Video-Based Human Action Recognition Using Spatial Pyramid Pooling and 3D Densely Convolutional Networks

In recent years, the application of deep neural networks to human behavior recognition has become a hot topic. Although remarkable achievements have been made in the field of image recognition, there are still many problems to be solved in the area of video. It is well known that convolutional neura...

Full description

Saved in:
Bibliographic Details
Published inFuture internet Vol. 10; no. 12; p. 115
Main Authors Yang, Wanli, Chen, Yimin, Huang, Chen, Gao, Mingke
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the application of deep neural networks to human behavior recognition has become a hot topic. Although remarkable achievements have been made in the field of image recognition, there are still many problems to be solved in the area of video. It is well known that convolutional neural networks require a fixed size image input, which not only limits the network structure but also affects the recognition accuracy. Although this problem has been solved in the field of images, it has not yet been broken through in the field of video. To address the input problem of fixed size video frames in video recognition, we propose a three-dimensional (3D) densely connected convolutional network based on spatial pyramid pooling (3D-DenseNet-SPP). As the name implies, the network structure is mainly composed of three parts: 3DCNN, DenseNet, and SPPNet. Our models were evaluated on a KTH dataset and UCF101 dataset separately. The experimental results showed that our model has better performance in the field of video-based behavior recognition in comparison to the existing models.
AbstractList In recent years, the application of deep neural networks to human behavior recognition has become a hot topic. Although remarkable achievements have been made in the field of image recognition, there are still many problems to be solved in the area of video. It is well known that convolutional neural networks require a fixed size image input, which not only limits the network structure but also affects the recognition accuracy. Although this problem has been solved in the field of images, it has not yet been broken through in the field of video. To address the input problem of fixed size video frames in video recognition, we propose a three-dimensional (3D) densely connected convolutional network based on spatial pyramid pooling (3D-DenseNet-SPP). As the name implies, the network structure is mainly composed of three parts: 3DCNN, DenseNet, and SPPNet. Our models were evaluated on a KTH dataset and UCF101 dataset separately. The experimental results showed that our model has better performance in the field of video-based behavior recognition in comparison to the existing models.
Author Gao, Mingke
Huang, Chen
Chen, Yimin
Yang, Wanli
Author_xml – sequence: 1
  givenname: Wanli
  surname: Yang
  fullname: Yang, Wanli
– sequence: 2
  givenname: Yimin
  surname: Chen
  fullname: Chen, Yimin
– sequence: 3
  givenname: Chen
  surname: Huang
  fullname: Huang, Chen
– sequence: 4
  givenname: Mingke
  surname: Gao
  fullname: Gao, Mingke
BookMark eNpNUdFuEzEQtFCRKKUvfIEl3pCO2l6f7_xYUqCVKqiA8mptzuvgcLGDfQHl73tpELAvOxrNzmg1z9lJyokYeynFGwArLkKUQiohZfuEnUprbdNaASf_4WfsvNa1mAesMqY7Zd-_RU-5eYuVPL_ebTDxy2GKOfHPNORVio_4vsa04l-2OEUc-d2-4CZ6fpfzeOAxeQ5X_IpSpXHPFzn9yuPucDiLP9L0O5cf9QV7GnCsdP5nn7H79---Lq6b208fbhaXt80ARk7Ncn4BTNuBDR2gVB6CBiOEQqNbQi21JeiFCrrrWq1QQQut6f1SKrAGPJyxm6Ovz7h22xI3WPYuY3SPRC4rh2WKw0guzDEQfI8GSPe0xE4E7EiS8spqDLPXq6PXtuSfO6qTW-ddmb-qTimQuu-N7GbV66NqKLnWQuFvqhTuUIz7Vww8AI4hf7U
CitedBy_id crossref_primary_10_1007_s00530_021_00773_x
crossref_primary_10_3389_fnbot_2021_675827
crossref_primary_10_1002_fam_3045
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PIMPY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/fi10120115
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection
Computing Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1999-5903
ExternalDocumentID oai_doaj_org_article_f5733fd8a63e48eba70fa7e1e2d294af
10_3390_fi10120115
GeographicLocations Canada
United States--US
China
GeographicLocations_xml – name: China
– name: Canada
– name: United States--US
GroupedDBID -DT
.4I
3V.
