Research on Fuel Cell Fault Diagnosis Based on Genetic Algorithm Optimization of Support Vector Machine

The fuel cell engine mechanism model is used to research fault diagnosis based on a data-driven method to identify the failure of proton exchange membrane fuel cells in the process of operation, which leads to the degradation of system performance and other problems. In this paper, an extreme learni...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 15; no. 6; p. 2294
Main Authors Huo, Weiwei, Li, Weier, Sun, Chao, Ren, Qiang, Gong, Guoqing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fuel cell engine mechanism model is used to research fault diagnosis based on a data-driven method to identify the failure of proton exchange membrane fuel cells in the process of operation, which leads to the degradation of system performance and other problems. In this paper, an extreme learning machine and a support vector machine are applied to classify the usual faults of fuel cells, including air compressor faults, air supply pipe and return pipe leaks, stack flooding faults and temperature controller faults. The accuracy of fault classification was 78.67% and 83.33% respectively. In order to improve the efficiency of fault classification, a genetic algorithm is used to optimize the parameters of the support vector machine. The simulation results show that the accuracy of fault classification was improved to 94% after optimization.
AbstractList The fuel cell engine mechanism model is used to research fault diagnosis based on a data-driven method to identify the failure of proton exchange membrane fuel cells in the process of operation, which leads to the degradation of system performance and other problems. In this paper, an extreme learning machine and a support vector machine are applied to classify the usual faults of fuel cells, including air compressor faults, air supply pipe and return pipe leaks, stack flooding faults and temperature controller faults. The accuracy of fault classification was 78.67% and 83.33% respectively. In order to improve the efficiency of fault classification, a genetic algorithm is used to optimize the parameters of the support vector machine. The simulation results show that the accuracy of fault classification was improved to 94% after optimization.
Author Ren, Qiang
Li, Weier
Sun, Chao
Huo, Weiwei
Gong, Guoqing
Author_xml – sequence: 1
  givenname: Weiwei
  surname: Huo
  fullname: Huo, Weiwei
– sequence: 2
  givenname: Weier
  orcidid: 0000-0002-8854-3688
  surname: Li
  fullname: Li, Weier
– sequence: 3
  givenname: Chao
  surname: Sun
  fullname: Sun, Chao
– sequence: 4
  givenname: Qiang
  surname: Ren
  fullname: Ren, Qiang
– sequence: 5
  givenname: Guoqing
  surname: Gong
  fullname: Gong, Guoqing
BookMark eNptUVFPGzEMjqYiDQov-wWR9oZUSC7X5PLIylqQipBg22tkEl-b6nq5JbmH8eu5tgjQhF9s2Z8_-7NPyKgNLRLyjbMLITS7xJZPmSwKXX4hx1xrOeFMidGH-Cs5S2nDBhOCCyGOyeoBE0K0axpaOu-xoTNsGjqHvsn02sOqDckn-gMSuh1kgS1mb-lVswrR5_WW3nfZb_0zZD-UQ00f-64LMdM_aHOI9A7s2rd4So5qaBKevfox-T3_-Wt2M1neL25nV8uJFZLnCQCTygrBrHN1VXAxrQo9FSi01a7iig_qbKVQs5orx11VOqhVzYrSKVnaSozJ7YHXBdiYLvotxH8mgDf7RIgrA3EQ0KCRCit8QuSOufLJFSCZs0qiRgXaljuu7weuLoa_PaZsNqGP7bC-KWRZlFzt7jgm5weUjSGliPXbVM7M7i_m_S8DmP0Htj7vT5cj-OazlhcujZDH
CitedBy_id crossref_primary_10_1093_tse_tdac071
crossref_primary_10_3390_pr10112162
crossref_primary_10_1016_j_iswa_2023_200243
crossref_primary_10_1016_j_ijhydene_2025_02_232
crossref_primary_10_3390_app142311214
crossref_primary_10_1016_j_tsep_2023_102070
crossref_primary_10_3390_en16114390
crossref_primary_10_1007_s00202_024_02349_0
crossref_primary_10_1016_j_apenergy_2024_124275
crossref_primary_10_1016_j_ijhydene_2024_09_227
crossref_primary_10_1016_j_jpowsour_2024_235118
crossref_primary_10_1016_j_ress_2022_108922
crossref_primary_10_1109_ACCESS_2024_3493620
crossref_primary_10_3390_en16176144
crossref_primary_10_1007_s44196_023_00241_6
crossref_primary_10_1109_TIE_2023_3312416
crossref_primary_10_1109_TTE_2023_3272654
crossref_primary_10_1007_s00607_024_01399_3
crossref_primary_10_3390_su152014693
crossref_primary_10_1016_j_jestch_2025_102007
Cites_doi 10.1016/j.neucom.2020.05.021
10.1016/j.energy.2020.117285
10.1016/j.enconman.2021.115004
10.1007/978-1-4471-3792-4
10.1016/j.ijhydene.2017.04.146
10.1109/TIE.2015.2417501
10.1016/j.energy.2014.01.079
10.1016/j.ijhydene.2013.12.211
10.3390/en13102531
10.1016/j.renene.2021.07.079
10.1109/TVT.2007.898389
10.1109/TIE.2016.2535118
10.3390/pr9020328
10.1109/ACCESS.2019.2943071
10.1109/TIA.2020.2978752
10.1109/TTE.2018.2886153
10.1016/j.apm.2013.10.065
10.1016/j.engappai.2013.10.002
10.1016/j.jpowsour.2016.04.080
10.3390/en14113071
10.1016/j.ijhydene.2021.09.126
10.1016/j.engappai.2014.07.008
10.1016/j.ijhydene.2021.05.137
10.3390/en12010152
10.1016/j.ijhydene.2020.10.085
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en15062294
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_67e8ebee1d0d4bd2a60dc76e9e7a9c48
10_3390_en15062294
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-aa067c330cddf8213582953e39c9d8171229c87e90f17d1d84daf7f024d764c83
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Wed Aug 27 00:50:41 EDT 2025
Mon Jun 30 07:29:51 EDT 2025
Tue Jul 01 01:27:51 EDT 2025
Thu Apr 24 23:00:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-aa067c330cddf8213582953e39c9d8171229c87e90f17d1d84daf7f024d764c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8854-3688
OpenAccessLink https://doaj.org/article/67e8ebee1d0d4bd2a60dc76e9e7a9c48
PQID 2642417003
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_67e8ebee1d0d4bd2a60dc76e9e7a9c48
proquest_journals_2642417003
crossref_primary_10_3390_en15062294
crossref_citationtrail_10_3390_en15062294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhao (ref_14) 2017; 42
Gao (ref_18) 2015; 62
Liu (ref_26) 2020; 13
Hissel (ref_1) 2007; 56
Zhang (ref_17) 2021; 46
ref_15
Liu (ref_12) 2019; 5
Yuan (ref_21) 2019; 7
Shao (ref_10) 2014; 67
Du (ref_16) 2021; 46
Li (ref_11) 2014; 39
Won (ref_4) 2021; 180
Zhuo (ref_9) 2020; 56
Chen (ref_2) 2020; 197
Wu (ref_13) 2016; 321
Lim (ref_8) 2021; 46
ref_22
Rosich (ref_24) 2014; 38
Liu (ref_5) 2016; 66
Li (ref_20) 2020; 409
ref_3
Kamal (ref_25) 2014; 28
Zuo (ref_6) 2022; 251
Escobet (ref_23) 2014; 36
Gao (ref_19) 2015; 62
ref_7
References_xml – volume: 409
  start-page: 275
  year: 2020
  ident: ref_20
  article-title: Learning local discriminative representations via extreme learning machine for machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.021
– volume: 197
  start-page: 117285
  year: 2020
  ident: ref_2
  article-title: Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117285
– volume: 251
  start-page: 115004
  year: 2022
  ident: ref_6
  article-title: Data-driven flooding fault diagnosis method for proton-exchange membrane fuel cells using deep learning technologies
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.115004
– ident: ref_22
  doi: 10.1007/978-1-4471-3792-4
– volume: 42
  start-page: 18524
  year: 2017
  ident: ref_14
  article-title: Faults diagnosis for PEM fuel cell system based on multi-sensor signals and principle component analysis method
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.04.146
– volume: 62
  start-page: 3757
  year: 2015
  ident: ref_18
  article-title: A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2417501
– volume: 67
  start-page: 268
  year: 2014
  ident: ref_10
  article-title: An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.079
– volume: 39
  start-page: 13777
  year: 2014
  ident: ref_11
  article-title: Nonlinear multivariable modeling of locomotive proton exchange membrane fuel cell system
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.211
– volume: 13
  start-page: 2531
  year: 2020
  ident: ref_26
  article-title: Research on the fault diagnosis of a polymer electrolyte membrane fuel cell system
  publication-title: Energies
  doi: 10.3390/en13102531
– volume: 180
  start-page: 343
  year: 2021
  ident: ref_4
  article-title: Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.07.079
– volume: 56
  start-page: 2414
  year: 2007
  ident: ref_1
  article-title: Fuzzy-clustering durability diagnosis of polymer electrolyte fuel cells dedicated to transportation applications
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2007.898389
– volume: 66
  start-page: 3261
  year: 2016
  ident: ref_5
  article-title: Robust model-based fault diagnosis for PEM fuel cell air-feed system
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2535118
– volume: 62
  start-page: 3768
  year: 2015
  ident: ref_19
  article-title: A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II: Fault Diagnosis With Knowledge-Based and Hybrid/Active Approaches
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2417501
– ident: ref_15
  doi: 10.3390/pr9020328
– volume: 7
  start-page: 137945
  year: 2019
  ident: ref_21
  article-title: Fault diagnosis of analog circuits based on IH-PSO optimized support vector machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2943071
– volume: 56
  start-page: 3159
  year: 2020
  ident: ref_9
  article-title: An Observer-Based Switch Open-Circuit Fault Diagnosis of DC–DC Converter for Fuel Cell Application
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2020.2978752
– volume: 5
  start-page: 271
  year: 2019
  ident: ref_12
  article-title: A fast fault diagnosis method of the PEMFC system based on extreme learning machine and dempster–shafer evidence theory
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2018.2886153
– volume: 38
  start-page: 2744
  year: 2014
  ident: ref_24
  article-title: On-line model-based fault detection and isolation for PEM fuel cell stack systems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.10.065
– volume: 28
  start-page: 52
  year: 2014
  ident: ref_25
  article-title: Fault detection and isolation for PEM fuel cell stack with independent RBF model
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.10.002
– volume: 321
  start-page: 47
  year: 2016
  ident: ref_13
  article-title: Fault diagnosis and prognostic of solid oxide fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.080
– ident: ref_7
  doi: 10.3390/en14113071
– volume: 46
  start-page: 38795
  year: 2021
  ident: ref_16
  article-title: A fault diagnosis model for proton exchange membrane fuel cell based on impedance identification with differential evolution algorithm
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.126
– volume: 36
  start-page: 40
  year: 2014
  ident: ref_23
  article-title: PEM fuel cell fault diagnosis via a hybrid methodology based on fuzzy and pattern recognition techniques
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.07.008
– volume: 46
  start-page: 30828
  year: 2021
  ident: ref_17
  article-title: Fault diagnosis of proton exchange membrane fuel cell system of tram based on information fusion and deep learning
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.05.137
– ident: ref_3
  doi: 10.3390/en12010152
– volume: 46
  start-page: 2543
  year: 2021
  ident: ref_8
  article-title: Efficient fault diagnosis method of PEMFC thermal management system for various current densities
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.10.085
SSID ssj0000331333
Score 2.415972
Snippet The fuel cell engine mechanism model is used to research fault diagnosis based on a data-driven method to identify the failure of proton exchange membrane fuel...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2294
SubjectTerms Classification
Efficiency
extreme learning machine
Fault diagnosis
fuel cell
Fuel cell vehicles
genetic algorithm
Genetic algorithms
Hydrogen
Neural networks
Neurons
Sensors
support vector machine
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG9ULnowfkb8ShO9eFhY17G2JyMIISagMWK4LV3bocnYUMb_7-sooNF42WF7W9LX1_e1934PoWuVMhUFiUUAUEmVrfKk8I2n4Co0TaQgtlG4P4h6w_Bh1By5hNvMlVUudWKlqHWhbI68AYYbjA0DIbydfnh2apT9u-pGaGyiGqhgDsFXrdUZPD2vsiw-pRCE0QUuKYX4vmFyi6kXBCL8YYkqwP5f-rgyMt09tOu8Q3y32M59tGHyA7TzDTPwEI2XtXK4yHF3bjLcNlmGu3Kelfh-UTj3PsMtsE7aklhcafgavsvGsJzybYIfQUtMXPslLlJsB3uCE45fqwQ-7lflleYIDbudl3bPc9MSPEUjUnpSguFRlPpK65QHxLbAiiY1VCihOWEE1qw4M8JPCdNE81DLlKVgozWLQsXpMdrKi9ycICwkT0MehSnXFNwpkXAIXpXxFbwdEKnr6GbJuVg5KHE70SKLIaSwXI7XXK6jqxXtdAGg8SdVy27AisKCXlc3is9x7M5QHDHDQeYM0b4OEx3IyNeKRUYYJoUKeR2dL7cvdidxFq_l5vT_x2doO7CtDVV92TnaKj_n5gIcjjK5dFL1BQHy1kI
  priority: 102
  providerName: ProQuest
Title Research on Fuel Cell Fault Diagnosis Based on Genetic Algorithm Optimization of Support Vector Machine
URI https://www.proquest.com/docview/2642417003
https://doaj.org/article/67e8ebee1d0d4bd2a60dc76e9e7a9c48
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgLDAgPkWhVJZgYYgax2lsj20hRUgtCAHqFjm2A5XSFEH6_zk7KRSBxMLiIbrEyfnid2fdvUPoXGVMRUFqGQBU6k6rPCl84ykYhaapFMQWCo_G0fVjeDPpTlZafdmcsIoeuFJcJ2KGw0SGaF-HqQ5k5GvFIiMMk0KFrswXMG8lmHJ7MKUQfNGKj5RCXN8xheXSCwIRfkMgR9T_Yx924BLvoO3aK8S96m120Zop9tDWClfgPnpe5sjheYHjhcnxwOQ5juUiL_FllTA3fcd9QCVtRSyfNDwN9_Ln-du0fJnhW9gdZnXZJZ5n2Db0BOcbP7mDezxyaZXmAD3GVw-Da6_ukuApGpHSkxIAR1HqK60zHhBb-iq61FChhOaEEfhmxZkRfkaYJpqHWmYsA2zWLAoVp4eoUcwLc4SwkDwLeRRmXFNwo0TKIWhVxldwd0CkbqKLpeYSVVOI204WeQKhhNVy8qXlJjr7lH2tiDN-lerbBfiUsGTX7gKYQFKbQPKXCTRRa7l8Sf0Hvifg6IFzwsASjv9jjhO0GdjCB5d91kKN8m1hTsEdKdM2WufxsI02-lfju_u2s0MYhxPyAYM-4pg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKGAJOHCIGj8a2weE-iBsabdcWtRbcGxnQUqT0s0K8af4jYydZAsCceslh3jsw3g8D3vmG4CXtpI2Y2VAALBlvK1KjE59YvGrHS-NpqFQeHaUTU_Eh9Ot0zX4OdbChLTKUSdGRe1aG-7IN9Fwo7GRKIRvz78loWtUeF0dW2j0YnHgf3zHkG3xZn8P9_cVY_m7491pMnQVSCzPaJcYgwraYhhvnasUo6FUVG9xz7XVTlFJGdNWSa_TikpHnRLOVLJCW-ZkJqziuO41uC441-FEqfz96k4n5RxDPt6joOJ4uumbgOCHK4o_7F5sD_CX9o8mLb8DtwdflGz3wnMX1nxzD279hlB4H-ZjZh5pG5IvfU12fV2T3Czrjuz1aXpfF2QHbaELJAHFGlcj2_Ucmdd9OSMfUSedDcWepK1IaCOKLj_5FJ8LyCwmc_oHcHIlXHwI603b-EdAtFGVUJmolOPovOlSYahsfWpxNqPGTeD1yLnCDsDloX9GXWAAE7hcXHJ5Ai9WtOc9XMc_qXbCBqwoAsR2_NFezIvhxBaZ9Aol3FOXOlE6ZrLUWZl57aXRVqgJbIzbVwznflFcSunj_w8_hxvT49lhcbh_dPAEbrJQVBEz2zZgvbtY-qfo6nTlsyhfBD5ftUD_AmZsEJc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKLQUsAQcOUWM7je0DQt1uo5bSpUIU9RYcP5ZKaVK6WSH-Gr-OcR5bEIhbLzkkEx_Gk_k8k5lvAF4aL0zKisAAYIo2WxVpFbvI4FVZXmhFQ6Pw0SzdP0nenW6frsHPoRcmlFUOPrF11LY2IUe-hcCNYCNC3s33ZRHH0-ztxbcoTJAKf1qHcRqdiRy6H98xfFu8OZjiXr9iLNv7tLsf9RMGIsNT2kRao7M2GNIba71kNLSNqm3uuDLKSiooY8pI4VTsqbDUysRqLzzimhVpYiTHdW_AusCoKB7B-mRvdvxxleGJOccAkHecqJyreMtVgc8P10z-QMF2WMBfWNACXHYX7vQnU7LTmdI9WHPVfbj9G1_hA5gPdXqkrki2dCXZdWVJMr0sGzLtivbOFmSCyGiDSOC0xtXITjlH9TVfz8kH9FDnfesnqT0JQ0UxACCf258H5Kgt7XQP4eRa9PgIRlVducdAlJY-kWnipeV4lFOFxMDZuNjg24xqO4bXg-Zy09OYh2kaZY7hTNByfqXlMbxYyV505B3_lJqEDVhJBMLt9kZ9Oc_77zdPhZNo747a2CaFZTqNrRGpU05oZRI5hs1h-_LeCyzyK5vd-P_j53ATjTl_fzA7fAK3WOiwaMvcNmHUXC7dUzz3NMWz3sAIfLlum_4FiS4WKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Fuel+Cell+Fault+Diagnosis+Based+on+Genetic+Algorithm+Optimization+of+Support+Vector+Machine&rft.jtitle=Energies+%28Basel%29&rft.au=Weiwei+Huo&rft.au=Weier+Li&rft.au=Chao+Sun&rft.au=Qiang+Ren&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=6&rft.spage=2294&rft_id=info:doi/10.3390%2Fen15062294&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_67e8ebee1d0d4bd2a60dc76e9e7a9c48
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon