Tracing monoclinic distortion in NCM532 cathode materials by in situ high-energy synchrotron X-ray diffraction
Layered LiNixCoyMnzO2 (NCM) cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric vehicles. Despite significant research efforts, the understanding of complex structural dynamics during lithium (de-) intercalation still remains a subjec...
Saved in:
Published in | Progress in natural science Vol. 34; no. 2; pp. 274 - 279 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.04.2024
Center for Neutron Scattering,City University of Hong Kong Shenzhen Research Institute,Shenzhen,518057,China Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Materials Science and Engineering,Henan University of Technology,Zhengzhou,450001,China%Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China Chinese Materials Research Society |
Subjects | |
Online Access | Get full text |
ISSN | 1002-0071 |
DOI | 10.1016/j.pnsc.2024.02.019 |
Cover
Loading…
Abstract | Layered LiNixCoyMnzO2 (NCM) cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric vehicles. Despite significant research efforts, the understanding of complex structural dynamics during lithium (de-) intercalation still remains a subject of debate, especially in scenarios where morphology and composition vary. In this study, we carried out in situ high-energy synchrotron X-ray diffraction experiments on commercial NCM523 cathode materials in both single crystal and polycrystalline forms to probe the structural changes during charging and discharging in detail. Our findings reveal that both single crystal and polycrystalline materials exhibit typical H1–H2–H3 phase transitions. However, in polycrystalline NCM532, a monoclinic intermediate phase emerges between the H1 and H2 phases. During this process, symmetry reduces from R-3m to C2/m, which is attributed to a shear distortion along the ab plane. In contrast, for single crystal materials, the H1 phase directly transforms into the H2 phase without the monoclinic phase. The observed monoclinic distortion significantly impacts structural stability and material cycling performance. This study provides new insight into the structural dynamics in NCM532 cathode materials, particularly concerning morphology-dependent behaviors, which could deepen our understanding of the relationship between NCM material structures and their performance. |
---|---|
AbstractList | Not provided. Layered LiNixCoyMnzO2 (NCM) cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric vehicles. Despite significant research efforts, the understanding of complex structural dynamics during lithium (de-) intercalation still remains a subject of debate, especially in scenarios where morphology and composition vary. In this study, we carried out in situ high-energy synchrotron X-ray diffraction experiments on commercial NCM523 cathode materials in both single crystal and polycrystalline forms to probe the structural changes during charging and discharging in detail. Our findings reveal that both single crystal and polycrystalline materials exhibit typical H1–H2–H3 phase transitions. However, in polycrystalline NCM532, a monoclinic intermediate phase emerges between the H1 and H2 phases. During this process, symmetry reduces from R-3m to C2/m, which is attributed to a shear distortion along the ab plane. In contrast, for single crystal materials, the H1 phase directly transforms into the H2 phase without the monoclinic phase. The observed monoclinic distortion significantly impacts structural stability and material cycling performance. This study provides new insight into the structural dynamics in NCM532 cathode materials, particularly concerning morphology-dependent behaviors, which could deepen our understanding of the relationship between NCM material structures and their performance. Layered LiNixCoyMnzO2(NCM)cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric vehicles.Despite significant research efforts,the understanding of complex structural dynamics during lithium(de-)intercalation still remains a subject of debate,especially in sce-narios where morphology and composition vary.In this study,we carried out in situ high-energy synchrotron X-ray diffraction experiments on commercial NCM523 cathode materials in both single crystal and polycrystalline forms to probe the structural changes during charging and discharging in detail.Our findings reveal that both single crystal and polycrystalline materials exhibit typical H1-H2-H3 phase transitions.However,in polycrystalline NCM532,a monoclinic intermediate phase emerges between the H1 and H2 phases.During this process,symmetry reduces from R-3m to C2/m,which is attributed to a shear distortion along the ab plane.In contrast,for single crystal materials,the H1 phase directly transforms into the H2 phase without the monoclinic phase.The observed monoclinic distortion signif-icantly impacts structural stability and material cycling performance.This study provides new insight into the structural dynamics in NCM532 cathode materials,particularly concerning morphology-dependent behaviors,which could deepen our understanding of the relationship between NCM material structures and their performance. |
Author | Lan, Si Sun, Qingya Dong, Min Zhu, He Wang, Zhihua Zhang, Zhe Rui, Zixin |
AuthorAffiliation | Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Materials Science and Engineering,Henan University of Technology,Zhengzhou,450001,China%Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China;Center for Neutron Scattering,City University of Hong Kong Shenzhen Research Institute,Shenzhen,518057,China |
AuthorAffiliation_xml | – name: Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Materials Science and Engineering,Henan University of Technology,Zhengzhou,450001,China%Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China;Center for Neutron Scattering,City University of Hong Kong Shenzhen Research Institute,Shenzhen,518057,China |
Author_xml | – sequence: 1 givenname: Min orcidid: 0009-0002-3508-6070 surname: Dong fullname: Dong, Min organization: Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China – sequence: 2 givenname: Qingya surname: Sun fullname: Sun, Qingya organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China – sequence: 3 givenname: Zhihua surname: Wang fullname: Wang, Zhihua organization: Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China – sequence: 4 givenname: Zixin surname: Rui fullname: Rui, Zixin organization: School of Materials Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China – sequence: 5 givenname: Zhe surname: Zhang fullname: Zhang, Zhe organization: Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China – sequence: 6 givenname: He orcidid: 0000-0002-3828-3312 surname: Zhu fullname: Zhu, He email: hezhu@njust.edu.cn organization: Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China – sequence: 7 givenname: Si surname: Lan fullname: Lan, Si email: lansi@njust.edu.cn organization: Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China |
BackLink | https://www.osti.gov/biblio/2581255$$D View this record in Osti.gov |
BookMark | eNp9kDFvFDEQhV0EiSTwB6gsOopdxvbu7Z1Eg04QkAI0QaKzvPbsrZe7cWQ7wObXY-uoKFKNpXnfG793xS4oEDL2SkArQGzeLu09JdtKkF0LsgWxu2CXAkA2AIN4zq5SWqA-N8Mlo7torKcDPwUK9ujJW-58yiFmH4h74l_3X3oluTV5Dg75yWSM3hwTH9e6Tj4_8Nkf5gYJ42HlaSU7x5BjwX800azFb5rKlWr4gj2bCosv_81r9v3jh7v9p-b2283n_fvbxqqNyI2xgxsHhU4MMAkEt7NDCdAJmMbRCbC7rVI7NDhiVzeD2vSq7zqlBkC3RXXNXp99Q8peJ-sz2tkGIrRZy34rZN8X0Zuz6LehydBBL-EhUvmWfow__yyPGmuHIAGqdnvW2hhSijjp4mlqpByNP2oBupavF13L1xXUIHUpv6DyP_Q--pOJ69PQuzOEpaVfHmMNgWTR-VgzuOCfwv8C92KjBg |
CitedBy_id | crossref_primary_10_1016_j_jechem_2024_08_011 |
Cites_doi | 10.1016/j.pnsc.2023.11.011 10.1016/j.pnsc.2023.08.002 10.1021/acsami.2c19687 10.1021/acs.nanolett.1c03613 10.1002/cnl2.62 10.1021/acs.nanolett.7b00379 10.1007/s12598-022-01983-6 10.1038/s41560-018-0191-3 10.1021/acsami.2c17419 10.1016/j.nanoen.2022.107502 10.1038/s41560-019-0513-0 10.1021/cm301825h 10.1149/1.2220730 10.1038/s41560-023-01289-6 10.1002/aenm.202003400 10.1016/j.ensm.2019.08.013 10.1021/acs.jpcc.6b12885 10.1002/anie.202012773 10.1021/acs.chemmater.7b05269 10.1021/jacs.8b13798 |
ContentType | Journal Article |
Copyright | 2024 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ OTOTI |
DOI | 10.1016/j.pnsc.2024.02.019 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EndPage | 279 |
ExternalDocumentID | 2581255 zrkxjz_e202402005 10_1016_j_pnsc_2024_02_019 S1002007124000637 |
GroupedDBID | --K -01 -0A -SA -S~ 0R~ 0SF 123 1B1 1~5 29P 2B. 2C. 2DF 3YN 4.4 457 4G. 5VR 5VS 5XA 5XB 6I. 7-5 92E 92I 92M 92Q 93N 9D9 9DA AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXDM AAXUO ABFRF ABJNI ABMAC ABMYL ACGFS ACNNM ACRLP ADEZE ADMUD AEFWE AEXQZ AEZYN AFTJW AFUIB AGHFR AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AWYRJ CAG CAJEA CAJUS CCEZO CCVFK CHBEP COF CS3 CW9 DU5 EBS EJD EO9 EP2 FA0 FDB GROUPED_DOAJ HH5 HZ~ IHE IPNFZ IXB JUIAU KQ8 M41 M4Z NCXOZ NQ- O-L O9- OK1 Q-- Q-0 R-A RIG ROL RPZ RT1 S.. SDG SPC SSZ T8Q TCJ TFW TGP U1F U1G U5A U5K UNMZH XFK ~02 ~L8 AATTM AAYWO AAYXX ABWVN ACRPL ADNMO ADVLN AEIPS AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION EFJIC FYGXN H13 SSH TDBHL 4A8 PSX EFKBS OTOTI SSM |
ID | FETCH-LOGICAL-c361t-ac7db73ed170f1e0d9c7002410fbbd10c98339eaebe4c700736535443370ed8e3 |
IEDL.DBID | AIKHN |
ISSN | 1002-0071 |
IngestDate | Mon Aug 25 02:21:16 EDT 2025 Thu May 29 04:07:36 EDT 2025 Thu Apr 24 23:11:37 EDT 2025 Tue Jul 01 04:26:30 EDT 2025 Sat Mar 23 16:30:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-ac7db73ed170f1e0d9c7002410fbbd10c98339eaebe4c700736535443370ed8e3 |
Notes | AC02-06CH11357 USDOE None |
ORCID | 0009-0002-3508-6070 0000-0002-3828-3312 0000000238283312 0009000235086070 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_2581255 wanfang_journals_zrkxjz_e202402005 crossref_citationtrail_10_1016_j_pnsc_2024_02_019 crossref_primary_10_1016_j_pnsc_2024_02_019 elsevier_sciencedirect_doi_10_1016_j_pnsc_2024_02_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Progress in natural science |
PublicationTitle_FL | Progress in Natural Science:Materials International |
PublicationYear | 2024 |
Publisher | Elsevier B.V Center for Neutron Scattering,City University of Hong Kong Shenzhen Research Institute,Shenzhen,518057,China Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Materials Science and Engineering,Henan University of Technology,Zhengzhou,450001,China%Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China Chinese Materials Research Society |
Publisher_xml | – name: Elsevier B.V – name: Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China%School of Materials Science and Engineering,Henan University of Technology,Zhengzhou,450001,China%Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China – name: Center for Neutron Scattering,City University of Hong Kong Shenzhen Research Institute,Shenzhen,518057,China – name: Chinese Materials Research Society |
References | Yang, Wang, Hu, Liu, Yang, Ruan, Qiao (bib1) 2023; 33 Ryn, Park, Yoon, Sun (bib13) 2018; 30 Huang, Zhu, Zhu, Zhang, Ren, Liu (bib17) 2021; 32 Li, Zhu, Zheng, Fan, Ren, Chen, Deng, Xing (bib20) 2016; 3 Zhu, Yin, Tang, Ren, Zhu, Luo, Lan, Yang, Liu (bib10) 2022; 41 Zhang, Wang, Fan, Zhao, Huo, Xu (bib5) 2023; 33 Luo, Zhu, Xia, Yin, Qin, Li, Zhang, Gu, Peng, Zhang, Wiaderek, Huang, Yang, Tang, Lan, Ren, Lu, Wolverton, Liu (bib2) 2023; 8 Chen, Xu (bib6) 2022; 2 Yan, Zheng, Liu, Wang, Cheng, Zhang, Sun, Wang, Zhang (bib12) 2018; 3 Li, Erickson, Manthiram (bib7) 2020; 5 Xu, Huo, Jian, Wang, Zhu, Xu, He, Yin, Du, Sun (bib14) 2019; 9 Zhang, Zhu, Ren, Zhu, Lin, Kai, Li, Gallington, Ren, Huang, Lan, Tang, Liu (bib18) 2023; 15 Li, Asl, Xie, Manthiram (bib27) 2019; 141 Wang, Zhang, Wang, Yin, Shi, Wang, Guo (bib21) 2018; 8 Ren, Zhu, Fang, Li, Lan, Wei, Yin, Tang, Ren, Liu (bib4) 2023; 2 Meng, Das, Shi, Fu, Mullen, Wu (bib26) 2021; 1 Ohzuku, Ueda, Nagayama (bib28) 1993; 140 Ge, Wi, Liu, Bai, Ehrlich, Lu, Lee, Chen, Wang (bib30) 2021; 60 Zhu, Tang, Wiaderek, Borkiewicz, Ren, Zhang, Ren, Fan, Li, Li, Wang, Liu (bib16) 2021; 21 Liu, Wolf, Karki, Yu, Stach (bib15) 2017; 17 Saleem, Zhu, Majeed, Iqbal, Jabar, Hussain, Ashfaq, Ahmad, Rauf, Mwizerwa, Shen, Liu (bib11) 2023; 15 Zhu, Huang, Zhu, Wang, Lan, Xia, Liu (bib19) 2020; 4 Zhao, Zou, Zhang, Fan, Zhang, Pagani, Brack, Seidl, Ou, Egorov, Guo, Hu, Trabesinger, Wang, Battaglia (bib23) 2022; 18 Kim, Lee, Cha, Yoon, Park, Cho (bib8) 2017; 8 Wang, Kou, Ren, Sun, Zhao, Zhang, Li, Huq, Ko, Pan, Sun, Yang, Amine, Bai, Chen, Wang (bib22) 2017; 29 Kondrakov, Schmidt, Xu, Gebwein, Monig, Hartmann, Sommer, Brezesinski, Janek (bib29) 2017; 121 Xu, Zhu, Tang, Wang, Zhang, Ren, Lan, Xiang, Jian, Huo, Chen, Gu, Yin, Wang, Sun, Du, Liu (bib3) 2022; 100 Zhang (bib9) 2020; 24 Trevisanello, Ruess, Conforto, Richter, Janek (bib24) 2021; 11 Song, Shin, Lu, Amos, Manthiram, Goodenough (bib25) 2022; 24 Meng (10.1016/j.pnsc.2024.02.019_bib26) 2021; 1 Wang (10.1016/j.pnsc.2024.02.019_bib22) 2017; 29 Xu (10.1016/j.pnsc.2024.02.019_bib3) 2022; 100 Zhu (10.1016/j.pnsc.2024.02.019_bib19) 2020; 4 Yan (10.1016/j.pnsc.2024.02.019_bib12) 2018; 3 Trevisanello (10.1016/j.pnsc.2024.02.019_bib24) 2021; 11 Chen (10.1016/j.pnsc.2024.02.019_bib6) 2022; 2 Yang (10.1016/j.pnsc.2024.02.019_bib1) 2023; 33 Zhang (10.1016/j.pnsc.2024.02.019_bib5) 2023; 33 Kim (10.1016/j.pnsc.2024.02.019_bib8) 2017; 8 Zhang (10.1016/j.pnsc.2024.02.019_bib9) 2020; 24 Ryn (10.1016/j.pnsc.2024.02.019_bib13) 2018; 30 Zhu (10.1016/j.pnsc.2024.02.019_bib16) 2021; 21 Zhao (10.1016/j.pnsc.2024.02.019_bib23) 2022; 18 Zhang (10.1016/j.pnsc.2024.02.019_bib18) 2023; 15 Ohzuku (10.1016/j.pnsc.2024.02.019_bib28) 1993; 140 Song (10.1016/j.pnsc.2024.02.019_bib25) 2022; 24 Saleem (10.1016/j.pnsc.2024.02.019_bib11) 2023; 15 Kondrakov (10.1016/j.pnsc.2024.02.019_bib29) 2017; 121 Wang (10.1016/j.pnsc.2024.02.019_bib21) 2018; 8 Ren (10.1016/j.pnsc.2024.02.019_bib4) 2023; 2 Luo (10.1016/j.pnsc.2024.02.019_bib2) 2023; 8 Huang (10.1016/j.pnsc.2024.02.019_bib17) 2021; 32 Li (10.1016/j.pnsc.2024.02.019_bib20) 2016; 3 Xu (10.1016/j.pnsc.2024.02.019_bib14) 2019; 9 Li (10.1016/j.pnsc.2024.02.019_bib7) 2020; 5 Zhu (10.1016/j.pnsc.2024.02.019_bib10) 2022; 41 Li (10.1016/j.pnsc.2024.02.019_bib27) 2019; 141 Liu (10.1016/j.pnsc.2024.02.019_bib15) 2017; 17 Ge (10.1016/j.pnsc.2024.02.019_bib30) 2021; 60 |
References_xml | – volume: 121 start-page: 3286 year: 2017 end-page: 3294 ident: bib29 publication-title: J. Phys. Chem. – volume: 60 start-page: 17350 year: 2021 end-page: 17355 ident: bib30 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 26 year: 2020 end-page: 34 ident: bib7 publication-title: Nat. Energy – volume: 9 year: 2019 ident: bib14 publication-title: Adv. Energy Mater. – volume: 32 year: 2021 ident: bib17 publication-title: Nanotechnology – volume: 8 year: 2018 ident: bib21 publication-title: Adv. Energy Mater. – volume: 3 year: 2016 ident: bib20 publication-title: Adv. Sci. – volume: 30 start-page: 1155 year: 2018 end-page: 1163 ident: bib13 publication-title: Chem. Mater. – volume: 15 start-page: 6612 year: 2023 end-page: 6620 ident: bib18 publication-title: ACS Appl. Mater. Interfaces – volume: 33 start-page: 660 year: 2023 end-page: 667 ident: bib1 publication-title: Prog. Nat. Sci. Mater. – volume: 100 year: 2022 ident: bib3 publication-title: Nano Energy – volume: 2 start-page: 339 year: 2023 end-page: 377 ident: bib4 publication-title: Carbon Neutralization – volume: 8 start-page: 1078 year: 2023 end-page: 1087 ident: bib2 publication-title: Nat. Energy – volume: 1 year: 2021 ident: bib26 publication-title: Small Sci – volume: 24 start-page: 247 year: 2020 ident: bib9 publication-title: Energy Storage Mater. – volume: 41 start-page: 2552 year: 2022 end-page: 2559 ident: bib10 publication-title: Rare Met. – volume: 141 start-page: 5097 year: 2019 end-page: 5101 ident: bib27 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2017 ident: bib8 publication-title: Adv. Energy Mater. – volume: 21 start-page: 9997 year: 2021 end-page: 10005 ident: bib16 publication-title: Nano Lett. – volume: 33 start-page: 320 year: 2023 end-page: 327 ident: bib5 publication-title: Prog. Nat. Sci. Mater. – volume: 17 start-page: 3452 year: 2017 end-page: 3457 ident: bib15 publication-title: Nano Lett. – volume: 18 year: 2022 ident: bib23 publication-title: Small – volume: 140 start-page: 1862 year: 1993 end-page: 1870 ident: bib28 publication-title: J. Electrochem. Soc. – volume: 2 year: 2022 ident: bib6 publication-title: Microstructures – volume: 24 start-page: 3101 year: 2022 end-page: 3109 ident: bib25 publication-title: Chem. Mater. – volume: 29 year: 2017 ident: bib22 publication-title: Adv. Mater. – volume: 15 start-page: 20843 year: 2023 end-page: 20853 ident: bib11 publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2020 ident: bib19 publication-title: Small Methods – volume: 11 year: 2021 ident: bib24 publication-title: Adv. Energy Mater. – volume: 3 start-page: 600 year: 2018 end-page: 605 ident: bib12 publication-title: Nat. Energy – volume: 33 start-page: 660 year: 2023 ident: 10.1016/j.pnsc.2024.02.019_bib1 publication-title: Prog. Nat. Sci. Mater. doi: 10.1016/j.pnsc.2023.11.011 – volume: 33 start-page: 320 year: 2023 ident: 10.1016/j.pnsc.2024.02.019_bib5 publication-title: Prog. Nat. Sci. Mater. doi: 10.1016/j.pnsc.2023.08.002 – volume: 1 year: 2021 ident: 10.1016/j.pnsc.2024.02.019_bib26 publication-title: Small Sci – volume: 15 start-page: 20843 year: 2023 ident: 10.1016/j.pnsc.2024.02.019_bib11 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c19687 – volume: 21 start-page: 9997 year: 2021 ident: 10.1016/j.pnsc.2024.02.019_bib16 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03613 – volume: 2 year: 2022 ident: 10.1016/j.pnsc.2024.02.019_bib6 publication-title: Microstructures – volume: 32 year: 2021 ident: 10.1016/j.pnsc.2024.02.019_bib17 publication-title: Nanotechnology – volume: 29 year: 2017 ident: 10.1016/j.pnsc.2024.02.019_bib22 publication-title: Adv. Mater. – volume: 2 start-page: 339 year: 2023 ident: 10.1016/j.pnsc.2024.02.019_bib4 publication-title: Carbon Neutralization doi: 10.1002/cnl2.62 – volume: 17 start-page: 3452 year: 2017 ident: 10.1016/j.pnsc.2024.02.019_bib15 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00379 – volume: 3 year: 2016 ident: 10.1016/j.pnsc.2024.02.019_bib20 publication-title: Adv. Sci. – volume: 41 start-page: 2552 year: 2022 ident: 10.1016/j.pnsc.2024.02.019_bib10 publication-title: Rare Met. doi: 10.1007/s12598-022-01983-6 – volume: 3 start-page: 600 year: 2018 ident: 10.1016/j.pnsc.2024.02.019_bib12 publication-title: Nat. Energy doi: 10.1038/s41560-018-0191-3 – volume: 15 start-page: 6612 year: 2023 ident: 10.1016/j.pnsc.2024.02.019_bib18 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c17419 – volume: 100 year: 2022 ident: 10.1016/j.pnsc.2024.02.019_bib3 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107502 – volume: 5 start-page: 26 year: 2020 ident: 10.1016/j.pnsc.2024.02.019_bib7 publication-title: Nat. Energy doi: 10.1038/s41560-019-0513-0 – volume: 4 year: 2020 ident: 10.1016/j.pnsc.2024.02.019_bib19 publication-title: Small Methods – volume: 24 start-page: 3101 year: 2022 ident: 10.1016/j.pnsc.2024.02.019_bib25 publication-title: Chem. Mater. doi: 10.1021/cm301825h – volume: 8 year: 2017 ident: 10.1016/j.pnsc.2024.02.019_bib8 publication-title: Adv. Energy Mater. – volume: 9 year: 2019 ident: 10.1016/j.pnsc.2024.02.019_bib14 publication-title: Adv. Energy Mater. – volume: 140 start-page: 1862 year: 1993 ident: 10.1016/j.pnsc.2024.02.019_bib28 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2220730 – volume: 18 year: 2022 ident: 10.1016/j.pnsc.2024.02.019_bib23 publication-title: Small – volume: 8 start-page: 1078 year: 2023 ident: 10.1016/j.pnsc.2024.02.019_bib2 publication-title: Nat. Energy doi: 10.1038/s41560-023-01289-6 – volume: 11 year: 2021 ident: 10.1016/j.pnsc.2024.02.019_bib24 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003400 – volume: 24 start-page: 247 year: 2020 ident: 10.1016/j.pnsc.2024.02.019_bib9 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.08.013 – volume: 121 start-page: 3286 year: 2017 ident: 10.1016/j.pnsc.2024.02.019_bib29 publication-title: J. Phys. Chem. doi: 10.1021/acs.jpcc.6b12885 – volume: 60 start-page: 17350 year: 2021 ident: 10.1016/j.pnsc.2024.02.019_bib30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202012773 – volume: 30 start-page: 1155 year: 2018 ident: 10.1016/j.pnsc.2024.02.019_bib13 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b05269 – volume: 141 start-page: 5097 year: 2019 ident: 10.1016/j.pnsc.2024.02.019_bib27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13798 – volume: 8 year: 2018 ident: 10.1016/j.pnsc.2024.02.019_bib21 publication-title: Adv. Energy Mater. |
SSID | ssj0007167 |
Score | 2.3424594 |
Snippet | Layered LiNixCoyMnzO2 (NCM) cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric vehicles.... Layered LiNixCoyMnzO2(NCM)cathode materials have emerged as the best choice for high-energy-density lithium-ion batteries for powering electric... Not provided. |
SourceID | osti wanfang crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 274 |
SubjectTerms | Materials Science Science & Technology - Other Topics |
Title | Tracing monoclinic distortion in NCM532 cathode materials by in situ high-energy synchrotron X-ray diffraction |
URI | https://dx.doi.org/10.1016/j.pnsc.2024.02.019 https://d.wanfangdata.com.cn/periodical/zrkxjz-e202402005 https://www.osti.gov/biblio/2581255 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6CctllGrCJjg1ZiAPTFDWJ7SY5smqogOhlQ-rNiu0XVkBOlRRp5a-fX-KiTZo4cHSSl0R-PxN973sAJyLRPJEoo6KwJhJ5mUXalkgoC15wIYSpqFH4ejae3ojLuZxvwWTTC0OwyhD7-5jeRetwZBR2c7RcLEY_iDyUMiShIH2izbZhJ-XF2Jv2ztnF1XT2HJD9J0E3Y4Wcn1ahd6aHeS1dS0yGqeioO4lw5__5aVB7l-s6e1xVutu_ktD5O3gbqkd21r_gLmyh24Pd4J8tOw0k0l_2wfkkZHxaYt7M6r79kdmOEoQ0wRaOzSbXkqeMeFtri8xXrr0xMr2m0-1i9ciIzDjCrj2QtWtnfjU1_Tpn86gp14yGqzR9Y8R7uDn__nMyjcJshcjwcbKKSpNZnXG0SRZXCca2MBnl6ySutLZJbIqc8wJLr2NBZzI-lpy48ngWo82Rf4CBqx0eADOcMKoGfeWbi0oInVs06J1PV2i1FkNINjuqTCAep_kXD2qDMLtTpAVFWlBxqrwWhvD1WWbZ0268eLXcKEr9YzzK54UX5Q5JqyRDjLmGoEVeKJW-6pFyCMdB2Sr4dauemvvfd08K6SZkffLjKx99CG9o1WOAPsFg1TziZ1_erPRRMN8j2L6Yf_sDOOD50g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8a5QAXxPgQZbBZiAMIRU1qu06OUG3qYO2FTerNiu2X0YGcKukkur8ev8SdQJp24Jg4L4n8PhP93u8BvBeZ4ZlEmRSFs4nIS5UYVyKhLHjBhRC2okbh-WIyuxBfl3K5B9NdLwzBKmPs72N6F63jmVHczdF6tRp9J_JQypCEggyJVj2Ah6EaUDS_4XT55TYchw-CbsIKuT4dxc6ZHuS19i3xGI5FR9xJdDt3Z6dBHRyu6-vxVekv_0pBJ0_hSawd2ef-9fZhD_0z2I_e2bIPkUL643PwIQXZkJRYMLK6b35kriMEIT2wlWeL6VzyMSPW1tohC3Vrb4rMbGm5XW2uGVEZJ9g1B7J26-2PpqYf52yZNOWW0WiVpm-LeAEXJ8fn01kSJysklk-yTVJa5Yzi6DKVVhmmrrCKsnWWVsa4LLVFznmBZdCwoBXFJ5ITUx5XKboc-UsY-NrjK2CWE0LVYqh7c1EJYXKHFoPrmQqdMWII2W5HtY204zT94pfe4cuuNGlBkxZ0OtZBC0P4dCuz7kk37r1a7hSl_zEdHbLCvXIHpFWSIb5cS8CiIDSWoeaRcgjvorJ19OpW3zQ_f1_daKSbkO3J1__56CN4NDufn-mz08W3A3hMKz0a6A0MNs01vg2FzsYcdob8B1V2-p0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracing+monoclinic+distortion+in+NCM532+cathode+materials+by+in+situ+high-energy+synchrotron+X-ray+diffraction&rft.jtitle=Progress+in+natural+science&rft.au=Dong%2C+Min&rft.au=Sun%2C+Qingya&rft.au=Wang%2C+Zhihua&rft.au=Rui%2C+Zixin&rft.date=2024-04-01&rft.issn=1002-0071&rft.volume=34&rft.issue=2&rft.spage=274&rft.epage=279&rft_id=info:doi/10.1016%2Fj.pnsc.2024.02.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pnsc_2024_02_019 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzrkxjz-e%2Fzrkxjz-e.jpg |