5VS
7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAKPC
AAYXX
ABDBF
ABUWG
ACIHN
ADBBV
AEAQA
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EAP
EBS
EJD
ESX
FRNLG
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_DOAJ
HCIFZ
IAO
IPNFZ
K60
K6V
K6~
K7-
KQ8
M0C
M0N
MODMG
M~E
OK1
P62
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RIG
RNS
TR2
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c361t-b101365739f73a12d3f436002a645ea4149e3802f477542a2353568db123963d3
IEDL.DBID BENPR
ISSN 1999-5903
IngestDate Tue Oct 22 15:15:02 EDT 2024
Thu Oct 10 19:03:33 EDT 2024
Fri Aug 23 04:09:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b101365739f73a12d3f436002a645ea4149e3802f477542a2353568db123963d3
OpenAccessLink https://www.proquest.com/docview/2231488617?pq-origsite=%requestingapplication%
PQID 2231488617
PQPubID 2032396
ParticipantIDs doaj_primary_oai_doaj_org_article_f5733fd8a63e48eba70fa7e1e2d294af
proquest_journals_2231488617
crossref_primary_10_3390_fi10120115
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Future internet
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
SSID ssj0000392667
Score 2.149316
Snippet In recent years, the application of deep neural networks to human behavior recognition has become a hot topic. Although remarkable achievements have been made...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 115
SubjectTerms 3D convolution
Accuracy
action recognition
Artificial intelligence
Artificial neural networks
Classification
CNN
dense connectivity
Human activity recognition
Human behavior
Human motion
Information seeking behavior
International conferences
Internet
Neural networks
Object recognition
Pattern recognition
spatial pyramid pooling
Success
Surveillance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-yJ30QP3E6JaCvZW2SNunjPhxDcAxxsreSNonuwU62Key_9y7tdOKDL76VEtpwd7n7XXL5HSE30jGNPHuBUkkcCKN1kCsNWYqThZR5yHKDG_r3o2Q4EXfTeLrV6gtrwip64EpwbYeEfc4onXArlM21DJ2WNrLMsFRo571vmG4lU94HQ9hPElnxkXLI69tuhkxWCIB-RCBP1P_LD_vgMjgg-zUqpJ1qNodkx5ZHZG-LK_CYvDzNjJ0HXYg6hvqtd9rxdxLow6YGCJ59BQDFPsNgV3S8XujXmaHjObbmeaa6NJT3ad_iNfQ17c3Lj9ryYPCoKghfnpDJ4PaxNwzqNglBwZNoFeQR8q6BmFInuY6Y4U5wPG7TiYitFpADWa5C5gSy3THNeMzjRJkcghYsP8NPSaOcl_aM0Ig7ZQr4QgpIRWC7FO2sEKwoLAcgEDfJ9UZ02VvFhpFBFoECzr4F3CRdlOrXCGSw9i9Ar1mt1-wvvTZJa6OTrF5WywywDKRvClDX-X_844LswoRVVZ3SIo3V4t1eAsZY5VfenD4BGpHPGQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Video-Based Human Action Recognition Using Spatial Pyramid Pooling and 3D Densely Convolutional Networks
URI https://www.proquest.com/docview/2231488617
https://doaj.org/article/f5733fd8a63e48eba70fa7e1e2d294af
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be2EPiKe2bKkswTWisZ3EPa2aloKQqCoEiFvkxDb0sAnbdlfi3zOTuDyExC1KLCsaz_ibGY-_AThNHNfEsxcoFUeBNFoHudIYpbikSJK8z3NDCf3raXx5J68eogefcFv6ssr1nlhv1KYqKEd-hjCGnrtCwP39_DegrlF0uupbaGxCm2OkwFvQTs-ns5u3LEsf4T-Ok4aXVGB8f-bmxGhFjtAnJKoJ-7_sxzXITHZg23uHbNgs5y5s2HIPfnzgDNyHp_u5sVWQIvoYVqfg2bC-m8Bu1rVA-FxXAjDqN4z6xWYvC_1nbtisohY9j0yXhokxG1u6jv7CRlX532sgDp42heHLA7ibnN-OLgPfLiEoRByugjwk_jWU-8AlQofcCCcFHbvpWEZWS4yFrFB97iSx3nHNRSSiWJkcwQvN0IhDaJVVaX8CC4VTpsAZBuixSGqbop2VkheFFegQRB04WYsue25YMTKMJkjA2buAO5CSVN9GEJN1_aJaPGbeMDJHhIzOKB0LK5XNddJ3OrGh5YYPpHYd6K7XJPPmtczeleHo-8-_YAt_RTX1J11orRb_7DF6Eau8B5tqctGD9jAdp5OeV5xeHZO_At6Nyfo
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEG8UH9QH42dEUZvo6wK03VaeDIqIHxBiwPi2dGuLPLghoAn_vXf7EI2Jb8vWLNv1er-76_V3hFz4link2XOk9FxHaKWcUCqIUqwf-X5YY6HGhH6353WG4v7FfckTbrO8rLKwiamh1kmEOfIqwBh47hIA93Ly7mDXKNxdzVtorJI1wQFo8KR4-_Y7x1ID8Pc8P2Ml5RDdV-0Y-azQDfqFQyld_x9rnEJMe5ts5b4hbWaTuUNWTLxLNn8wBu6R1-exNolzBdijaZqAp830ZAJ9KiqB4DqtA6DYbRi0i_YXU_U21rSfYIOeEVWxprxFWwYPoy_odRJ_5voHg3tZWfhsnwzbN4PrjpM3S3Ai-PO5E9aRfQ2k3rA-V3WmuQWRgL1TnnCNEhAJGS5rzArkvGOKcZe7ntQhQBcsQs0PSClOYnNIaJ1bqSN4QwP8FYFNU5Q1QrAoMhzcAbdMzgvRBZOMEyOAWAIFHCwFXCZXKNXvEchjnd5IpqMgXxaBRTpGq6XyuBHShMqvWeWbumGaNYSyZVIp5iTIF9csWKrC0f-Pz8h6Z9B9DB7veg_HZAM-S2aVKBVSmk8_zAn4E_PwNFWaL1X-yDg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB7tFgntHtAuD22BXSzBNWpjO7F7QpRS8awqBIhb5MQ228Mm0BYk_j0zictDSHuLkiiKxmPPN-PP3wDsKc8N6exFWqdJJK0xUa4NZileFUrlXZ5bKuhfjNLja3l6m9wG_tMs0CoXa2K9UNuqoBp5B8MYIneNAbfjAy1iPBju3z9E1EGKdlpDO42vsKQkelULlvpHo_Hla8Wli1AgTVWjUSow1-_4CalbESj6EJVq8f5Pa3MdcIY_YCUgRXbQDO1P-OLKVfj-Tj9wDf7eTKyroj5GIsvqcjw7qM8psMsFLwiva1YAo97D6Gts_Dw1_yaWjStq13PHTGmZGLCBo6Ppz-ywKp-CN-LLo4YkPluH6-HR1eFxFFonRIVI43mUx6TFhmPQ80qYmFvhpaAtOJPKxBmJeZETusu9JAU8brhIRJJqm2MgwylpxQa0yqp0v4DFwmtb4Bd6iF4ktVAx3knJi8IJBAdJG3YXpsvuG4WMDDMLMnD2ZuA29Mmqr2-QqnV9o5reZWGSZJ7EGb3VJhVOapcb1fVGudhxy3vS-DZsL8YkC1Ntlr05xub_H-_AMnpMdn4yOtuCb_hXuqGlbENrPn10vxFczPM_wWteACD6zds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Video-Based+Human+Action+Recognition+Using+Spatial+Pyramid+Pooling+and+3D+Densely+Convolutional+Networks&rft.jtitle=Future+internet&rft.au=Yang%2C+Wanli&rft.au=Chen%2C+Yimin&rft.au=Huang%2C+Chen&rft.au=Gao%2C+Mingke&rft.date=2018-12-01&rft.pub=MDPI+AG&rft.eissn=1999-5903&rft.volume=10&rft.issue=12&rft_id=info:doi/10.3390%2Ffi10120115&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon