Research on Fuel Cell Fault Diagnosis Based on Genetic Algorithm Optimization of Support Vector Machine
The fuel cell engine mechanism model is used to research fault diagnosis based on a data-driven method to identify the failure of proton exchange membrane fuel cells in the process of operation, which leads to the degradation of system performance and other problems. In this paper, an extreme learni...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 6; p. 2294 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fuel cell engine mechanism model is used to research fault diagnosis based on a data-driven method to identify the failure of proton exchange membrane fuel cells in the process of operation, which leads to the degradation of system performance and other problems. In this paper, an extreme learning machine and a support vector machine are applied to classify the usual faults of fuel cells, including air compressor faults, air supply pipe and return pipe leaks, stack flooding faults and temperature controller faults. The accuracy of fault classification was 78.67% and 83.33% respectively. In order to improve the efficiency of fault classification, a genetic algorithm is used to optimize the parameters of the support vector machine. The simulation results show that the accuracy of fault classification was improved to 94% after optimization. |
---|---|
AbstractList | The fuel cell engine mechanism model is used to research fault diagnosis based on a data-driven method to identify the failure of proton exchange membrane fuel cells in the process of operation, which leads to the degradation of system performance and other problems. In this paper, an extreme learning machine and a support vector machine are applied to classify the usual faults of fuel cells, including air compressor faults, air supply pipe and return pipe leaks, stack flooding faults and temperature controller faults. The accuracy of fault classification was 78.67% and 83.33% respectively. In order to improve the efficiency of fault classification, a genetic algorithm is used to optimize the parameters of the support vector machine. The simulation results show that the accuracy of fault classification was improved to 94% after optimization. |
Author | Ren, Qiang Li, Weier Sun, Chao Huo, Weiwei Gong, Guoqing |
Author_xml | – sequence: 1 givenname: Weiwei surname: Huo fullname: Huo, Weiwei – sequence: 2 givenname: Weier orcidid: 0000-0002-8854-3688 surname: Li fullname: Li, Weier – sequence: 3 givenname: Chao surname: Sun fullname: Sun, Chao – sequence: 4 givenname: Qiang surname: Ren fullname: Ren, Qiang – sequence: 5 givenname: Guoqing surname: Gong fullname: Gong, Guoqing |
BookMark | eNptUVFPGzEMjqYiDQov-wWR9oZUSC7X5PLIylqQipBg22tkEl-b6nq5JbmH8eu5tgjQhF9s2Z8_-7NPyKgNLRLyjbMLITS7xJZPmSwKXX4hx1xrOeFMidGH-Cs5S2nDBhOCCyGOyeoBE0K0axpaOu-xoTNsGjqHvsn02sOqDckn-gMSuh1kgS1mb-lVswrR5_WW3nfZb_0zZD-UQ00f-64LMdM_aHOI9A7s2rd4So5qaBKevfox-T3_-Wt2M1neL25nV8uJFZLnCQCTygrBrHN1VXAxrQo9FSi01a7iig_qbKVQs5orx11VOqhVzYrSKVnaSozJ7YHXBdiYLvotxH8mgDf7RIgrA3EQ0KCRCit8QuSOufLJFSCZs0qiRgXaljuu7weuLoa_PaZsNqGP7bC-KWRZlFzt7jgm5weUjSGliPXbVM7M7i_m_S8DmP0Htj7vT5cj-OazlhcujZDH |
CitedBy_id | crossref_primary_10_1093_tse_tdac071 crossref_primary_10_3390_pr10112162 crossref_primary_10_1016_j_iswa_2023_200243 crossref_primary_10_1016_j_ijhydene_2025_02_232 crossref_primary_10_3390_app142311214 crossref_primary_10_1016_j_tsep_2023_102070 crossref_primary_10_3390_en16114390 crossref_primary_10_1007_s00202_024_02349_0 crossref_primary_10_1016_j_apenergy_2024_124275 crossref_primary_10_1016_j_ijhydene_2024_09_227 crossref_primary_10_1016_j_jpowsour_2024_235118 crossref_primary_10_1016_j_ress_2022_108922 crossref_primary_10_1109_ACCESS_2024_3493620 crossref_primary_10_3390_en16176144 crossref_primary_10_1007_s44196_023_00241_6 crossref_primary_10_1109_TIE_2023_3312416 crossref_primary_10_1109_TTE_2023_3272654 crossref_primary_10_1007_s00607_024_01399_3 crossref_primary_10_3390_su152014693 crossref_primary_10_1016_j_jestch_2025_102007 |
Cites_doi | 10.1016/j.neucom.2020.05.021 10.1016/j.energy.2020.117285 10.1016/j.enconman.2021.115004 10.1007/978-1-4471-3792-4 10.1016/j.ijhydene.2017.04.146 10.1109/TIE.2015.2417501 10.1016/j.energy.2014.01.079 10.1016/j.ijhydene.2013.12.211 10.3390/en13102531 10.1016/j.renene.2021.07.079 10.1109/TVT.2007.898389 10.1109/TIE.2016.2535118 10.3390/pr9020328 10.1109/ACCESS.2019.2943071 10.1109/TIA.2020.2978752 10.1109/TTE.2018.2886153 10.1016/j.apm.2013.10.065 10.1016/j.engappai.2013.10.002 10.1016/j.jpowsour.2016.04.080 10.3390/en14113071 10.1016/j.ijhydene.2021.09.126 10.1016/j.engappai.2014.07.008 10.1016/j.ijhydene.2021.05.137 10.3390/en12010152 10.1016/j.ijhydene.2020.10.085 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en15062294 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_67e8ebee1d0d4bd2a60dc76e9e7a9c48 10_3390_en15062294 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-aa067c330cddf8213582953e39c9d8171229c87e90f17d1d84daf7f024d764c83 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 00:50:41 EDT 2025 Mon Jun 30 07:29:51 EDT 2025 Tue Jul 01 01:27:51 EDT 2025 Thu Apr 24 23:00:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-aa067c330cddf8213582953e39c9d8171229c87e90f17d1d84daf7f024d764c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8854-3688 |
OpenAccessLink | https://doaj.org/article/67e8ebee1d0d4bd2a60dc76e9e7a9c48 |
PQID | 2642417003 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_67e8ebee1d0d4bd2a60dc76e9e7a9c48 proquest_journals_2642417003 crossref_primary_10_3390_en15062294 crossref_citationtrail_10_3390_en15062294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhao (ref_14) 2017; 42 Gao (ref_18) 2015; 62 Liu (ref_26) 2020; 13 Hissel (ref_1) 2007; 56 Zhang (ref_17) 2021; 46 ref_15 Liu (ref_12) 2019; 5 Yuan (ref_21) 2019; 7 Shao (ref_10) 2014; 67 Du (ref_16) 2021; 46 Li (ref_11) 2014; 39 Won (ref_4) 2021; 180 Zhuo (ref_9) 2020; 56 Chen (ref_2) 2020; 197 Wu (ref_13) 2016; 321 Lim (ref_8) 2021; 46 ref_22 Rosich (ref_24) 2014; 38 Liu (ref_5) 2016; 66 Li (ref_20) 2020; 409 ref_3 Kamal (ref_25) 2014; 28 Zuo (ref_6) 2022; 251 Escobet (ref_23) 2014; 36 Gao (ref_19) 2015; 62 ref_7 |
References_xml | – volume: 409 start-page: 275 year: 2020 ident: ref_20 article-title: Learning local discriminative representations via extreme learning machine for machine fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.021 – volume: 197 start-page: 117285 year: 2020 ident: ref_2 article-title: Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship publication-title: Energy doi: 10.1016/j.energy.2020.117285 – volume: 251 start-page: 115004 year: 2022 ident: ref_6 article-title: Data-driven flooding fault diagnosis method for proton-exchange membrane fuel cells using deep learning technologies publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.115004 – ident: ref_22 doi: 10.1007/978-1-4471-3792-4 – volume: 42 start-page: 18524 year: 2017 ident: ref_14 article-title: Faults diagnosis for PEM fuel cell system based on multi-sensor signals and principle component analysis method publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.04.146 – volume: 62 start-page: 3757 year: 2015 ident: ref_18 article-title: A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2417501 – volume: 67 start-page: 268 year: 2014 ident: ref_10 article-title: An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system publication-title: Energy doi: 10.1016/j.energy.2014.01.079 – volume: 39 start-page: 13777 year: 2014 ident: ref_11 article-title: Nonlinear multivariable modeling of locomotive proton exchange membrane fuel cell system publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.12.211 – volume: 13 start-page: 2531 year: 2020 ident: ref_26 article-title: Research on the fault diagnosis of a polymer electrolyte membrane fuel cell system publication-title: Energies doi: 10.3390/en13102531 – volume: 180 start-page: 343 year: 2021 ident: ref_4 article-title: Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells publication-title: Renew. Energy doi: 10.1016/j.renene.2021.07.079 – volume: 56 start-page: 2414 year: 2007 ident: ref_1 article-title: Fuzzy-clustering durability diagnosis of polymer electrolyte fuel cells dedicated to transportation applications publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2007.898389 – volume: 66 start-page: 3261 year: 2016 ident: ref_5 article-title: Robust model-based fault diagnosis for PEM fuel cell air-feed system publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2535118 – volume: 62 start-page: 3768 year: 2015 ident: ref_19 article-title: A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II: Fault Diagnosis With Knowledge-Based and Hybrid/Active Approaches publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2417501 – ident: ref_15 doi: 10.3390/pr9020328 – volume: 7 start-page: 137945 year: 2019 ident: ref_21 article-title: Fault diagnosis of analog circuits based on IH-PSO optimized support vector machine publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2943071 – volume: 56 start-page: 3159 year: 2020 ident: ref_9 article-title: An Observer-Based Switch Open-Circuit Fault Diagnosis of DC–DC Converter for Fuel Cell Application publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2020.2978752 – volume: 5 start-page: 271 year: 2019 ident: ref_12 article-title: A fast fault diagnosis method of the PEMFC system based on extreme learning machine and dempster–shafer evidence theory publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2018.2886153 – volume: 38 start-page: 2744 year: 2014 ident: ref_24 article-title: On-line model-based fault detection and isolation for PEM fuel cell stack systems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.10.065 – volume: 28 start-page: 52 year: 2014 ident: ref_25 article-title: Fault detection and isolation for PEM fuel cell stack with independent RBF model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.10.002 – volume: 321 start-page: 47 year: 2016 ident: ref_13 article-title: Fault diagnosis and prognostic of solid oxide fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.080 – ident: ref_7 doi: 10.3390/en14113071 – volume: 46 start-page: 38795 year: 2021 ident: ref_16 article-title: A fault diagnosis model for proton exchange membrane fuel cell based on impedance identification with differential evolution algorithm publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.126 – volume: 36 start-page: 40 year: 2014 ident: ref_23 article-title: PEM fuel cell fault diagnosis via a hybrid methodology based on fuzzy and pattern recognition techniques publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.07.008 – volume: 46 start-page: 30828 year: 2021 ident: ref_17 article-title: Fault diagnosis of proton exchange membrane fuel cell system of tram based on information fusion and deep learning publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.05.137 – ident: ref_3 doi: 10.3390/en12010152 – volume: 46 start-page: 2543 year: 2021 ident: ref_8 article-title: Efficient fault diagnosis method of PEMFC thermal management system for various current densities publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.10.085 |
SSID | ssj0000331333 |
Score | 2.415972 |
Snippet | The fuel cell engine mechanism model is used to research fault diagnosis based on a data-driven method to identify the failure of proton exchange membrane fuel... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2294 |
SubjectTerms | Classification Efficiency extreme learning machine Fault diagnosis fuel cell Fuel cell vehicles genetic algorithm Genetic algorithms Hydrogen Neural networks Neurons Sensors support vector machine Support vector machines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG9ULnowfkb8ShO9eFhY17G2JyMIISagMWK4LV3bocnYUMb_7-sooNF42WF7W9LX1_e1934PoWuVMhUFiUUAUEmVrfKk8I2n4Co0TaQgtlG4P4h6w_Bh1By5hNvMlVUudWKlqHWhbI68AYYbjA0DIbydfnh2apT9u-pGaGyiGqhgDsFXrdUZPD2vsiw-pRCE0QUuKYX4vmFyi6kXBCL8YYkqwP5f-rgyMt09tOu8Q3y32M59tGHyA7TzDTPwEI2XtXK4yHF3bjLcNlmGu3Kelfh-UTj3PsMtsE7aklhcafgavsvGsJzybYIfQUtMXPslLlJsB3uCE45fqwQ-7lflleYIDbudl3bPc9MSPEUjUnpSguFRlPpK65QHxLbAiiY1VCihOWEE1qw4M8JPCdNE81DLlKVgozWLQsXpMdrKi9ycICwkT0MehSnXFNwpkXAIXpXxFbwdEKnr6GbJuVg5KHE70SKLIaSwXI7XXK6jqxXtdAGg8SdVy27AisKCXlc3is9x7M5QHDHDQeYM0b4OEx3IyNeKRUYYJoUKeR2dL7cvdidxFq_l5vT_x2doO7CtDVV92TnaKj_n5gIcjjK5dFL1BQHy1kI priority: 102 providerName: ProQuest |
Title | Research on Fuel Cell Fault Diagnosis Based on Genetic Algorithm Optimization of Support Vector Machine |
URI | https://www.proquest.com/docview/2642417003 https://doaj.org/article/67e8ebee1d0d4bd2a60dc76e9e7a9c48 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgLDAgPkWhVJZgYYgax2lsj20hRUgtCAHqFjm2A5XSFEH6_zk7KRSBxMLiIbrEyfnid2fdvUPoXGVMRUFqGQBU6k6rPCl84ykYhaapFMQWCo_G0fVjeDPpTlZafdmcsIoeuFJcJ2KGw0SGaF-HqQ5k5GvFIiMMk0KFrswXMG8lmHJ7MKUQfNGKj5RCXN8xheXSCwIRfkMgR9T_Yx924BLvoO3aK8S96m120Zop9tDWClfgPnpe5sjheYHjhcnxwOQ5juUiL_FllTA3fcd9QCVtRSyfNDwN9_Ln-du0fJnhW9gdZnXZJZ5n2Db0BOcbP7mDezxyaZXmAD3GVw-Da6_ukuApGpHSkxIAR1HqK60zHhBb-iq61FChhOaEEfhmxZkRfkaYJpqHWmYsA2zWLAoVp4eoUcwLc4SwkDwLeRRmXFNwo0TKIWhVxldwd0CkbqKLpeYSVVOI204WeQKhhNVy8qXlJjr7lH2tiDN-lerbBfiUsGTX7gKYQFKbQPKXCTRRa7l8Sf0Hvifg6IFzwsASjv9jjhO0GdjCB5d91kKN8m1hTsEdKdM2WufxsI02-lfju_u2s0MYhxPyAYM-4pg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKGAJOHCIGj8a2weE-iBsabdcWtRbcGxnQUqT0s0K8af4jYydZAsCceslh3jsw3g8D3vmG4CXtpI2Y2VAALBlvK1KjE59YvGrHS-NpqFQeHaUTU_Eh9Ot0zX4OdbChLTKUSdGRe1aG-7IN9Fwo7GRKIRvz78loWtUeF0dW2j0YnHgf3zHkG3xZn8P9_cVY_m7491pMnQVSCzPaJcYgwraYhhvnasUo6FUVG9xz7XVTlFJGdNWSa_TikpHnRLOVLJCW-ZkJqziuO41uC441-FEqfz96k4n5RxDPt6joOJ4uumbgOCHK4o_7F5sD_CX9o8mLb8DtwdflGz3wnMX1nxzD279hlB4H-ZjZh5pG5IvfU12fV2T3Czrjuz1aXpfF2QHbaELJAHFGlcj2_Ucmdd9OSMfUSedDcWepK1IaCOKLj_5FJ8LyCwmc_oHcHIlXHwI603b-EdAtFGVUJmolOPovOlSYahsfWpxNqPGTeD1yLnCDsDloX9GXWAAE7hcXHJ5Ai9WtOc9XMc_qXbCBqwoAsR2_NFezIvhxBaZ9Aol3FOXOlE6ZrLUWZl57aXRVqgJbIzbVwznflFcSunj_w8_hxvT49lhcbh_dPAEbrJQVBEz2zZgvbtY-qfo6nTlsyhfBD5ftUD_AmZsEJc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKLQUsAQcOUWM7je0DQt1uo5bSpUIU9RYcP5ZKaVK6WSH-Gr-OcR5bEIhbLzkkEx_Gk_k8k5lvAF4aL0zKisAAYIo2WxVpFbvI4FVZXmhFQ6Pw0SzdP0nenW6frsHPoRcmlFUOPrF11LY2IUe-hcCNYCNC3s33ZRHH0-ztxbcoTJAKf1qHcRqdiRy6H98xfFu8OZjiXr9iLNv7tLsf9RMGIsNT2kRao7M2GNIba71kNLSNqm3uuDLKSiooY8pI4VTsqbDUysRqLzzimhVpYiTHdW_AusCoKB7B-mRvdvxxleGJOccAkHecqJyreMtVgc8P10z-QMF2WMBfWNACXHYX7vQnU7LTmdI9WHPVfbj9G1_hA5gPdXqkrki2dCXZdWVJMr0sGzLtivbOFmSCyGiDSOC0xtXITjlH9TVfz8kH9FDnfesnqT0JQ0UxACCf258H5Kgt7XQP4eRa9PgIRlVducdAlJY-kWnipeV4lFOFxMDZuNjg24xqO4bXg-Zy09OYh2kaZY7hTNByfqXlMbxYyV505B3_lJqEDVhJBMLt9kZ9Oc_77zdPhZNo747a2CaFZTqNrRGpU05oZRI5hs1h-_LeCyzyK5vd-P_j53ATjTl_fzA7fAK3WOiwaMvcNmHUXC7dUzz3NMWz3sAIfLlum_4FiS4WKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Fuel+Cell+Fault+Diagnosis+Based+on+Genetic+Algorithm+Optimization+of+Support+Vector+Machine&rft.jtitle=Energies+%28Basel%29&rft.au=Weiwei+Huo&rft.au=Weier+Li&rft.au=Chao+Sun&rft.au=Qiang+Ren&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=6&rft.spage=2294&rft_id=info:doi/10.3390%2Fen15062294&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_67e8ebee1d0d4bd2a60dc76e9e7a9c48 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |