpHPGQ priority: 102 providerName: Directory of Open Access Journals |
Title | Video-Based Human Action Recognition Using Spatial Pyramid Pooling and 3D Densely Convolutional Networks |
URI | https://www.proquest.com/docview/2231488617 https://doaj.org/article/f5733fd8a63e48eba70fa7e1e2d294af |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be2EPiKe2bKkswTWisZ3EPa2aloKQqCoEiFvkxDb0sAnbdlfi3zOTuDyExC1KLCsaz_ibGY-_AThNHNfEsxcoFUeBNFoHudIYpbikSJK8z3NDCf3raXx5J68eogefcFv6ssr1nlhv1KYqKEd-hjCGnrtCwP39_DegrlF0uupbaGxCm2OkwFvQTs-ns5u3LEsf4T-Ok4aXVGB8f-bmxGhFjtAnJKoJ-7_sxzXITHZg23uHbNgs5y5s2HIPfnzgDNyHp_u5sVWQIvoYVqfg2bC-m8Bu1rVA-FxXAjDqN4z6xWYvC_1nbtisohY9j0yXhokxG1u6jv7CRlX532sgDp42heHLA7ibnN-OLgPfLiEoRByugjwk_jWU-8AlQofcCCcFHbvpWEZWS4yFrFB97iSx3nHNRSSiWJkcwQvN0IhDaJVVaX8CC4VTpsAZBuixSGqbop2VkheFFegQRB04WYsue25YMTKMJkjA2buAO5CSVN9GEJN1_aJaPGbeMDJHhIzOKB0LK5XNddJ3OrGh5YYPpHYd6K7XJPPmtczeleHo-8-_YAt_RTX1J11orRb_7DF6Eau8B5tqctGD9jAdp5OeV5xeHZO_At6Nyfo |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEG8UH9QH42dEUZvo6wK03VaeDIqIHxBiwPi2dGuLPLghoAn_vXf7EI2Jb8vWLNv1er-76_V3hFz4link2XOk9FxHaKWcUCqIUqwf-X5YY6HGhH6353WG4v7FfckTbrO8rLKwiamh1kmEOfIqwBh47hIA93Ly7mDXKNxdzVtorJI1wQFo8KR4-_Y7x1ID8Pc8P2Ml5RDdV-0Y-azQDfqFQyld_x9rnEJMe5ts5b4hbWaTuUNWTLxLNn8wBu6R1-exNolzBdijaZqAp830ZAJ9KiqB4DqtA6DYbRi0i_YXU_U21rSfYIOeEVWxprxFWwYPoy_odRJ_5voHg3tZWfhsnwzbN4PrjpM3S3Ai-PO5E9aRfQ2k3rA-V3WmuQWRgL1TnnCNEhAJGS5rzArkvGOKcZe7ntQhQBcsQs0PSClOYnNIaJ1bqSN4QwP8FYFNU5Q1QrAoMhzcAbdMzgvRBZOMEyOAWAIFHCwFXCZXKNXvEchjnd5IpqMgXxaBRTpGq6XyuBHShMqvWeWbumGaNYSyZVIp5iTIF9csWKrC0f-Pz8h6Z9B9DB7veg_HZAM-S2aVKBVSmk8_zAn4E_PwNFWaL1X-yDg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB7tFgntHtAuD22BXSzBNWpjO7F7QpRS8awqBIhb5MQ228Mm0BYk_j0zictDSHuLkiiKxmPPN-PP3wDsKc8N6exFWqdJJK0xUa4NZileFUrlXZ5bKuhfjNLja3l6m9wG_tMs0CoXa2K9UNuqoBp5B8MYIneNAbfjAy1iPBju3z9E1EGKdlpDO42vsKQkelULlvpHo_Hla8Wli1AgTVWjUSow1-_4CalbESj6EJVq8f5Pa3MdcIY_YCUgRXbQDO1P-OLKVfj-Tj9wDf7eTKyroj5GIsvqcjw7qM8psMsFLwiva1YAo97D6Gts_Dw1_yaWjStq13PHTGmZGLCBo6Ppz-ywKp-CN-LLo4YkPluH6-HR1eFxFFonRIVI43mUx6TFhmPQ80qYmFvhpaAtOJPKxBmJeZETusu9JAU8brhIRJJqm2MgwylpxQa0yqp0v4DFwmtb4Bd6iF4ktVAx3knJi8IJBAdJG3YXpsvuG4WMDDMLMnD2ZuA29Mmqr2-QqnV9o5reZWGSZJ7EGb3VJhVOapcb1fVGudhxy3vS-DZsL8YkC1Ntlr05xub_H-_AMnpMdn4yOtuCb_hXuqGlbENrPn10vxFczPM_wWteACD6zds |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Video-Based+Human+Action+Recognition+Using+Spatial+Pyramid+Pooling+and+3D+Densely+Convolutional+Networks&rft.jtitle=Future+internet&rft.au=Yang%2C+Wanli&rft.au=Chen%2C+Yimin&rft.au=Huang%2C+Chen&rft.au=Gao%2C+Mingke&rft.date=2018-12-01&rft.pub=MDPI+AG&rft.eissn=1999-5903&rft.volume=10&rft.issue=12&rft_id=info:doi/10.3390%2Ffi10120115&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon |