Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material

The objective of this study was to study the structure and physicochemical properties of biochar derived from apple tree branches (ATBs), whose valorization is crucial for the sustainable development of the apple industry. ATBs were collected from apple orchards located on the Weibei upland of the L...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 10; no. 9; p. 1293
Main Authors Zhao, Shi-Xiang, Ta, Na, Wang, Xu-Dong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this study was to study the structure and physicochemical properties of biochar derived from apple tree branches (ATBs), whose valorization is crucial for the sustainable development of the apple industry. ATBs were collected from apple orchards located on the Weibei upland of the Loess Plateau and pyrolyzed at 300, 400, 500 and 600 °C (BC300, BC400, BC500 and BC600), respectively. Different analytical techniques were used for the characterization of the different biochars. In particular, proximate and element analyses were performed. Furthermore, the morphological, and textural properties were investigated using scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, Boehm titration and nitrogen manometry. In addition, the thermal stability of biochars was also studied by thermogravimetric analysis. The results indicated that the increasing temperature increased the content of fixed carbon (C), the C content and inorganic minerals (K, P, Fe, Zn, Ca, Mg), while the yield, the content of volatile matter (VM), O and H, cation exchange capacity, and the ratios of O/C and H/C decreased. Comparison between the different samples show that highest pH and ash content were observed in BC500. The number of acidic functional groups decreased as a function of pyrolysis temperature, especially for the carboxylic functional groups. In contrast, a reverse trend was found for the basic functional groups. At a higher temperature, the brunauer–emmett–teller (BET) surface area and pore volume are higher mostly due to the increase of the micropore surface area and micropore volume. In addition, the thermal stability of biochars also increased with the increasing temperature. Hence, pyrolysis temperature has a strong effect on biochar properties, and therefore biochars can be produced by changing pyrolysis temperature in order to better meet their applications.
AbstractList The objective of this study was to study the structure and physicochemical properties of biochar derived from apple tree branches (ATBs), whose valorization is crucial for the sustainable development of the apple industry. ATBs were collected from apple orchards located on the Weibei upland of the Loess Plateau and pyrolyzed at 300, 400, 500 and 600 °C (BC300, BC400, BC500 and BC600), respectively. Different analytical techniques were used for the characterization of the different biochars. In particular, proximate and element analyses were performed. Furthermore, the morphological, and textural properties were investigated using scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, Boehm titration and nitrogen manometry. In addition, the thermal stability of biochars was also studied by thermogravimetric analysis. The results indicated that the increasing temperature increased the content of fixed carbon (C), the C content and inorganic minerals (K, P, Fe, Zn, Ca, Mg), while the yield, the content of volatile matter (VM), O and H, cation exchange capacity, and the ratios of O/C and H/C decreased. Comparison between the different samples show that highest pH and ash content were observed in BC500. The number of acidic functional groups decreased as a function of pyrolysis temperature, especially for the carboxylic functional groups. In contrast, a reverse trend was found for the basic functional groups. At a higher temperature, the brunauer–emmett–teller (BET) surface area and pore volume are higher mostly due to the increase of the micropore surface area and micropore volume. In addition, the thermal stability of biochars also increased with the increasing temperature. Hence, pyrolysis temperature has a strong effect on biochar properties, and therefore biochars can be produced by changing pyrolysis temperature in order to better meet their applications.
Author Zhao, Shi-Xiang
Ta, Na
Wang, Xu-Dong
Author_xml – sequence: 1
  givenname: Shi-Xiang
  surname: Zhao
  fullname: Zhao, Shi-Xiang
– sequence: 2
  givenname: Na
  surname: Ta
  fullname: Ta, Na
– sequence: 3
  givenname: Xu-Dong
  surname: Wang
  fullname: Wang, Xu-Dong
BookMark eNpNUU1PHDEMjSqQ-LzwCyL1VmlLPElmJkdAUJBARer2HHkzTne2s5MhyQpx46eTZVGpL7ae_Z795CO2N4aRGDsD8V1KI85pBCEMVEZ-YYdgTD0D0ci9_-oDdprSSpSQEqSUh-z12ntymQfP57SeKGLeROJh5HlJ_FeOG1cAHDiOHX9cvqTeBbekde8K9hhDYeSe0pZ_2ZcORv7c5yW_mKaB-DwS8cuIY6EkjonfEHUpB_eXP2Cm2ONwwvY9DolOP_Ix-31zPb-6nd3__HF3dXE_c7KGPEOj20Xb1FXjaEGdQgFegasUbnEjpduabIRfdL4ChQBCNRpc28q6Fq2Tx-xup9sFXNkp9muMLzZgb9-BEP9YLFbcQLZqFEEjnQZSSlV64aUH1K7qGtN5Y4rW153WFMPThlK2q7CJYznfgtGV0EJrKFPfdlMuhpQi-X9bQdjtw-znw-Qb_k2JPQ
CitedBy_id crossref_primary_10_1016_j_jaap_2021_105373
crossref_primary_10_1016_j_scitotenv_2021_147052
crossref_primary_10_3390_en17081953
crossref_primary_10_1002_wer_10872
crossref_primary_10_1002_asia_202200982
crossref_primary_10_3390_su141610086
crossref_primary_10_1016_j_biortech_2021_125052
crossref_primary_10_1016_j_renene_2019_08_056
crossref_primary_10_1016_j_envres_2023_116731
crossref_primary_10_3390_agronomy11091692
crossref_primary_10_1016_j_ecoenv_2023_115426
crossref_primary_10_1016_j_envpol_2023_123203
crossref_primary_10_3390_agronomy13030921
crossref_primary_10_1007_s13399_024_05379_7
crossref_primary_10_31025_2611_4135_2021_15146
crossref_primary_10_1007_s13399_020_00711_3
crossref_primary_10_3390_plants11233234
crossref_primary_10_1016_j_scitotenv_2023_166813
crossref_primary_10_1002_jssc_202200049
crossref_primary_10_1016_j_jece_2023_111638
crossref_primary_10_1590_1807_1929_agriambi_v26n9p680_687
crossref_primary_10_3390_app12115334
crossref_primary_10_1016_j_biortech_2020_123392
crossref_primary_10_3390_pr10020231
crossref_primary_10_1016_j_heliyon_2022_e10114
crossref_primary_10_1016_j_jhazmat_2021_128131
crossref_primary_10_1080_00103624_2019_1695827
crossref_primary_10_1111_wej_12764
crossref_primary_10_3390_en11051061
crossref_primary_10_3390_agronomy10111749
crossref_primary_10_3390_molecules27228044
crossref_primary_10_1016_j_scitotenv_2019_136433
crossref_primary_10_3390_molecules28124842
crossref_primary_10_3390_molecules28186676
crossref_primary_10_1016_j_biombioe_2020_105805
crossref_primary_10_1016_j_jenvman_2022_115385
crossref_primary_10_1016_j_biteb_2023_101519
crossref_primary_10_1016_j_scp_2021_100421
crossref_primary_10_3390_ma15062271
crossref_primary_10_1016_j_conbuildmat_2023_132475
crossref_primary_10_1007_s10532_024_10088_z
crossref_primary_10_1016_j_heliyon_2023_e12940
crossref_primary_10_1007_s10661_021_09691_x
crossref_primary_10_1007_s42773_023_00263_5
crossref_primary_10_1016_j_chemosphere_2021_131176
crossref_primary_10_3390_en11030496
crossref_primary_10_1016_j_carbon_2021_08_062
crossref_primary_10_1007_s10098_023_02544_w
crossref_primary_10_1038_s41598_024_56652_8
crossref_primary_10_3390_en12132477
crossref_primary_10_1007_s13399_023_04635_6
crossref_primary_10_1016_j_jaap_2021_105234
crossref_primary_10_1007_s10661_023_11052_9
crossref_primary_10_1007_s11270_021_05343_5
crossref_primary_10_1039_D4VA00109E
crossref_primary_10_1155_2023_7531228
crossref_primary_10_1016_j_jwpe_2022_102674
crossref_primary_10_1016_j_pedsph_2022_06_046
crossref_primary_10_1002_er_6092
crossref_primary_10_1016_j_scitotenv_2018_12_269
crossref_primary_10_1016_j_cherd_2023_09_003
crossref_primary_10_1002_clen_201700429
crossref_primary_10_3390_f13091412
crossref_primary_10_1007_s42773_020_00069_9
crossref_primary_10_3390_su16125004
crossref_primary_10_1016_j_chemosphere_2021_131961
crossref_primary_10_1016_j_enmm_2019_100230
crossref_primary_10_1016_j_fuel_2020_118168
crossref_primary_10_3389_fenvs_2022_1044921
crossref_primary_10_1007_s13399_021_01937_5
crossref_primary_10_1016_j_jaap_2023_106237
crossref_primary_10_1007_s12517_022_09539_9
crossref_primary_10_3390_su13169336
crossref_primary_10_1016_j_jclepro_2020_120267
crossref_primary_10_1016_j_rser_2020_110308
crossref_primary_10_1016_j_chemosphere_2019_124932
crossref_primary_10_1007_s10098_023_02635_8
crossref_primary_10_1016_j_sciaf_2023_e01921
crossref_primary_10_1108_IJBPA_11_2017_0055
crossref_primary_10_1021_acsaenm_2c00044
crossref_primary_10_1002_ese3_1833
crossref_primary_10_1016_j_jaap_2020_104903
crossref_primary_10_1038_s41598_021_92889_3
crossref_primary_10_3390_en10122040
crossref_primary_10_1016_j_fochx_2023_100903
crossref_primary_10_1016_j_indcrop_2024_118819
crossref_primary_10_1007_s10653_020_00801_1
crossref_primary_10_3390_w14152407
crossref_primary_10_1016_j_fuproc_2022_107492
crossref_primary_10_1007_s10163_023_01719_3
crossref_primary_10_1016_j_indcrop_2021_113261
crossref_primary_10_1016_j_nexus_2022_100125
crossref_primary_10_1016_j_scitotenv_2020_137662
crossref_primary_10_1016_j_renene_2019_04_044
crossref_primary_10_1007_s13399_020_01239_2
crossref_primary_10_1007_s41742_024_00605_6
crossref_primary_10_1016_j_jaap_2022_105695
crossref_primary_10_1016_j_scitotenv_2018_11_282
crossref_primary_10_2166_wst_2020_036
crossref_primary_10_1016_j_cattod_2023_02_015
crossref_primary_10_1016_j_jaap_2022_105693
crossref_primary_10_1016_j_still_2021_105193
crossref_primary_10_1371_journal_pone_0267483
crossref_primary_10_1016_j_fuel_2019_115893
crossref_primary_10_1080_09593330_2022_2103742
crossref_primary_10_1016_j_jece_2023_109643
crossref_primary_10_1016_j_envpol_2020_114773
crossref_primary_10_1016_j_desal_2024_117725
crossref_primary_10_1088_2053_1591_ad3cba
crossref_primary_10_1016_j_envint_2018_11_045
crossref_primary_10_1007_s11270_020_04595_x
crossref_primary_10_1016_j_cej_2021_129946
crossref_primary_10_1016_j_jaap_2023_106017
crossref_primary_10_1021_acs_molpharmaceut_3c01118
crossref_primary_10_1016_j_still_2020_104926
crossref_primary_10_1016_j_fuel_2024_132348
crossref_primary_10_1088_1755_1315_268_1_012124
crossref_primary_10_3390_agronomy11040615
crossref_primary_10_1590_1517_7076_rmat_2022_0141
crossref_primary_10_3390_su14095309
crossref_primary_10_3390_ma17030563
crossref_primary_10_1088_1755_1315_757_1_012029
crossref_primary_10_3390_app11198914
crossref_primary_10_1016_j_chemosphere_2022_135753
crossref_primary_10_1016_j_scitotenv_2020_141662
crossref_primary_10_3390_su142214722
crossref_primary_10_1007_s13399_022_03505_x
crossref_primary_10_1021_acsomega_1c01743
crossref_primary_10_1016_j_jenvman_2022_114521
crossref_primary_10_3389_fbioe_2021_778239
crossref_primary_10_1007_s10934_021_01039_7
crossref_primary_10_1016_j_scitotenv_2023_163330
crossref_primary_10_1177_0734242X211060611
crossref_primary_10_1016_j_supflu_2019_104605
crossref_primary_10_1016_j_conbuildmat_2021_122757
crossref_primary_10_1016_j_scitotenv_2020_142192
crossref_primary_10_1016_j_scitotenv_2021_150304
crossref_primary_10_1016_j_conbuildmat_2024_135040
crossref_primary_10_1007_s00267_023_01791_3
crossref_primary_10_1016_j_fuel_2021_121935
crossref_primary_10_1016_j_enconman_2019_112235
crossref_primary_10_2478_ahr_2022_0020
crossref_primary_10_3389_fenrg_2020_00138
crossref_primary_10_1007_s43153_021_00147_w
crossref_primary_10_1007_s11356_021_16526_2
crossref_primary_10_1039_D3NJ02889E
crossref_primary_10_3390_en11061379
crossref_primary_10_1016_j_fuel_2023_128010
crossref_primary_10_1016_j_heliyon_2024_e25785
crossref_primary_10_1016_j_smallrumres_2019_106042
crossref_primary_10_1080_00103624_2018_1563101
crossref_primary_10_1038_s41598_023_49919_z
crossref_primary_10_1080_00103624_2021_1984505
crossref_primary_10_3389_fenrg_2020_637846
crossref_primary_10_1007_s11270_024_06922_y
crossref_primary_10_1016_j_biteb_2020_100595
crossref_primary_10_1080_27658511_2023_2260057
crossref_primary_10_3390_en10101555
crossref_primary_10_1016_j_psep_2023_08_010
crossref_primary_10_1038_s41598_019_46234_4
crossref_primary_10_1007_s10570_022_04481_1
crossref_primary_10_1016_j_scp_2023_101130
crossref_primary_10_1016_j_enconman_2022_116260
crossref_primary_10_1016_j_seppur_2023_123926
crossref_primary_10_1016_j_arabjc_2023_105080
crossref_primary_10_1016_j_biortech_2019_122711
crossref_primary_10_3390_ijms21165851
crossref_primary_10_1016_j_still_2022_105345
crossref_primary_10_3390_land12122111
crossref_primary_10_3389_fenvs_2022_1035865
crossref_primary_10_1016_j_chemosphere_2022_137238
crossref_primary_10_1021_acsomega_2c00975
crossref_primary_10_1016_j_cej_2022_136665
crossref_primary_10_3390_agronomy13030815
crossref_primary_10_3390_en17061310
crossref_primary_10_2166_wst_2022_222
crossref_primary_10_1002_adpr_202200088
crossref_primary_10_1016_j_jece_2020_104648
crossref_primary_10_1016_j_indcrop_2022_115267
crossref_primary_10_1016_j_jece_2020_104403
crossref_primary_10_1016_j_scitotenv_2020_136538
crossref_primary_10_1039_D1RA09273A
crossref_primary_10_1007_s11270_022_05510_2
crossref_primary_10_1016_j_chemosphere_2019_05_204
crossref_primary_10_1007_s12517_019_4735_z
crossref_primary_10_1016_j_envres_2023_115249
crossref_primary_10_1007_s10163_022_01391_z
crossref_primary_10_1016_j_matpr_2020_09_138
crossref_primary_10_1016_j_xcrp_2024_102036
crossref_primary_10_1002_saj2_20669
crossref_primary_10_1016_j_envpol_2022_120056
crossref_primary_10_1016_j_biortech_2020_123674
crossref_primary_10_1016_j_psep_2022_02_061
crossref_primary_10_1007_s13399_024_05545_x
crossref_primary_10_1038_s41598_024_56618_w
crossref_primary_10_1007_s13399_022_02905_3
crossref_primary_10_1016_j_envpol_2022_119064
crossref_primary_10_3390_su15043153
crossref_primary_10_1111_gcbb_13082
crossref_primary_10_1016_j_jaap_2021_105405
crossref_primary_10_3389_feart_2024_1354080
crossref_primary_10_1016_j_seppur_2021_118592
crossref_primary_10_3390_agriculture13102003
crossref_primary_10_3390_toxics12040245
crossref_primary_10_1016_j_wasman_2022_10_039
crossref_primary_10_1252_jcej_18we231
crossref_primary_10_3390_agronomy12071525
crossref_primary_10_1016_j_biortech_2021_125102
crossref_primary_10_5696_2156_9614_10_28_201210
crossref_primary_10_1007_s11665_021_05685_5
crossref_primary_10_1016_j_jaap_2018_07_011
crossref_primary_10_1080_00207233_2018_1502959
crossref_primary_10_1590_2179_8087_floram_2021_0007
crossref_primary_10_3390_en14164898
crossref_primary_10_1016_j_envpol_2021_118241
crossref_primary_10_1016_j_rser_2019_03_057
crossref_primary_10_1007_s13399_022_02748_y
crossref_primary_10_3390_polym16081066
crossref_primary_10_1111_1750_3841_15415
crossref_primary_10_2965_jwet_20_013
crossref_primary_10_1016_j_joei_2023_101242
crossref_primary_10_3390_ma16237250
crossref_primary_10_1016_j_heliyon_2024_e32080
crossref_primary_10_3390_app9193980
crossref_primary_10_1016_j_ijbiomac_2023_127239
crossref_primary_10_1016_j_wasman_2019_09_021
crossref_primary_10_3390_su13137230
crossref_primary_10_1007_s13399_024_05291_0
crossref_primary_10_1080_02648725_2022_2122288
crossref_primary_10_1038_s41598_023_47317_z
crossref_primary_10_3390_su13063150
crossref_primary_10_1016_j_jhazmat_2019_02_063
crossref_primary_10_1155_2021_1463814
crossref_primary_10_1016_j_fuel_2022_124330
crossref_primary_10_1007_s13399_020_00714_0
crossref_primary_10_3390_pr9071095
crossref_primary_10_3390_en16041780
crossref_primary_10_3390_app11188569
crossref_primary_10_1016_j_fuel_2022_125428
crossref_primary_10_1038_s41598_023_35460_6
crossref_primary_10_1007_s13399_022_02795_5
crossref_primary_10_1016_j_envpol_2019_113887
crossref_primary_10_1016_j_cej_2023_148111
crossref_primary_10_1016_j_chemosphere_2021_130350
crossref_primary_10_1080_15567036_2019_1609626
crossref_primary_10_1088_1757_899X_518_6_062011
crossref_primary_10_1016_j_cej_2021_131708
crossref_primary_10_3390_ma14113024
crossref_primary_10_1016_j_scitotenv_2020_143816
crossref_primary_10_3390_en13225966
crossref_primary_10_1016_j_fuel_2022_123374
crossref_primary_10_1007_s13399_021_02060_1
crossref_primary_10_1016_j_enceco_2024_04_002
crossref_primary_10_3390_agronomy11030489
crossref_primary_10_1016_j_clema_2022_100162
crossref_primary_10_1016_j_fuel_2022_126889
crossref_primary_10_1016_j_jwpe_2024_105509
crossref_primary_10_1016_j_jenvman_2021_113277
crossref_primary_10_1111_ejss_13138
crossref_primary_10_3390_agronomy11040716
crossref_primary_10_3390_en11092341
crossref_primary_10_1021_acsestengg_3c00605
crossref_primary_10_3390_en13133498
crossref_primary_10_1155_2021_1818241
crossref_primary_10_1016_j_scitotenv_2020_136857
crossref_primary_10_1007_s40034_021_00213_5
crossref_primary_10_1007_s13399_022_03127_3
crossref_primary_10_3390_en16010509
crossref_primary_10_1071_FP23257
crossref_primary_10_1080_09593330_2019_1703822
crossref_primary_10_1016_j_matpr_2020_03_024
crossref_primary_10_1016_j_gsd_2023_101072
crossref_primary_10_1007_s13399_023_04130_y
crossref_primary_10_1002_slct_202200663
crossref_primary_10_1080_15324982_2021_1936689
crossref_primary_10_1016_j_biombioe_2022_106531
crossref_primary_10_1016_j_envpol_2023_122426
crossref_primary_10_1038_s41598_024_62468_3
crossref_primary_10_1016_j_crcon_2021_01_003
crossref_primary_10_1016_j_cscee_2023_100378
crossref_primary_10_3390_pr10101924
crossref_primary_10_1007_s40891_020_00229_8
crossref_primary_10_3390_gels8040237
crossref_primary_10_1016_j_molliq_2021_117667
crossref_primary_10_1016_S1002_0160_21_60073_5
crossref_primary_10_1007_s44246_024_00123_2
crossref_primary_10_1016_j_marpolbul_2021_112247
crossref_primary_10_1038_s41598_021_82277_2
crossref_primary_10_1007_s10163_024_01888_9
crossref_primary_10_1016_j_jclepro_2024_140591
crossref_primary_10_1080_02757540_2022_2075858
crossref_primary_10_1016_j_matpr_2021_11_259
crossref_primary_10_1088_1742_6596_2175_1_012009
crossref_primary_10_3390_w15203703
crossref_primary_10_1007_s10163_023_01620_z
crossref_primary_10_1007_s11270_020_04974_4
crossref_primary_10_1016_j_apenergy_2019_113679
crossref_primary_10_3390_ma14164756
crossref_primary_10_1016_j_jhazmat_2020_124260
crossref_primary_10_1002_cjce_23300
crossref_primary_10_1016_j_clet_2020_100033
crossref_primary_10_1039_C9RA02729G
crossref_primary_10_1080_16878507_2020_1740394
crossref_primary_10_1016_j_scitotenv_2020_141607
crossref_primary_10_3390_ma15113865
crossref_primary_10_1007_s10653_021_01061_3
crossref_primary_10_3390_ma15134404
crossref_primary_10_1007_s10967_023_09104_y
crossref_primary_10_1016_j_envres_2023_116074
crossref_primary_10_1007_s10342_022_01440_0
crossref_primary_10_1016_j_ecmx_2020_100072
crossref_primary_10_3390_su151511992
crossref_primary_10_1002_cjce_23316
crossref_primary_10_1007_s12649_022_01760_7
crossref_primary_10_3390_agronomy14040677
crossref_primary_10_1016_j_scitotenv_2023_167885
crossref_primary_10_1016_j_envres_2022_114733
crossref_primary_10_1007_s00267_023_01866_1
crossref_primary_10_3390_agriculture13040805
crossref_primary_10_1016_j_ecmx_2022_100313
crossref_primary_10_1007_s13399_021_02108_2
crossref_primary_10_1007_s44246_022_00033_1
crossref_primary_10_1007_s11157_020_09523_3
crossref_primary_10_1016_j_chemosphere_2024_142101
crossref_primary_10_1016_j_jclepro_2024_142875
crossref_primary_10_1007_s11368_024_03830_w
crossref_primary_10_53433_yyufbed_1089391
crossref_primary_10_2965_jwet_21_154
crossref_primary_10_1007_s13399_020_01245_4
crossref_primary_10_1016_j_psep_2022_05_063
crossref_primary_10_1021_acsbiomaterials_0c00758
crossref_primary_10_1111_gcbb_12717
crossref_primary_10_1155_2024_1176275
crossref_primary_10_1016_j_jhazmat_2019_121371
crossref_primary_10_1016_j_jenvman_2019_03_082
crossref_primary_10_1016_j_biortech_2020_124496
crossref_primary_10_1007_s42773_022_00197_4
crossref_primary_10_1016_j_biombioe_2023_106820
crossref_primary_10_3390_en16020771
crossref_primary_10_1016_j_mseb_2022_115987
crossref_primary_10_5194_soil_10_487_2024
crossref_primary_10_1007_s13399_020_01101_5
crossref_primary_10_3389_fenrg_2020_00085
Cites_doi 10.3390/en10060796
10.1016/j.biortech.2011.10.074
10.1007/s11356-015-5451-1
10.1016/j.jaap.2016.05.006
10.1016/j.biortech.2016.06.114
10.1016/j.biortech.2014.11.011
10.1016/j.biortech.2013.03.186
10.1016/j.apsoil.2015.10.021
10.1371/journal.pone.0065949
10.1016/j.biortech.2016.06.102
10.1016/j.geoderma.2016.06.010
10.1177/0734242X14525822
10.1016/0008-6223(94)90031-0
10.1016/j.soilbio.2010.09.013
10.1016/j.catena.2014.10.026
10.1016/j.cej.2013.10.081
10.1016/j.still.2015.10.002
10.1007/s00468-015-1263-7
10.1016/j.jenvman.2015.12.023
10.1007/s11270-015-2699-5
10.1007/s10973-015-4740-8
10.1016/j.energy.2015.05.100
10.3390/ijerph8051491
10.2134/jeq2012.0151
10.1016/j.chemosphere.2015.08.046
10.1021/jf104206c
10.1016/j.biortech.2010.11.018
10.1080/15226514.2013.856842
10.1016/j.biortech.2013.07.086
10.1016/j.chemosphere.2015.05.084
10.1016/j.soilbio.2015.08.007
10.1016/j.jaap.2014.10.024
10.1016/j.fuel.2003.11.015
10.1111/gcbb.12018
10.1016/j.biombioe.2010.12.008
10.1016/j.biombioe.2015.11.010
10.1080/03650340.2015.1040399
10.3390/en10030288
10.1016/j.scitotenv.2015.08.026
10.1016/j.jaap.2015.08.016
10.1166/jbmb.2015.1539
10.1016/j.biortech.2012.05.042
10.1007/s10973-009-0367-y
10.1016/S1001-0742(13)60421-0
10.1038/447143a
10.1016/j.biortech.2014.04.048
10.1016/j.biortech.2012.12.096
10.1016/j.biortech.2009.06.104
10.1007/s11368-014-0964-7
10.1016/j.jaap.2014.01.021
10.1016/j.biortech.2011.11.084
10.1016/j.biortech.2011.06.078
10.1016/j.still.2015.07.011
10.1016/j.chemosphere.2014.12.058
10.3390/en9070526
10.3390/en10040469
10.1016/j.scienta.2016.05.017
10.1016/j.geoderma.2011.04.021
10.1021/es9031419
10.1080/03601234.2010.515506
10.1016/j.renene.2011.02.013
10.1007/s11356-013-2183-y
ContentType Journal Article
Copyright Copyright MDPI AG 2017
Copyright_xml – notice: Copyright MDPI AG 2017
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en10091293
DatabaseName CrossRef
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
ProQuest Central China
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_274e173c51e44425bf3f1a5c2d79df99
10_3390_en10091293
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
I-F
IPNFZ
KQ8
L6V
L8X
M7S
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-a958b87627cebed4a01f41c24a58b8933c199670fbdf214a1104751c8836608c3
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Tue Oct 22 15:16:32 EDT 2024
Sat Nov 09 17:21:17 EST 2024
Thu Nov 21 22:04:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a958b87627cebed4a01f41c24a58b8933c199670fbdf214a1104751c8836608c3
OpenAccessLink https://www.proquest.com/docview/1952050551?pq-origsite=%requestingapplication%
PQID 1952050551
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_274e173c51e44425bf3f1a5c2d79df99
proquest_journals_1952050551
crossref_primary_10_3390_en10091293
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
(ref27) 2009
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref29
ref60
ref62
ref61
References_xml – ident: ref17
  doi: 10.3390/en10060796
– ident: ref30
  doi: 10.1016/j.biortech.2011.10.074
– ident: ref59
  doi: 10.1007/s11356-015-5451-1
– ident: ref20
  doi: 10.1016/j.jaap.2016.05.006
– ident: ref32
  doi: 10.1016/j.biortech.2016.06.114
– ident: ref12
  doi: 10.1016/j.biortech.2014.11.011
– ident: ref46
  doi: 10.1016/j.biortech.2013.03.186
– ident: ref4
  doi: 10.1016/j.apsoil.2015.10.021
– ident: ref39
  doi: 10.1371/journal.pone.0065949
– ident: ref50
  doi: 10.1016/j.biortech.2016.06.102
– ident: ref7
  doi: 10.1016/j.geoderma.2016.06.010
– ident: ref13
  doi: 10.1177/0734242X14525822
– ident: ref31
  doi: 10.1016/0008-6223(94)90031-0
– ident: ref3
  doi: 10.1016/j.soilbio.2010.09.013
– ident: ref1
  doi: 10.1016/j.catena.2014.10.026
– ident: ref21
  doi: 10.1016/j.cej.2013.10.081
– ident: ref19
  doi: 10.1016/j.still.2015.10.002
– ident: ref26
  doi: 10.1007/s00468-015-1263-7
– ident: ref9
  doi: 10.1016/j.jenvman.2015.12.023
– ident: ref6
  doi: 10.1007/s11270-015-2699-5
– ident: ref58
  doi: 10.1007/s10973-015-4740-8
– ident: ref14
  doi: 10.1016/j.energy.2015.05.100
– ident: ref57
  doi: 10.3390/ijerph8051491
– ident: ref62
  doi: 10.2134/jeq2012.0151
– ident: ref34
  doi: 10.1016/j.chemosphere.2015.08.046
– ident: ref52
  doi: 10.1021/jf104206c
– ident: ref28
  doi: 10.1016/j.biortech.2010.11.018
– ident: ref8
  doi: 10.1080/15226514.2013.856842
– ident: ref16
  doi: 10.1016/j.biortech.2013.07.086
– ident: ref48
  doi: 10.1016/j.chemosphere.2015.05.084
– ident: ref25
  doi: 10.1016/j.soilbio.2015.08.007
– ident: ref11
  doi: 10.1016/j.jaap.2014.10.024
– ident: ref45
  doi: 10.1016/j.fuel.2003.11.015
– ident: ref33
  doi: 10.1111/gcbb.12018
– ident: ref60
  doi: 10.1016/j.biombioe.2010.12.008
– ident: ref15
  doi: 10.1016/j.biombioe.2015.11.010
– ident: ref5
  doi: 10.1080/03650340.2015.1040399
– ident: ref22
  doi: 10.3390/en10030288
– ident: ref36
  doi: 10.1016/j.scitotenv.2015.08.026
– ident: ref37
  doi: 10.1016/j.jaap.2015.08.016
– ident: ref44
  doi: 10.1166/jbmb.2015.1539
– ident: ref51
  doi: 10.1016/j.biortech.2012.05.042
– ident: ref54
  doi: 10.1007/s10973-009-0367-y
– ident: ref38
  doi: 10.1016/S1001-0742(13)60421-0
– ident: ref61
  doi: 10.1038/447143a
– ident: ref35
  doi: 10.1016/j.biortech.2014.04.048
– ident: ref47
  doi: 10.1016/j.biortech.2012.12.096
– ident: ref53
  doi: 10.1016/j.biortech.2009.06.104
– ident: ref43
  doi: 10.1007/s11368-014-0964-7
– ident: ref18
  doi: 10.1016/j.jaap.2014.01.021
– ident: ref29
  doi: 10.1016/j.biortech.2011.11.084
– ident: ref42
  doi: 10.1016/j.biortech.2011.06.078
– ident: ref2
  doi: 10.1016/j.still.2015.07.011
– ident: ref40
  doi: 10.1016/j.chemosphere.2014.12.058
– ident: ref23
  doi: 10.3390/en9070526
– ident: ref10
  doi: 10.3390/en10040469
– ident: ref24
  doi: 10.1016/j.scienta.2016.05.017
– year: 2009
  ident: ref27
  article-title: D5142, Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedures
– ident: ref56
  doi: 10.1016/j.geoderma.2011.04.021
– ident: ref41
  doi: 10.1021/es9031419
– ident: ref55
  doi: 10.1080/03601234.2010.515506
– ident: ref49
  doi: 10.1016/j.renene.2011.02.013
– ident: ref63
  doi: 10.1007/s11356-013-2183-y
SSID ssj0000331333
Score 2.626836
Snippet The objective of this study was to study the structure and physicochemical properties of biochar derived from apple tree branches (ATBs), whose valorization is...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 1293
SubjectTerms Agricultural production
apple tree branch
biochar
Biomass
Branches
Carbon
Cation exchange
Cation exchanging
Charcoal
Climate change
Electron microscopy
Environmental impact
Fruit trees
Functional groups
Infrared spectroscopy
Lignin
Loess
Minerals
Nitrogen
Orchards
Physicochemical properties
Pyrolysis
pyrolysis temperature
Raw materials
Scanning electron microscopy
Stability analysis
structural
Surface area
Sustainable development
Temperature effects
Thermal stability
Thermogravimetric analysis
Titration
Trees
Zinc
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3SlS7EJ1arBHQ7dDJ5zMzSiqUIFcEWuhvyGhRhRtp-gJ_uvclUKy7cuA0JM9yT5J4TknMJudFFwZV0KikhHSei0CbRJlRzN84qnWsbLDamj2oyFw8Ludgq9YV3wqI9cAzcEFSTZzm3knkhYIKZmtdMS5u5vHR1GZ_upWJLTIU9mHMQXzz6kXLQ9UPfMKATmN1-ZKBg1P9rHw7JZXxA9jtWSG_j3xySHd8ckb0tr8Bj8hF9hmlb05kHrhu9kGnbUKBw9DnYwKKFBtWNo-Fep8ViWMENgD7hkfsSvVNx_Oi1xcdWFM9gKdJQT2dL7-kIi2y8QB-9omPIasAL7Rud6nWYpSdkPr6f3U2SrnxCYrli60SXsjC42eUWkHJCp6wWzGZCY3vJucUbyHlaG1dnTGiGrg2SWURPpYXlp6TXtI0_I1QLww1IRaOADWjQaEKCbIFxslamdL5Prjchrd6jS0YF6gIDX30Hvk9GGO2vHuhsHRoA76rDu_oL7z4ZbLCquuW2qlgpMyzJJ9n5f3zjguxmmL3DScuA9ABCfwncY22uwjT7BFzf1zY
  priority: 102
  providerName: Directory of Open Access Journals
Title Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material
URI https://www.proquest.com/docview/1952050551
https://doaj.org/article/274e173c51e44425bf3f1a5c2d79df99
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB1BucABsYqyVJbgGlHHdpYTooiCkEAIitRb5C2AkJLS9gP4dGaclEVIXHJw7MuMPfPexHkDcKKzTCTKJVGO6TiSmTaRNqGbu3E20am2QWLj9i65fpI3YzVuC26z9lrlIiaGQO1qSzXyU56rmLquKX42eY-oaxR9XW1baCzDSoxQRnVgZXB5d__wVWXpC4EkTDS6pAL5_amvOMIKynK_MlEQ7P8Tj0OSGW7AeosO2Xnjzk1Y8tUWrP3QDNyGj0ZvmNUlG3nEvI0mMqsrhlCOPQY5WJLSYLpyLNzvtNQUK6gCsHsqvU9JQ5XWD15r-umKUS2WERz1bDT1ng2o2cYLztEzNsTshvjQvrFbPQ-7dQeehpeji-uobaMQWZHweaRzlRkKeqlFjzmp-7yU3MZS03guhKWbyGm_NK6MudSc1BsUt-TFpJ9ZsQudqq78HjAtjTBIGU2CqEAjV5MK6QuuU2Vicue7cLwwaTFp1DIKZBlk-OLb8F0YkLW_ZpDCdRiop89Fe2AKZMuep8Iq7qXEwGJKUXKtbOzS3JV53oXDha-K9tjNiu9Nsv__6wNYjSk_h1rKIXTQOf4I0cXc9GA5G1712o3UCxwdn1dj_glmNNMQ
link.rule.ids 315,782,786,866,2104,4026,12772,21395,27930,27931,27932,33380,33751,43607,43812,74042,74309
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYDsABsYqyWoJrRBwvSU6IIkpZipAoErfIWwAhJdD2A_h0ZpyURUhcHfsyY8-8N7HfEHKks4wr6VSUQzqORKZNpE3o5m6cVTrVNkhsDG5V_0FcPcrHtuA2bq9VTmNiCNSutlgjP2a5TLDrmmQnb-8Rdo3Cv6ttC41ZMi-4ipF8Zb2LrxpLzDlQMN6oknJg98e-YgAqMMf9ykNBrv9PNA4pprdClltsSE8bZ66SGV-tkaUfioHr5KNRG6Z1SYceEG-jiEzrigKQo_dBDBaFNKiuHA23Oy22xAqaAPQOC-8jVFDF9d2XGp9cUazEUgSjng5H3tMuttp4hjl6THuQ2wAd2lc60JOwVzfIQ-98eNaP2iYKkeWKTSKdy8xgyEst-MsJHbNSMJsIjeM55xbvIadxaVyZMKEZajdIZtGHKs4s3yRzVV35LUK1MNwAYTQKMIEGpiYkkBdYJ0tlcuc75HBq0uKt0coogGOg4Ytvw3dIF639NQP1rcNAPXoq2uNSAFf2LOVWMi8EhBVT8pJpaROX5q7M8w7ZnfqqaA_duPjeItv_fz4gC_3h4Ka4uby93iGLCWbqUFXZJXPgKL8HOGNi9sNm-gT_TNHG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEA4eIPognrieAX0tu2mSHk_iqvUWwRV8KzlVhFZ39wf4051Jux4IvqbJy8xk5pvp5BtCDlSW8UTaJMohHEciUzpSOkxz19YkKlUmUGzc3CbnD-LyUT62_U-jtq1y4hODo7a1wRp5l-UyxqlrknV92xZxd1Icvr1HOEEK_7S24zSmyWwqwBTx1Xhx9lVv6XEO6RhvGEo5ZPpdVzEAGBjvfsWkQN3_xzOHcFMskcUWJ9KjRrHLZMpVK2ThB3vgKvlomIdp7enAAfpt2JFpXVEAdfQ-EMMiqQZVlaWh09PgeKzAD0DvsAg_RDZVPN9_qfH5FcWqLEVg6uhg6Bzt49iNZ9ijRrSAOAdI0bzSGzUOdrtGHorTwfF51A5UiAxP2DhSucw0ur_UgO6sUD3mBTOxULiec26wJznteW19zIRiyOMgmUF9Jr3M8HUyU9WV2yBUCc01JI86AXygIGsTEhIZOCd9onPrOmR_ItLyreHNKCHfQMGX34LvkD5K-2sHcl2HhXr4VLZXp4S82bGUG8mcEOBitOeeKWlim-bW53mHbE90VbYXcFR-m8vm_5_3yBzYUXl9cXu1ReZjDNqhwLJNZkBPbgcgx1jvBlv6BJQ_1fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Temperature+on+the+Structural+and+Physicochemical+Properties+of+Biochar+with+Apple+Tree+Branches+as+Feedstock+Material&rft.jtitle=Energies+%28Basel%29&rft.au=Zhao%2C+Shi-Xiang&rft.au=Ta%2C+Na&rft.au=Wang%2C+Xu-Dong&rft.date=2017&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=10&rft.issue=9&rft.spage=1293&rft_id=info:doi/10.3390%2Fen10091293&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en10091293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon