Generalized Logarithmic Tensor Nuclear Norm for Hyperspectral-Multispectral Image Fusion via Tensor Ring Decomposition

The fusion of a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution multispectral image (HR-MSI) is an effective way to generate a high-resolution hyperspectral image (HR-HSI). In recent years, methods based on tensor ring (TR) decomposition have received widespread att...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 16596 - 16608
Main Authors Zhang, Jun, He, Mengling, Deng, Chengzhi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fusion of a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution multispectral image (HR-MSI) is an effective way to generate a high-resolution hyperspectral image (HR-HSI). In recent years, methods based on tensor ring (TR) decomposition have received widespread attention due to their superior performance in approximating high-dimensional data. However, these methods often neglect the intrinsic low-rank property of TR factors. More importantly, even with low-rank consideration, their effectiveness remains severely limited by both the restrictive low-rank tensor definition and high sensitivity to the permutation of tensor modes, ultimately degrading their performance. To address these issues, we propose a new HSI-MSI fusion model based on the generalized logarithmic tensor nuclear norm (GLTNN) under the TR decomposition framework. Specifically, we extend the traditional LTNN based on the third pattern to any pattern and define the generalized LTNN, where the Fourier transform is conducted on arbitrary mode. This method can not only capture the correlations comprehensively for tensor modes, but also effectively avoid the influence of the permutation of tensor modes on the fusion results. In addition, we design a proximal alternating minimization algorithm to efficiently solve the proposed model. The experimental results on four public datasets show that our method outperforms existing approaches in both numerical metrics and visual quality, validating its effectiveness and superiority.
AbstractList The fusion of a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution multispectral image (HR-MSI) is an effective way to generate a high-resolution hyperspectral image (HR-HSI). In recent years, methods based on tensor ring (TR) decomposition have received widespread attention due to their superior performance in approximating high-dimensional data. However, these methods often neglect the intrinsic low-rank property of TR factors. More importantly, even with low-rank consideration, their effectiveness remains severely limited by both the restrictive low-rank tensor definition and high sensitivity to the permutation of tensor modes, ultimately degrading their performance. To address these issues, we propose a new HSI–MSI fusion model based on the generalized logarithmic tensor nuclear norm (GLTNN) under the TR decomposition framework. Specifically, we extend the traditional LTNN based on the third pattern to any pattern and define the generalized LTNN, where the Fourier transform is conducted on arbitrary mode. This method can not only capture the correlations comprehensively for tensor modes, but also effectively avoid the influence of the permutation of tensor modes on the fusion results. In addition, we design a proximal alternating minimization algorithm to efficiently solve the proposed model. The experimental results on four public datasets show that our method outperforms existing approaches in both numerical metrics and visual quality, validating its effectiveness and superiority.
Author Deng, Chengzhi
He, Mengling
Zhang, Jun
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0003-3809-7023
  surname: Zhang
  fullname: Zhang, Jun
  email: junzhang0805@126.com
  organization: College of Science & Key Laboratory of Engineering Mathematics and Advanced Computing, Jiangxi University of Water Resources and Electric Power, Nanchang, China
– sequence: 2
  givenname: Mengling
  surname: He
  fullname: He, Mengling
  email: heml0816@163.com
  organization: College of Science, Jiangxi University of Water Resources and Electric Power, Nanchang, China
– sequence: 3
  givenname: Chengzhi
  orcidid: 0000-0003-1605-7100
  surname: Deng
  fullname: Deng, Chengzhi
  email: dengcz@nit.edu.cn
  organization: Jiangxi Province Key Laboratory of Smart Water Conservancy, Jiangxi University of Water Resources and Electric Power, Nanchang, China
BookMark eNpFUV1v1DAQtFCRuBZ-ATxE4jmHv2M_VoW2Vx0gtcezZTvrw6dLHOykUvvrSZsWnka7OzO7qzlFJ33qAaGPBK8JwfrLzd3u_PZuTTEVayYUbRR9g1aUCFITwcQJWhHNdE045u_QaSkHjCVtNFuh-yvoIdtjfIS22qa9zXH83UVf7aAvKVc_Jn8EO2PKXRXmxvXDALkM4MdZVX-fjmN8rapNZ_dQXU4lpr66j_bV5Db2--or-NQNqcRxnr5Hb4M9Fvjwgmfo1-W33cV1vf15tbk439aeSTLW1lqqWsF003DlKW6UdjI4zmSrHdHSqWAJ4dDO3zVB4oZxGSylwSlPpCPsDG0W3zbZgxly7Gx-MMlG89xIeW9sHuP8o1Hg20Ac4R6AC0GdYw43zkrPg1YOz16fF68hpz8TlNEc0pT7-XzDKMNCEizFzGILy-dUSobwbyvB5ikss4RlnsIyL2HNqk-LKgLAfwXBXGnO2V-hIpSZ
CODEN IJSTHZ
Cites_doi 10.1109/JSTARS.2020.3012566
10.1109/TGRS.2019.2936486
10.1109/LSP.2009.2017817
10.1109/TSP.2018.2876362
10.1016/j.sigpro.2024.109407
10.1109/TGRS.2025.3563454
10.1109/TIP.2019.2916734
10.1109/TGRS.2023.3274661
10.1109/TGRS.2014.2375320
10.1109/igarss.2018.8519213
10.1109/IGARSS46834.2022.9884813
10.1109/TNNLS.2018.2885616
10.1016/j.patcog.2021.108280
10.1109/CVPR.2011.5995457
10.1109/TIP.2003.819861
10.1109/TGRS.2024.3508456
10.1007/s10589-024-00559-7
10.1016/S0034-4257(98)00064-9
10.1109/EUSIPCO.2016.7760634
10.1016/j.inffus.2023.102148
10.1016/j.sigpro.2021.108425
10.1109/LGRS.2023.3309331
10.1109/TGRS.2023.3237865
10.1109/TCE.2024.3355064
10.1109/TNNLS.2019.2957527
10.1109/TNNLS.2024.3385473
10.1016/j.sigpro.2024.109449
10.1007/s12145-021-00621-6
10.1109/TGRS.2025.3531646
10.1109/TNNLS.2023.3266038
10.1109/TNNLS.2024.3373384
10.1109/TGRS.2020.2983063
10.1109/CVPR.2016.187
10.1109/MGRS.2018.2798161
10.1109/TIP.2020.3009830
10.1109/LGRS.2004.837009
10.1109/TGRS.2021.3114197
10.1109/TGRS.2023.3308936
10.1109/TGRS.2024.3472226
10.1109/MGRS.2017.2762087
10.1007/s10107-011-0484-9
10.1109/TGRS.2024.3389016
10.3390/rs15204983
10.1007/s10489-022-04331-4
10.1109/TGRS.2025.3544811
10.1109/JSTARS.2021.3108233
10.1109/TGRS.2019.2940534
10.1109/JSTARS.2024.3416335
10.1109/97.995823
10.1109/TGRS.2024.3358493
10.1109/TIP.2018.2836307
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2025.3582782
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 16608
ExternalDocumentID oai_doaj_org_article_8ecdf1b14cee4552bb3b07ba6c4f98b0
10_1109_JSTARS_2025_3582782
11048944
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62461043
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangxi Province; Jiangxi Provincial Natural Science Foundation
  grantid: 20232BAB201017; 20242BAB22013
  funderid: 10.13039/501100004479
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c361t-aaa28d5397748c20789b6fb436d9b196b8fa114ed9397f607346fa22fb8c16b13
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Wed Aug 27 01:32:18 EDT 2025
Thu Aug 28 18:02:00 EDT 2025
Thu Jul 24 02:00:59 EDT 2025
Wed Aug 27 02:13:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-aaa28d5397748c20789b6fb436d9b196b8fa114ed9397f607346fa22fb8c16b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1605-7100
0000-0003-3809-7023
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11048944
PQID 3230561065
PQPubID 75722
PageCount 13
ParticipantIDs crossref_primary_10_1109_JSTARS_2025_3582782
doaj_primary_oai_doaj_org_article_8ecdf1b14cee4552bb3b07ba6c4f98b0
proquest_journals_3230561065
ieee_primary_11048944
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Yuhas (ref53) 1992
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
Zhao (ref24) 2016
ref31
ref30
ref33
ref32
Wald (ref52) 2000
ref2
ref1
ref39
ref38
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref50
  doi: 10.1109/JSTARS.2020.3012566
– ident: ref13
  doi: 10.1109/TGRS.2019.2936486
– ident: ref43
  doi: 10.1109/LSP.2009.2017817
– ident: ref18
  doi: 10.1109/TSP.2018.2876362
– start-page: 147
  volume-title: Proc. JPL Summaries 3rd Annu. JPL Airborne Geosci. Workshop
  year: 1992
  ident: ref53
  article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm
– ident: ref39
  doi: 10.1016/j.sigpro.2024.109407
– ident: ref17
  doi: 10.1109/TGRS.2025.3563454
– ident: ref42
  doi: 10.1109/TIP.2019.2916734
– ident: ref29
  doi: 10.1109/TGRS.2023.3274661
– ident: ref8
  doi: 10.1109/TGRS.2014.2375320
– ident: ref9
  doi: 10.1109/igarss.2018.8519213
– ident: ref23
  doi: 10.1109/IGARSS46834.2022.9884813
– ident: ref22
  doi: 10.1109/TNNLS.2018.2885616
– ident: ref25
  doi: 10.1016/j.patcog.2021.108280
– ident: ref7
  doi: 10.1109/CVPR.2011.5995457
– ident: ref51
  doi: 10.1109/TIP.2003.819861
– ident: ref37
  doi: 10.1109/TGRS.2024.3508456
– ident: ref31
  doi: 10.1007/s10589-024-00559-7
– ident: ref48
  doi: 10.1016/S0034-4257(98)00064-9
– ident: ref19
  doi: 10.1109/EUSIPCO.2016.7760634
– ident: ref2
  doi: 10.1016/j.inffus.2023.102148
– ident: ref41
  doi: 10.1016/j.sigpro.2021.108425
– ident: ref14
  doi: 10.1109/LGRS.2023.3309331
– ident: ref27
  doi: 10.1109/TGRS.2023.3237865
– ident: ref32
  doi: 10.1109/TCE.2024.3355064
– ident: ref33
  doi: 10.1109/TNNLS.2019.2957527
– ident: ref36
  doi: 10.1109/TNNLS.2024.3385473
– ident: ref12
  doi: 10.1016/j.sigpro.2024.109449
– start-page: 99
  volume-title: Proc. 3rd Conf. Fusion Earth Data: Merging Point Meas. Raster Maps Remotely Sensed Images
  year: 2000
  ident: ref52
  article-title: Quality of high resolution synthesised images: Is there a simple criterion?
– year: 2016
  ident: ref24
  article-title: Tensor ring decomposition
– ident: ref6
  doi: 10.1007/s12145-021-00621-6
– ident: ref16
  doi: 10.1109/TGRS.2025.3531646
– ident: ref4
  doi: 10.1109/TNNLS.2023.3266038
– ident: ref40
  doi: 10.1109/TNNLS.2024.3373384
– ident: ref21
  doi: 10.1109/TGRS.2020.2983063
– ident: ref45
  doi: 10.1109/CVPR.2016.187
– ident: ref49
  doi: 10.1109/MGRS.2018.2798161
– ident: ref10
  doi: 10.1109/TIP.2020.3009830
– ident: ref47
  doi: 10.1109/LGRS.2004.837009
– ident: ref26
  doi: 10.1109/TGRS.2021.3114197
– ident: ref11
  doi: 10.1109/TGRS.2023.3308936
– ident: ref3
  doi: 10.1109/TGRS.2024.3472226
– ident: ref5
  doi: 10.1109/MGRS.2017.2762087
– ident: ref44
  doi: 10.1007/s10107-011-0484-9
– ident: ref1
  doi: 10.1109/TGRS.2024.3389016
– ident: ref35
  doi: 10.3390/rs15204983
– ident: ref38
  doi: 10.1007/s10489-022-04331-4
– ident: ref30
  doi: 10.1109/TGRS.2025.3544811
– ident: ref34
  doi: 10.1109/JSTARS.2021.3108233
– ident: ref46
  doi: 10.1109/TGRS.2019.2940534
– ident: ref15
  doi: 10.1109/JSTARS.2024.3416335
– ident: ref54
  doi: 10.1109/97.995823
– ident: ref28
  doi: 10.1109/TGRS.2024.3358493
– ident: ref20
  doi: 10.1109/TIP.2018.2836307
SSID ssj0062793
Score 2.374251
Snippet The fusion of a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution multispectral image (HR-MSI) is an effective way to generate...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 16596
SubjectTerms Accuracy
Computer vision
Correlation
Decomposition
Effectiveness
Estimation
Fourier transforms
Generalized logarithmic tensor nuclear norm (GLTNN)
hyperspectral and multispectral image fusion
Hyperspectral imaging
Image resolution
Logarithms
Matrix decomposition
Modes
Permutations
proximal alternating minimization (PAM)
Sparse matrices
Spatial resolution
tensor ring (TR) decomposition
Tensors
Water resources
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEhIL4ikKBXlgJJDYjmOPvEpBwABU6mbZTgwd2qLSVoJfz9lxeIiBhSlKlMTJ3fn8fZbvM0IHhWbW5kQmpbEiYbmFPFgA5yGOSFekBnizr0a-vePdHrvu5_1vW335NWG1PHBtuGNR2dJlJmOQzVmeE2OoSQujuWVOChPYOox5DZmqczAnRZDbBXQiEy8gE_WGslQeQ8Cf3D8AMyT5kS8TLQT5MSYF6f6418qvBB1Gnc4qWolwEZ_Un7mGFqrROlq6DNvxvm2geVSNHrxXJb4ZPwHxnT4PBxY_AjsdT_CdVyvWcARkigGe4i7Qzrq6Ep5KQvVtc4avhpBbcGfm58_wfKCbl9zD6IbPK7_4PK7w2kS9zsXjWTeJOykklvJsmmitiSjzAPaEJV5i3nBnGOWlBHdwI5wGYlSVYK_Ccej2jDtNiDPCZtxkdAstjsajahthJ5g0gGpKoR34xEqSUmoBZXFJbUl5Cx02tlQvtWCGCkQjlao2vfKmV9H0LXTq7f15q1e7DhcgBlSMAfVXDLTQpvfWV3vAMYVkrIXajftU7JqvipLAmgB67fxH27to2f9PPSvTRovTyazaA5wyNfshJD8AGgXkSA
  priority: 102
  providerName: Directory of Open Access Journals
Title Generalized Logarithmic Tensor Nuclear Norm for Hyperspectral-Multispectral Image Fusion via Tensor Ring Decomposition
URI https://ieeexplore.ieee.org/document/11048944
https://www.proquest.com/docview/3230561065
https://doaj.org/article/8ecdf1b14cee4552bb3b07ba6c4f98b0
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL2ilZDYUB5FDLSVFyzJNLEdx162lGFAMIvSSt1ZfsIIdQa1mUr063vtOCBASKzyUBInOc71OY7vMcCrznDnWqoqb52seOswDnaoeWikKna1Rd2cspE_LcT8nH-4aC9KsnrOhQkh5MFnYZpW8798v3ab1FV2iE0Vl4rzLdhC5TYka41hV9AuO-wiIVFV8owpFkNNrQ6xjh-dfkYxSNtpygztJP2tGcpu_WV6lb9icm5oZjuwGG9xGF_ybbrp7dTd_uHe-N_P8AgeFspJjoY68hjuhdUTuP8uT-n74yncFOfp5W3w5OP6C4rn_uvl0pEzVLjrK7JIjscGl8huCVJcMkfpOmRo4llVzuAdt8j7S4xPZLZJfXDkZmnGi5xiC0lOQhrAXkaJ7cL57O3Zm3lVZmOoHBNNXxljqPRtJozS0WRTb0W0nAmvEFJhZTQoroJHALooMHRwEQ2l0UrXCNuwZ7C9Wq_CcyBRcmWRGXlpInfBKVoz5pCpCcWcZ2ICr0dw9PfBdENnsVIrPWCpE5a6YDmB4wTgz0OTY3begS9elw9Qy-B8bGyD5QXettRaZuvOGuF4VNLWE9hNYP0qr-A0gb2xPujyeV9rRrPyQvr24h-nvYQH6RaHzpo92O6vNmEf6UtvD7LsP8iV9w64q-3I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH6CIQQXxo8hygb4wJF0ie049nEwSgddD6OTdrNsxx4VWotGOon99Xt2HBAgJE5to6ZJ-r28932O32eA143hztVUFa11suC1wzzYoOahgarQlBZ1c-xGPp6L6Sn_eFaf5Wb11AvjvU-Tz_w4vk3P8tu128Shsn0sVVwqzm_DHSz8ddW3aw2JV9AmeewiJVFFdI3JJkNVqfYxyg9OPqMcpPU49oY2kv5WiJJff15g5a-snErNZBvmw0n2M0y-jjedHbvrP_wb__sqHsKDTDrJQR8lj-CWXz2Gux_Sor4_nsBV9p5eXvuWzNbnKJ-7LxdLRxaocdeXZB49jw2-Ir8lSHLJFMVr36OJexWph3f4RI4uMEORySaOwpGrpRl-5ARrJDn0cQp7nie2A6eT94t30yKvx1A4JqquMMZQ2daJMkpHo1G9FcFyJlqFoAorg0F55VsEoAkCkwcXwVAarHSVsBV7Clur9co_AxIkVxa5UStN4M47RUvGHHI1oZhrmRjBmwEc_a233dBJrpRK91jqiKXOWI7gbQTw51ejZ3bagH-8zreglt61obIVHs9j9FBrmS0ba4TjQUlbjmAngvXreBmnEewN8aDzDf5dM5q0FxK45__Y7RXcmy6OZ3p2NP-0C_fj6fZDN3uw1V1u_AskM519mUL4Bqde8Bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Logarithmic+Tensor+Nuclear+Norm+for+Hyperspectral-Multispectral+Image+Fusion+via+Tensor+Ring+Decomposition&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Zhang%2C+Jun&rft.au=He%2C+Mengling&rft.au=Deng%2C+Chengzhi&rft.date=2025&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=18&rft.spage=16596&rft.epage=16608&rft_id=info:doi/10.1109%2FJSTARS.2025.3582782&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2025_3582782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon