Tracing monoclinic distortion in NCM532 cathode materials by in situ high-energy synchrotron X-ray diffraction

Layered LiNixCoyMnzO2 (NCM) cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric vehicles. Despite significant research efforts, the understanding of complex structural dynamics during lithium (de-) intercalation still remains a subjec...

Full description

Saved in:
Bibliographic Details
Published inProgress in natural science Vol. 34; no. 2; pp. 274 - 279
Main Authors Dong, Min, Sun, Qingya, Wang, Zhihua, Rui, Zixin, Zhang, Zhe, Zhu, He, Lan, Si
Format Journal Article
LanguageEnglish
Published United States Elsevier B.V 01.04.2024
Center for Neutron Scattering,City University of Hong Kong Shenzhen Research Institute,Shenzhen,518057,China
Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Materials Science and Engineering,Henan University of Technology,Zhengzhou,450001,China%Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China
Chinese Materials Research Society
Subjects
Online AccessGet full text
ISSN1002-0071
DOI10.1016/j.pnsc.2024.02.019

Cover

Loading…
Abstract Layered LiNixCoyMnzO2 (NCM) cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric vehicles. Despite significant research efforts, the understanding of complex structural dynamics during lithium (de-) intercalation still remains a subject of debate, especially in scenarios where morphology and composition vary. In this study, we carried out in situ high-energy synchrotron X-ray diffraction experiments on commercial NCM523 cathode materials in both single crystal and polycrystalline forms to probe the structural changes during charging and discharging in detail. Our findings reveal that both single crystal and polycrystalline materials exhibit typical H1–H2–H3 phase transitions. However, in polycrystalline NCM532, a monoclinic intermediate phase emerges between the H1 and H2 phases. During this process, symmetry reduces from R-3m to C2/m, which is attributed to a shear distortion along the ab plane. In contrast, for single crystal materials, the H1 phase directly transforms into the H2 phase without the monoclinic phase. The observed monoclinic distortion significantly impacts structural stability and material cycling performance. This study provides new insight into the structural dynamics in NCM532 cathode materials, particularly concerning morphology-dependent behaviors, which could deepen our understanding of the relationship between NCM material structures and their performance.
AbstractList Not provided.
Layered LiNixCoyMnzO2 (NCM) cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric vehicles. Despite significant research efforts, the understanding of complex structural dynamics during lithium (de-) intercalation still remains a subject of debate, especially in scenarios where morphology and composition vary. In this study, we carried out in situ high-energy synchrotron X-ray diffraction experiments on commercial NCM523 cathode materials in both single crystal and polycrystalline forms to probe the structural changes during charging and discharging in detail. Our findings reveal that both single crystal and polycrystalline materials exhibit typical H1–H2–H3 phase transitions. However, in polycrystalline NCM532, a monoclinic intermediate phase emerges between the H1 and H2 phases. During this process, symmetry reduces from R-3m to C2/m, which is attributed to a shear distortion along the ab plane. In contrast, for single crystal materials, the H1 phase directly transforms into the H2 phase without the monoclinic phase. The observed monoclinic distortion significantly impacts structural stability and material cycling performance. This study provides new insight into the structural dynamics in NCM532 cathode materials, particularly concerning morphology-dependent behaviors, which could deepen our understanding of the relationship between NCM material structures and their performance.
Layered LiNixCoyMnzO2(NCM)cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric vehicles.Despite significant research efforts,the understanding of complex structural dynamics during lithium(de-)intercalation still remains a subject of debate,especially in sce-narios where morphology and composition vary.In this study,we carried out in situ high-energy synchrotron X-ray diffraction experiments on commercial NCM523 cathode materials in both single crystal and polycrystalline forms to probe the structural changes during charging and discharging in detail.Our findings reveal that both single crystal and polycrystalline materials exhibit typical H1-H2-H3 phase transitions.However,in polycrystalline NCM532,a monoclinic intermediate phase emerges between the H1 and H2 phases.During this process,symmetry reduces from R-3m to C2/m,which is attributed to a shear distortion along the ab plane.In contrast,for single crystal materials,the H1 phase directly transforms into the H2 phase without the monoclinic phase.The observed monoclinic distortion signif-icantly impacts structural stability and material cycling performance.This study provides new insight into the structural dynamics in NCM532 cathode materials,particularly concerning morphology-dependent behaviors,which could deepen our understanding of the relationship between NCM material structures and their performance.
Author Lan, Si
Sun, Qingya
Dong, Min
Zhu, He
Wang, Zhihua
Zhang, Zhe
Rui, Zixin
AuthorAffiliation Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Materials Science and Engineering,Henan University of Technology,Zhengzhou,450001,China%Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China;Center for Neutron Scattering,City University of Hong Kong Shenzhen Research Institute,Shenzhen,518057,China
AuthorAffiliation_xml – name: Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Materials Science and Engineering,Henan University of Technology,Zhengzhou,450001,China%Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China;Center for Neutron Scattering,City University of Hong Kong Shenzhen Research Institute,Shenzhen,518057,China
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0009-0002-3508-6070
  surname: Dong
  fullname: Dong, Min
  organization: Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 2
  givenname: Qingya
  surname: Sun
  fullname: Sun, Qingya
  organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 3
  givenname: Zhihua
  surname: Wang
  fullname: Wang, Zhihua
  organization: Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 4
  givenname: Zixin
  surname: Rui
  fullname: Rui, Zixin
  organization: School of Materials Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
– sequence: 5
  givenname: Zhe
  surname: Zhang
  fullname: Zhang, Zhe
  organization: Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 6
  givenname: He
  orcidid: 0000-0002-3828-3312
  surname: Zhu
  fullname: Zhu, He
  email: hezhu@njust.edu.cn
  organization: Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 7
  givenname: Si
  surname: Lan
  fullname: Lan, Si
  email: lansi@njust.edu.cn
  organization: Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
BackLink https://www.osti.gov/biblio/2581255$$D View this record in Osti.gov
BookMark eNp9kDFvFDEQhV0EiSTwB6gsOopdxvbu7Z1Eg04QkAI0QaKzvPbsrZe7cWQ7wObXY-uoKFKNpXnfG793xS4oEDL2SkArQGzeLu09JdtKkF0LsgWxu2CXAkA2AIN4zq5SWqA-N8Mlo7torKcDPwUK9ujJW-58yiFmH4h74l_3X3oluTV5Dg75yWSM3hwTH9e6Tj4_8Nkf5gYJ42HlaSU7x5BjwX800azFb5rKlWr4gj2bCosv_81r9v3jh7v9p-b2283n_fvbxqqNyI2xgxsHhU4MMAkEt7NDCdAJmMbRCbC7rVI7NDhiVzeD2vSq7zqlBkC3RXXNXp99Q8peJ-sz2tkGIrRZy34rZN8X0Zuz6LehydBBL-EhUvmWfow__yyPGmuHIAGqdnvW2hhSijjp4mlqpByNP2oBupavF13L1xXUIHUpv6DyP_Q--pOJ69PQuzOEpaVfHmMNgWTR-VgzuOCfwv8C92KjBg
CitedBy_id crossref_primary_10_1016_j_jechem_2024_08_011
Cites_doi 10.1016/j.pnsc.2023.11.011
10.1016/j.pnsc.2023.08.002
10.1021/acsami.2c19687
10.1021/acs.nanolett.1c03613
10.1002/cnl2.62
10.1021/acs.nanolett.7b00379
10.1007/s12598-022-01983-6
10.1038/s41560-018-0191-3
10.1021/acsami.2c17419
10.1016/j.nanoen.2022.107502
10.1038/s41560-019-0513-0
10.1021/cm301825h
10.1149/1.2220730
10.1038/s41560-023-01289-6
10.1002/aenm.202003400
10.1016/j.ensm.2019.08.013
10.1021/acs.jpcc.6b12885
10.1002/anie.202012773
10.1021/acs.chemmater.7b05269
10.1021/jacs.8b13798
ContentType Journal Article
Copyright 2024
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
OTOTI
DOI 10.1016/j.pnsc.2024.02.019
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EndPage 279
ExternalDocumentID 2581255
zrkxjz_e202402005
10_1016_j_pnsc_2024_02_019
S1002007124000637
GroupedDBID --K
-01
-0A
-SA
-S~
0R~
0SF
123
1B1
1~5
29P
2B.
2C.
2DF
3YN
4.4
457
4G.
5VR
5VS
5XA
5XB
6I.
7-5
92E
92I
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXDM
AAXUO
ABFRF
ABJNI
ABMAC
ABMYL
ACGFS
ACNNM
ACRLP
ADEZE
ADMUD
AEFWE
AEXQZ
AEZYN
AFTJW
AFUIB
AGHFR
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AWYRJ
CAG
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
COF
CS3
CW9
DU5
EBS
EJD
EO9
EP2
FA0
FDB
GROUPED_DOAJ
HH5
HZ~
IHE
IPNFZ
IXB
JUIAU
KQ8
M41
M4Z
NCXOZ
NQ-
O-L
O9-
OK1
Q--
Q-0
R-A
RIG
ROL
RPZ
RT1
S..
SDG
SPC
SSZ
T8Q
TCJ
TFW
TGP
U1F
U1G
U5A
U5K
UNMZH
XFK
~02
~L8
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFXIZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
EFJIC
FYGXN
H13
SSH
TDBHL
4A8
PSX
EFKBS
OTOTI
SSM
ID FETCH-LOGICAL-c361t-ac7db73ed170f1e0d9c7002410fbbd10c98339eaebe4c700736535443370ed8e3
IEDL.DBID AIKHN
ISSN 1002-0071
IngestDate Mon Aug 25 02:21:16 EDT 2025
Thu May 29 04:07:36 EDT 2025
Thu Apr 24 23:11:37 EDT 2025
Tue Jul 01 04:26:30 EDT 2025
Sat Mar 23 16:30:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-ac7db73ed170f1e0d9c7002410fbbd10c98339eaebe4c700736535443370ed8e3
Notes AC02-06CH11357
USDOE
None
ORCID 0009-0002-3508-6070
0000-0002-3828-3312
0000000238283312
0009000235086070
PageCount 6
ParticipantIDs osti_scitechconnect_2581255
wanfang_journals_zrkxjz_e202402005
crossref_citationtrail_10_1016_j_pnsc_2024_02_019
crossref_primary_10_1016_j_pnsc_2024_02_019
elsevier_sciencedirect_doi_10_1016_j_pnsc_2024_02_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Progress in natural science
PublicationTitle_FL Progress in Natural Science:Materials International
PublicationYear 2024
Publisher Elsevier B.V
Center for Neutron Scattering,City University of Hong Kong Shenzhen Research Institute,Shenzhen,518057,China
Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Materials Science and Engineering,Henan University of Technology,Zhengzhou,450001,China%Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China
Chinese Materials Research Society
Publisher_xml – name: Elsevier B.V
– name: Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Materials Science and Engineering,Henan University of Technology,Zhengzhou,450001,China%Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China
– name: Center for Neutron Scattering,City University of Hong Kong Shenzhen Research Institute,Shenzhen,518057,China
– name: Chinese Materials Research Society
References Yang, Wang, Hu, Liu, Yang, Ruan, Qiao (bib1) 2023; 33
Ryn, Park, Yoon, Sun (bib13) 2018; 30
Huang, Zhu, Zhu, Zhang, Ren, Liu (bib17) 2021; 32
Li, Zhu, Zheng, Fan, Ren, Chen, Deng, Xing (bib20) 2016; 3
Zhu, Yin, Tang, Ren, Zhu, Luo, Lan, Yang, Liu (bib10) 2022; 41
Zhang, Wang, Fan, Zhao, Huo, Xu (bib5) 2023; 33
Luo, Zhu, Xia, Yin, Qin, Li, Zhang, Gu, Peng, Zhang, Wiaderek, Huang, Yang, Tang, Lan, Ren, Lu, Wolverton, Liu (bib2) 2023; 8
Chen, Xu (bib6) 2022; 2
Yan, Zheng, Liu, Wang, Cheng, Zhang, Sun, Wang, Zhang (bib12) 2018; 3
Li, Erickson, Manthiram (bib7) 2020; 5
Xu, Huo, Jian, Wang, Zhu, Xu, He, Yin, Du, Sun (bib14) 2019; 9
Zhang, Zhu, Ren, Zhu, Lin, Kai, Li, Gallington, Ren, Huang, Lan, Tang, Liu (bib18) 2023; 15
Li, Asl, Xie, Manthiram (bib27) 2019; 141
Wang, Zhang, Wang, Yin, Shi, Wang, Guo (bib21) 2018; 8
Ren, Zhu, Fang, Li, Lan, Wei, Yin, Tang, Ren, Liu (bib4) 2023; 2
Meng, Das, Shi, Fu, Mullen, Wu (bib26) 2021; 1
Ohzuku, Ueda, Nagayama (bib28) 1993; 140
Ge, Wi, Liu, Bai, Ehrlich, Lu, Lee, Chen, Wang (bib30) 2021; 60
Zhu, Tang, Wiaderek, Borkiewicz, Ren, Zhang, Ren, Fan, Li, Li, Wang, Liu (bib16) 2021; 21
Liu, Wolf, Karki, Yu, Stach (bib15) 2017; 17
Saleem, Zhu, Majeed, Iqbal, Jabar, Hussain, Ashfaq, Ahmad, Rauf, Mwizerwa, Shen, Liu (bib11) 2023; 15
Zhu, Huang, Zhu, Wang, Lan, Xia, Liu (bib19) 2020; 4
Zhao, Zou, Zhang, Fan, Zhang, Pagani, Brack, Seidl, Ou, Egorov, Guo, Hu, Trabesinger, Wang, Battaglia (bib23) 2022; 18
Kim, Lee, Cha, Yoon, Park, Cho (bib8) 2017; 8
Wang, Kou, Ren, Sun, Zhao, Zhang, Li, Huq, Ko, Pan, Sun, Yang, Amine, Bai, Chen, Wang (bib22) 2017; 29
Kondrakov, Schmidt, Xu, Gebwein, Monig, Hartmann, Sommer, Brezesinski, Janek (bib29) 2017; 121
Xu, Zhu, Tang, Wang, Zhang, Ren, Lan, Xiang, Jian, Huo, Chen, Gu, Yin, Wang, Sun, Du, Liu (bib3) 2022; 100
Zhang (bib9) 2020; 24
Trevisanello, Ruess, Conforto, Richter, Janek (bib24) 2021; 11
Song, Shin, Lu, Amos, Manthiram, Goodenough (bib25) 2022; 24
Meng (10.1016/j.pnsc.2024.02.019_bib26) 2021; 1
Wang (10.1016/j.pnsc.2024.02.019_bib22) 2017; 29
Xu (10.1016/j.pnsc.2024.02.019_bib3) 2022; 100
Zhu (10.1016/j.pnsc.2024.02.019_bib19) 2020; 4
Yan (10.1016/j.pnsc.2024.02.019_bib12) 2018; 3
Trevisanello (10.1016/j.pnsc.2024.02.019_bib24) 2021; 11
Chen (10.1016/j.pnsc.2024.02.019_bib6) 2022; 2
Yang (10.1016/j.pnsc.2024.02.019_bib1) 2023; 33
Zhang (10.1016/j.pnsc.2024.02.019_bib5) 2023; 33
Kim (10.1016/j.pnsc.2024.02.019_bib8) 2017; 8
Zhang (10.1016/j.pnsc.2024.02.019_bib9) 2020; 24
Ryn (10.1016/j.pnsc.2024.02.019_bib13) 2018; 30
Zhu (10.1016/j.pnsc.2024.02.019_bib16) 2021; 21
Zhao (10.1016/j.pnsc.2024.02.019_bib23) 2022; 18
Zhang (10.1016/j.pnsc.2024.02.019_bib18) 2023; 15
Ohzuku (10.1016/j.pnsc.2024.02.019_bib28) 1993; 140
Song (10.1016/j.pnsc.2024.02.019_bib25) 2022; 24
Saleem (10.1016/j.pnsc.2024.02.019_bib11) 2023; 15
Kondrakov (10.1016/j.pnsc.2024.02.019_bib29) 2017; 121
Wang (10.1016/j.pnsc.2024.02.019_bib21) 2018; 8
Ren (10.1016/j.pnsc.2024.02.019_bib4) 2023; 2
Luo (10.1016/j.pnsc.2024.02.019_bib2) 2023; 8
Huang (10.1016/j.pnsc.2024.02.019_bib17) 2021; 32
Li (10.1016/j.pnsc.2024.02.019_bib20) 2016; 3
Xu (10.1016/j.pnsc.2024.02.019_bib14) 2019; 9
Li (10.1016/j.pnsc.2024.02.019_bib7) 2020; 5
Zhu (10.1016/j.pnsc.2024.02.019_bib10) 2022; 41
Li (10.1016/j.pnsc.2024.02.019_bib27) 2019; 141
Liu (10.1016/j.pnsc.2024.02.019_bib15) 2017; 17
Ge (10.1016/j.pnsc.2024.02.019_bib30) 2021; 60
References_xml – volume: 121
  start-page: 3286
  year: 2017
  end-page: 3294
  ident: bib29
  publication-title: J. Phys. Chem.
– volume: 60
  start-page: 17350
  year: 2021
  end-page: 17355
  ident: bib30
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 26
  year: 2020
  end-page: 34
  ident: bib7
  publication-title: Nat. Energy
– volume: 9
  year: 2019
  ident: bib14
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2021
  ident: bib17
  publication-title: Nanotechnology
– volume: 8
  year: 2018
  ident: bib21
  publication-title: Adv. Energy Mater.
– volume: 3
  year: 2016
  ident: bib20
  publication-title: Adv. Sci.
– volume: 30
  start-page: 1155
  year: 2018
  end-page: 1163
  ident: bib13
  publication-title: Chem. Mater.
– volume: 15
  start-page: 6612
  year: 2023
  end-page: 6620
  ident: bib18
  publication-title: ACS Appl. Mater. Interfaces
– volume: 33
  start-page: 660
  year: 2023
  end-page: 667
  ident: bib1
  publication-title: Prog. Nat. Sci. Mater.
– volume: 100
  year: 2022
  ident: bib3
  publication-title: Nano Energy
– volume: 2
  start-page: 339
  year: 2023
  end-page: 377
  ident: bib4
  publication-title: Carbon Neutralization
– volume: 8
  start-page: 1078
  year: 2023
  end-page: 1087
  ident: bib2
  publication-title: Nat. Energy
– volume: 1
  year: 2021
  ident: bib26
  publication-title: Small Sci
– volume: 24
  start-page: 247
  year: 2020
  ident: bib9
  publication-title: Energy Storage Mater.
– volume: 41
  start-page: 2552
  year: 2022
  end-page: 2559
  ident: bib10
  publication-title: Rare Met.
– volume: 141
  start-page: 5097
  year: 2019
  end-page: 5101
  ident: bib27
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2017
  ident: bib8
  publication-title: Adv. Energy Mater.
– volume: 21
  start-page: 9997
  year: 2021
  end-page: 10005
  ident: bib16
  publication-title: Nano Lett.
– volume: 33
  start-page: 320
  year: 2023
  end-page: 327
  ident: bib5
  publication-title: Prog. Nat. Sci. Mater.
– volume: 17
  start-page: 3452
  year: 2017
  end-page: 3457
  ident: bib15
  publication-title: Nano Lett.
– volume: 18
  year: 2022
  ident: bib23
  publication-title: Small
– volume: 140
  start-page: 1862
  year: 1993
  end-page: 1870
  ident: bib28
  publication-title: J. Electrochem. Soc.
– volume: 2
  year: 2022
  ident: bib6
  publication-title: Microstructures
– volume: 24
  start-page: 3101
  year: 2022
  end-page: 3109
  ident: bib25
  publication-title: Chem. Mater.
– volume: 29
  year: 2017
  ident: bib22
  publication-title: Adv. Mater.
– volume: 15
  start-page: 20843
  year: 2023
  end-page: 20853
  ident: bib11
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2020
  ident: bib19
  publication-title: Small Methods
– volume: 11
  year: 2021
  ident: bib24
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 600
  year: 2018
  end-page: 605
  ident: bib12
  publication-title: Nat. Energy
– volume: 33
  start-page: 660
  year: 2023
  ident: 10.1016/j.pnsc.2024.02.019_bib1
  publication-title: Prog. Nat. Sci. Mater.
  doi: 10.1016/j.pnsc.2023.11.011
– volume: 33
  start-page: 320
  year: 2023
  ident: 10.1016/j.pnsc.2024.02.019_bib5
  publication-title: Prog. Nat. Sci. Mater.
  doi: 10.1016/j.pnsc.2023.08.002
– volume: 1
  year: 2021
  ident: 10.1016/j.pnsc.2024.02.019_bib26
  publication-title: Small Sci
– volume: 15
  start-page: 20843
  year: 2023
  ident: 10.1016/j.pnsc.2024.02.019_bib11
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c19687
– volume: 21
  start-page: 9997
  year: 2021
  ident: 10.1016/j.pnsc.2024.02.019_bib16
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03613
– volume: 2
  year: 2022
  ident: 10.1016/j.pnsc.2024.02.019_bib6
  publication-title: Microstructures
– volume: 32
  year: 2021
  ident: 10.1016/j.pnsc.2024.02.019_bib17
  publication-title: Nanotechnology
– volume: 29
  year: 2017
  ident: 10.1016/j.pnsc.2024.02.019_bib22
  publication-title: Adv. Mater.
– volume: 2
  start-page: 339
  year: 2023
  ident: 10.1016/j.pnsc.2024.02.019_bib4
  publication-title: Carbon Neutralization
  doi: 10.1002/cnl2.62
– volume: 17
  start-page: 3452
  year: 2017
  ident: 10.1016/j.pnsc.2024.02.019_bib15
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00379
– volume: 3
  year: 2016
  ident: 10.1016/j.pnsc.2024.02.019_bib20
  publication-title: Adv. Sci.
– volume: 41
  start-page: 2552
  year: 2022
  ident: 10.1016/j.pnsc.2024.02.019_bib10
  publication-title: Rare Met.
  doi: 10.1007/s12598-022-01983-6
– volume: 3
  start-page: 600
  year: 2018
  ident: 10.1016/j.pnsc.2024.02.019_bib12
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0191-3
– volume: 15
  start-page: 6612
  year: 2023
  ident: 10.1016/j.pnsc.2024.02.019_bib18
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c17419
– volume: 100
  year: 2022
  ident: 10.1016/j.pnsc.2024.02.019_bib3
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107502
– volume: 5
  start-page: 26
  year: 2020
  ident: 10.1016/j.pnsc.2024.02.019_bib7
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0513-0
– volume: 4
  year: 2020
  ident: 10.1016/j.pnsc.2024.02.019_bib19
  publication-title: Small Methods
– volume: 24
  start-page: 3101
  year: 2022
  ident: 10.1016/j.pnsc.2024.02.019_bib25
  publication-title: Chem. Mater.
  doi: 10.1021/cm301825h
– volume: 8
  year: 2017
  ident: 10.1016/j.pnsc.2024.02.019_bib8
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2019
  ident: 10.1016/j.pnsc.2024.02.019_bib14
  publication-title: Adv. Energy Mater.
– volume: 140
  start-page: 1862
  year: 1993
  ident: 10.1016/j.pnsc.2024.02.019_bib28
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2220730
– volume: 18
  year: 2022
  ident: 10.1016/j.pnsc.2024.02.019_bib23
  publication-title: Small
– volume: 8
  start-page: 1078
  year: 2023
  ident: 10.1016/j.pnsc.2024.02.019_bib2
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01289-6
– volume: 11
  year: 2021
  ident: 10.1016/j.pnsc.2024.02.019_bib24
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003400
– volume: 24
  start-page: 247
  year: 2020
  ident: 10.1016/j.pnsc.2024.02.019_bib9
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.08.013
– volume: 121
  start-page: 3286
  year: 2017
  ident: 10.1016/j.pnsc.2024.02.019_bib29
  publication-title: J. Phys. Chem.
  doi: 10.1021/acs.jpcc.6b12885
– volume: 60
  start-page: 17350
  year: 2021
  ident: 10.1016/j.pnsc.2024.02.019_bib30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202012773
– volume: 30
  start-page: 1155
  year: 2018
  ident: 10.1016/j.pnsc.2024.02.019_bib13
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b05269
– volume: 141
  start-page: 5097
  year: 2019
  ident: 10.1016/j.pnsc.2024.02.019_bib27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13798
– volume: 8
  year: 2018
  ident: 10.1016/j.pnsc.2024.02.019_bib21
  publication-title: Adv. Energy Mater.
SSID ssj0007167
Score 2.3424594
Snippet Layered LiNixCoyMnzO2 (NCM) cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric vehicles....
Layered LiNixCoyMnzO2(NCM)cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric...
Not provided.
SourceID osti
wanfang
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 274
SubjectTerms Materials Science
Science & Technology - Other Topics
Title Tracing monoclinic distortion in NCM532 cathode materials by in situ high-energy synchrotron X-ray diffraction
URI https://dx.doi.org/10.1016/j.pnsc.2024.02.019
https://d.wanfangdata.com.cn/periodical/zrkxjz-e202402005
https://www.osti.gov/biblio/2581255
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6CctllGrCJjg1ZiAPTFDWJ7SY5smqogOhlQ-rNiu0XVkBOlRRp5a-fX-KiTZo4cHSSl0R-PxN973sAJyLRPJEoo6KwJhJ5mUXalkgoC15wIYSpqFH4ejae3ojLuZxvwWTTC0OwyhD7-5jeRetwZBR2c7RcLEY_iDyUMiShIH2izbZhJ-XF2Jv2ztnF1XT2HJD9J0E3Y4Wcn1ahd6aHeS1dS0yGqeioO4lw5__5aVB7l-s6e1xVutu_ktD5O3gbqkd21r_gLmyh24Pd4J8tOw0k0l_2wfkkZHxaYt7M6r79kdmOEoQ0wRaOzSbXkqeMeFtri8xXrr0xMr2m0-1i9ciIzDjCrj2QtWtnfjU1_Tpn86gp14yGqzR9Y8R7uDn__nMyjcJshcjwcbKKSpNZnXG0SRZXCca2MBnl6ySutLZJbIqc8wJLr2NBZzI-lpy48ngWo82Rf4CBqx0eADOcMKoGfeWbi0oInVs06J1PV2i1FkNINjuqTCAep_kXD2qDMLtTpAVFWlBxqrwWhvD1WWbZ0268eLXcKEr9YzzK54UX5Q5JqyRDjLmGoEVeKJW-6pFyCMdB2Sr4dauemvvfd08K6SZkffLjKx99CG9o1WOAPsFg1TziZ1_erPRRMN8j2L6Yf_sDOOD50g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8a5QAXxPgQZbBZiAMIRU1qu06OUG3qYO2FTerNiu2X0YGcKukkur8ev8SdQJp24Jg4L4n8PhP93u8BvBeZ4ZlEmRSFs4nIS5UYVyKhLHjBhRC2okbh-WIyuxBfl3K5B9NdLwzBKmPs72N6F63jmVHczdF6tRp9J_JQypCEggyJVj2Ah6EaUDS_4XT55TYchw-CbsIKuT4dxc6ZHuS19i3xGI5FR9xJdDt3Z6dBHRyu6-vxVekv_0pBJ0_hSawd2ef-9fZhD_0z2I_e2bIPkUL643PwIQXZkJRYMLK6b35kriMEIT2wlWeL6VzyMSPW1tohC3Vrb4rMbGm5XW2uGVEZJ9g1B7J26-2PpqYf52yZNOWW0WiVpm-LeAEXJ8fn01kSJysklk-yTVJa5Yzi6DKVVhmmrrCKsnWWVsa4LLVFznmBZdCwoBXFJ5ITUx5XKboc-UsY-NrjK2CWE0LVYqh7c1EJYXKHFoPrmQqdMWII2W5HtY204zT94pfe4cuuNGlBkxZ0OtZBC0P4dCuz7kk37r1a7hSl_zEdHbLCvXIHpFWSIb5cS8CiIDSWoeaRcgjvorJ19OpW3zQ_f1_daKSbkO3J1__56CN4NDufn-mz08W3A3hMKz0a6A0MNs01vg2FzsYcdob8B1V2-p0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracing+monoclinic+distortion+in+NCM532+cathode+materials+by+in+situ+high-energy+synchrotron+X-ray+diffraction&rft.jtitle=Progress+in+natural+science&rft.au=Dong%2C+Min&rft.au=Sun%2C+Qingya&rft.au=Wang%2C+Zhihua&rft.au=Rui%2C+Zixin&rft.date=2024-04-01&rft.issn=1002-0071&rft.volume=34&rft.issue=2&rft.spage=274&rft.epage=279&rft_id=info:doi/10.1016%2Fj.pnsc.2024.02.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pnsc_2024_02_019
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzrkxjz-e%2Fzrkxjz-e.jpg