Generalized Logarithmic Tensor Nuclear Norm for Hyperspectral-Multispectral Image Fusion via Tensor Ring Decomposition
The fusion of a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution multispectral image (HR-MSI) is an effective way to generate a high-resolution hyperspectral image (HR-HSI). In recent years, methods based on tensor ring (TR) decomposition have received widespread att...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 16596 - 16608 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fusion of a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution multispectral image (HR-MSI) is an effective way to generate a high-resolution hyperspectral image (HR-HSI). In recent years, methods based on tensor ring (TR) decomposition have received widespread attention due to their superior performance in approximating high-dimensional data. However, these methods often neglect the intrinsic low-rank property of TR factors. More importantly, even with low-rank consideration, their effectiveness remains severely limited by both the restrictive low-rank tensor definition and high sensitivity to the permutation of tensor modes, ultimately degrading their performance. To address these issues, we propose a new HSI-MSI fusion model based on the generalized logarithmic tensor nuclear norm (GLTNN) under the TR decomposition framework. Specifically, we extend the traditional LTNN based on the third pattern to any pattern and define the generalized LTNN, where the Fourier transform is conducted on arbitrary mode. This method can not only capture the correlations comprehensively for tensor modes, but also effectively avoid the influence of the permutation of tensor modes on the fusion results. In addition, we design a proximal alternating minimization algorithm to efficiently solve the proposed model. The experimental results on four public datasets show that our method outperforms existing approaches in both numerical metrics and visual quality, validating its effectiveness and superiority. |
---|---|
AbstractList | The fusion of a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution multispectral image (HR-MSI) is an effective way to generate a high-resolution hyperspectral image (HR-HSI). In recent years, methods based on tensor ring (TR) decomposition have received widespread attention due to their superior performance in approximating high-dimensional data. However, these methods often neglect the intrinsic low-rank property of TR factors. More importantly, even with low-rank consideration, their effectiveness remains severely limited by both the restrictive low-rank tensor definition and high sensitivity to the permutation of tensor modes, ultimately degrading their performance. To address these issues, we propose a new HSI–MSI fusion model based on the generalized logarithmic tensor nuclear norm (GLTNN) under the TR decomposition framework. Specifically, we extend the traditional LTNN based on the third pattern to any pattern and define the generalized LTNN, where the Fourier transform is conducted on arbitrary mode. This method can not only capture the correlations comprehensively for tensor modes, but also effectively avoid the influence of the permutation of tensor modes on the fusion results. In addition, we design a proximal alternating minimization algorithm to efficiently solve the proposed model. The experimental results on four public datasets show that our method outperforms existing approaches in both numerical metrics and visual quality, validating its effectiveness and superiority. |
Author | Deng, Chengzhi He, Mengling Zhang, Jun |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0003-3809-7023 surname: Zhang fullname: Zhang, Jun email: junzhang0805@126.com organization: College of Science & Key Laboratory of Engineering Mathematics and Advanced Computing, Jiangxi University of Water Resources and Electric Power, Nanchang, China – sequence: 2 givenname: Mengling surname: He fullname: He, Mengling email: heml0816@163.com organization: College of Science, Jiangxi University of Water Resources and Electric Power, Nanchang, China – sequence: 3 givenname: Chengzhi orcidid: 0000-0003-1605-7100 surname: Deng fullname: Deng, Chengzhi email: dengcz@nit.edu.cn organization: Jiangxi Province Key Laboratory of Smart Water Conservancy, Jiangxi University of Water Resources and Electric Power, Nanchang, China |
BookMark | eNpFUV1v1DAQtFCRuBZ-ATxE4jmHv2M_VoW2Vx0gtcezZTvrw6dLHOykUvvrSZsWnka7OzO7qzlFJ33qAaGPBK8JwfrLzd3u_PZuTTEVayYUbRR9g1aUCFITwcQJWhHNdE045u_QaSkHjCVtNFuh-yvoIdtjfIS22qa9zXH83UVf7aAvKVc_Jn8EO2PKXRXmxvXDALkM4MdZVX-fjmN8rapNZ_dQXU4lpr66j_bV5Db2--or-NQNqcRxnr5Hb4M9Fvjwgmfo1-W33cV1vf15tbk439aeSTLW1lqqWsF003DlKW6UdjI4zmSrHdHSqWAJ4dDO3zVB4oZxGSylwSlPpCPsDG0W3zbZgxly7Gx-MMlG89xIeW9sHuP8o1Hg20Ac4R6AC0GdYw43zkrPg1YOz16fF68hpz8TlNEc0pT7-XzDKMNCEizFzGILy-dUSobwbyvB5ikss4RlnsIyL2HNqk-LKgLAfwXBXGnO2V-hIpSZ |
CODEN | IJSTHZ |
Cites_doi | 10.1109/JSTARS.2020.3012566 10.1109/TGRS.2019.2936486 10.1109/LSP.2009.2017817 10.1109/TSP.2018.2876362 10.1016/j.sigpro.2024.109407 10.1109/TGRS.2025.3563454 10.1109/TIP.2019.2916734 10.1109/TGRS.2023.3274661 10.1109/TGRS.2014.2375320 10.1109/igarss.2018.8519213 10.1109/IGARSS46834.2022.9884813 10.1109/TNNLS.2018.2885616 10.1016/j.patcog.2021.108280 10.1109/CVPR.2011.5995457 10.1109/TIP.2003.819861 10.1109/TGRS.2024.3508456 10.1007/s10589-024-00559-7 10.1016/S0034-4257(98)00064-9 10.1109/EUSIPCO.2016.7760634 10.1016/j.inffus.2023.102148 10.1016/j.sigpro.2021.108425 10.1109/LGRS.2023.3309331 10.1109/TGRS.2023.3237865 10.1109/TCE.2024.3355064 10.1109/TNNLS.2019.2957527 10.1109/TNNLS.2024.3385473 10.1016/j.sigpro.2024.109449 10.1007/s12145-021-00621-6 10.1109/TGRS.2025.3531646 10.1109/TNNLS.2023.3266038 10.1109/TNNLS.2024.3373384 10.1109/TGRS.2020.2983063 10.1109/CVPR.2016.187 10.1109/MGRS.2018.2798161 10.1109/TIP.2020.3009830 10.1109/LGRS.2004.837009 10.1109/TGRS.2021.3114197 10.1109/TGRS.2023.3308936 10.1109/TGRS.2024.3472226 10.1109/MGRS.2017.2762087 10.1007/s10107-011-0484-9 10.1109/TGRS.2024.3389016 10.3390/rs15204983 10.1007/s10489-022-04331-4 10.1109/TGRS.2025.3544811 10.1109/JSTARS.2021.3108233 10.1109/TGRS.2019.2940534 10.1109/JSTARS.2024.3416335 10.1109/97.995823 10.1109/TGRS.2024.3358493 10.1109/TIP.2018.2836307 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2025.3582782 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 16608 |
ExternalDocumentID | oai_doaj_org_article_8ecdf1b14cee4552bb3b07ba6c4f98b0 10_1109_JSTARS_2025_3582782 11048944 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62461043 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangxi Province; Jiangxi Provincial Natural Science Foundation grantid: 20232BAB201017; 20242BAB22013 funderid: 10.13039/501100004479 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c361t-aaa28d5397748c20789b6fb436d9b196b8fa114ed9397f607346fa22fb8c16b13 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:32:18 EDT 2025 Thu Aug 28 18:02:00 EDT 2025 Thu Jul 24 02:00:59 EDT 2025 Wed Aug 27 02:13:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-aaa28d5397748c20789b6fb436d9b196b8fa114ed9397f607346fa22fb8c16b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1605-7100 0000-0003-3809-7023 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11048944 |
PQID | 3230561065 |
PQPubID | 75722 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_JSTARS_2025_3582782 doaj_primary_oai_doaj_org_article_8ecdf1b14cee4552bb3b07ba6c4f98b0 proquest_journals_3230561065 ieee_primary_11048944 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 Yuhas (ref53) 1992 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 Zhao (ref24) 2016 ref31 ref30 ref33 ref32 Wald (ref52) 2000 ref2 ref1 ref39 ref38 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref50 doi: 10.1109/JSTARS.2020.3012566 – ident: ref13 doi: 10.1109/TGRS.2019.2936486 – ident: ref43 doi: 10.1109/LSP.2009.2017817 – ident: ref18 doi: 10.1109/TSP.2018.2876362 – start-page: 147 volume-title: Proc. JPL Summaries 3rd Annu. JPL Airborne Geosci. Workshop year: 1992 ident: ref53 article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm – ident: ref39 doi: 10.1016/j.sigpro.2024.109407 – ident: ref17 doi: 10.1109/TGRS.2025.3563454 – ident: ref42 doi: 10.1109/TIP.2019.2916734 – ident: ref29 doi: 10.1109/TGRS.2023.3274661 – ident: ref8 doi: 10.1109/TGRS.2014.2375320 – ident: ref9 doi: 10.1109/igarss.2018.8519213 – ident: ref23 doi: 10.1109/IGARSS46834.2022.9884813 – ident: ref22 doi: 10.1109/TNNLS.2018.2885616 – ident: ref25 doi: 10.1016/j.patcog.2021.108280 – ident: ref7 doi: 10.1109/CVPR.2011.5995457 – ident: ref51 doi: 10.1109/TIP.2003.819861 – ident: ref37 doi: 10.1109/TGRS.2024.3508456 – ident: ref31 doi: 10.1007/s10589-024-00559-7 – ident: ref48 doi: 10.1016/S0034-4257(98)00064-9 – ident: ref19 doi: 10.1109/EUSIPCO.2016.7760634 – ident: ref2 doi: 10.1016/j.inffus.2023.102148 – ident: ref41 doi: 10.1016/j.sigpro.2021.108425 – ident: ref14 doi: 10.1109/LGRS.2023.3309331 – ident: ref27 doi: 10.1109/TGRS.2023.3237865 – ident: ref32 doi: 10.1109/TCE.2024.3355064 – ident: ref33 doi: 10.1109/TNNLS.2019.2957527 – ident: ref36 doi: 10.1109/TNNLS.2024.3385473 – ident: ref12 doi: 10.1016/j.sigpro.2024.109449 – start-page: 99 volume-title: Proc. 3rd Conf. Fusion Earth Data: Merging Point Meas. Raster Maps Remotely Sensed Images year: 2000 ident: ref52 article-title: Quality of high resolution synthesised images: Is there a simple criterion? – year: 2016 ident: ref24 article-title: Tensor ring decomposition – ident: ref6 doi: 10.1007/s12145-021-00621-6 – ident: ref16 doi: 10.1109/TGRS.2025.3531646 – ident: ref4 doi: 10.1109/TNNLS.2023.3266038 – ident: ref40 doi: 10.1109/TNNLS.2024.3373384 – ident: ref21 doi: 10.1109/TGRS.2020.2983063 – ident: ref45 doi: 10.1109/CVPR.2016.187 – ident: ref49 doi: 10.1109/MGRS.2018.2798161 – ident: ref10 doi: 10.1109/TIP.2020.3009830 – ident: ref47 doi: 10.1109/LGRS.2004.837009 – ident: ref26 doi: 10.1109/TGRS.2021.3114197 – ident: ref11 doi: 10.1109/TGRS.2023.3308936 – ident: ref3 doi: 10.1109/TGRS.2024.3472226 – ident: ref5 doi: 10.1109/MGRS.2017.2762087 – ident: ref44 doi: 10.1007/s10107-011-0484-9 – ident: ref1 doi: 10.1109/TGRS.2024.3389016 – ident: ref35 doi: 10.3390/rs15204983 – ident: ref38 doi: 10.1007/s10489-022-04331-4 – ident: ref30 doi: 10.1109/TGRS.2025.3544811 – ident: ref34 doi: 10.1109/JSTARS.2021.3108233 – ident: ref46 doi: 10.1109/TGRS.2019.2940534 – ident: ref15 doi: 10.1109/JSTARS.2024.3416335 – ident: ref54 doi: 10.1109/97.995823 – ident: ref28 doi: 10.1109/TGRS.2024.3358493 – ident: ref20 doi: 10.1109/TIP.2018.2836307 |
SSID | ssj0062793 |
Score | 2.374251 |
Snippet | The fusion of a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution multispectral image (HR-MSI) is an effective way to generate... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 16596 |
SubjectTerms | Accuracy Computer vision Correlation Decomposition Effectiveness Estimation Fourier transforms Generalized logarithmic tensor nuclear norm (GLTNN) hyperspectral and multispectral image fusion Hyperspectral imaging Image resolution Logarithms Matrix decomposition Modes Permutations proximal alternating minimization (PAM) Sparse matrices Spatial resolution tensor ring (TR) decomposition Tensors Water resources |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEhIL4ikKBXlgJJDYjmOPvEpBwABU6mbZTgwd2qLSVoJfz9lxeIiBhSlKlMTJ3fn8fZbvM0IHhWbW5kQmpbEiYbmFPFgA5yGOSFekBnizr0a-vePdHrvu5_1vW335NWG1PHBtuGNR2dJlJmOQzVmeE2OoSQujuWVOChPYOox5DZmqczAnRZDbBXQiEy8gE_WGslQeQ8Cf3D8AMyT5kS8TLQT5MSYF6f6418qvBB1Gnc4qWolwEZ_Un7mGFqrROlq6DNvxvm2geVSNHrxXJb4ZPwHxnT4PBxY_AjsdT_CdVyvWcARkigGe4i7Qzrq6Ep5KQvVtc4avhpBbcGfm58_wfKCbl9zD6IbPK7_4PK7w2kS9zsXjWTeJOykklvJsmmitiSjzAPaEJV5i3nBnGOWlBHdwI5wGYlSVYK_Ccej2jDtNiDPCZtxkdAstjsajahthJ5g0gGpKoR34xEqSUmoBZXFJbUl5Cx02tlQvtWCGCkQjlao2vfKmV9H0LXTq7f15q1e7DhcgBlSMAfVXDLTQpvfWV3vAMYVkrIXajftU7JqvipLAmgB67fxH27to2f9PPSvTRovTyazaA5wyNfshJD8AGgXkSA priority: 102 providerName: Directory of Open Access Journals |
Title | Generalized Logarithmic Tensor Nuclear Norm for Hyperspectral-Multispectral Image Fusion via Tensor Ring Decomposition |
URI | https://ieeexplore.ieee.org/document/11048944 https://www.proquest.com/docview/3230561065 https://doaj.org/article/8ecdf1b14cee4552bb3b07ba6c4f98b0 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL2ilZDYUB5FDLSVFyzJNLEdx162lGFAMIvSSt1ZfsIIdQa1mUr063vtOCBASKzyUBInOc71OY7vMcCrznDnWqoqb52seOswDnaoeWikKna1Rd2cspE_LcT8nH-4aC9KsnrOhQkh5MFnYZpW8798v3ab1FV2iE0Vl4rzLdhC5TYka41hV9AuO-wiIVFV8owpFkNNrQ6xjh-dfkYxSNtpygztJP2tGcpu_WV6lb9icm5oZjuwGG9xGF_ybbrp7dTd_uHe-N_P8AgeFspJjoY68hjuhdUTuP8uT-n74yncFOfp5W3w5OP6C4rn_uvl0pEzVLjrK7JIjscGl8huCVJcMkfpOmRo4llVzuAdt8j7S4xPZLZJfXDkZmnGi5xiC0lOQhrAXkaJ7cL57O3Zm3lVZmOoHBNNXxljqPRtJozS0WRTb0W0nAmvEFJhZTQoroJHALooMHRwEQ2l0UrXCNuwZ7C9Wq_CcyBRcmWRGXlpInfBKVoz5pCpCcWcZ2ICr0dw9PfBdENnsVIrPWCpE5a6YDmB4wTgz0OTY3begS9elw9Qy-B8bGyD5QXettRaZuvOGuF4VNLWE9hNYP0qr-A0gb2xPujyeV9rRrPyQvr24h-nvYQH6RaHzpo92O6vNmEf6UtvD7LsP8iV9w64q-3I |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH6CIQQXxo8hygb4wJF0ie049nEwSgddD6OTdrNsxx4VWotGOon99Xt2HBAgJE5to6ZJ-r28932O32eA143hztVUFa11suC1wzzYoOahgarQlBZ1c-xGPp6L6Sn_eFaf5Wb11AvjvU-Tz_w4vk3P8tu128Shsn0sVVwqzm_DHSz8ddW3aw2JV9AmeewiJVFFdI3JJkNVqfYxyg9OPqMcpPU49oY2kv5WiJJff15g5a-snErNZBvmw0n2M0y-jjedHbvrP_wb__sqHsKDTDrJQR8lj-CWXz2Gux_Sor4_nsBV9p5eXvuWzNbnKJ-7LxdLRxaocdeXZB49jw2-Ir8lSHLJFMVr36OJexWph3f4RI4uMEORySaOwpGrpRl-5ARrJDn0cQp7nie2A6eT94t30yKvx1A4JqquMMZQ2daJMkpHo1G9FcFyJlqFoAorg0F55VsEoAkCkwcXwVAarHSVsBV7Clur9co_AxIkVxa5UStN4M47RUvGHHI1oZhrmRjBmwEc_a233dBJrpRK91jqiKXOWI7gbQTw51ejZ3bagH-8zreglt61obIVHs9j9FBrmS0ba4TjQUlbjmAngvXreBmnEewN8aDzDf5dM5q0FxK45__Y7RXcmy6OZ3p2NP-0C_fj6fZDN3uw1V1u_AskM519mUL4Bqde8Bw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Logarithmic+Tensor+Nuclear+Norm+for+Hyperspectral-Multispectral+Image+Fusion+via+Tensor+Ring+Decomposition&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Zhang%2C+Jun&rft.au=He%2C+Mengling&rft.au=Deng%2C+Chengzhi&rft.date=2025&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=18&rft.spage=16596&rft.epage=16608&rft_id=info:doi/10.1109%2FJSTARS.2025.3582782&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2025_3582782 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |