Multi-Stream Isolated Sign Language Recognition Based on Finger Features Derived from Pose Data

This study introduces an innovative multichannel approach that focuses on the features and configurations of fingers in isolated sign language recognition. The foundation of this approach is based on three different types of data, derived from finger pose data obtained using MediaPipe and processed...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 13; no. 8; p. 1591
Main Authors Akdag, Ali, Baykan, Omer Kaan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study introduces an innovative multichannel approach that focuses on the features and configurations of fingers in isolated sign language recognition. The foundation of this approach is based on three different types of data, derived from finger pose data obtained using MediaPipe and processed in separate channels. Using these multichannel data, we trained the proposed MultiChannel-MobileNetV2 model to provide a detailed analysis of finger movements. In our study, we first subject the features extracted from all trained models to dimensionality reduction using Principal Component Analysis. Subsequently, we combine these processed features for classification using a Support Vector Machine. Furthermore, our proposed method includes processing body and facial information using MobileNetV2. Our final proposed sign language recognition method has achieved remarkable accuracy rates of 97.15%, 95.13%, 99.78%, and 95.37% on the BosphorusSign22k-general, BosphorusSign22k, LSA64, and GSL datasets, respectively. These results underscore the generalizability and adaptability of the proposed method, proving its competitive edge over existing studies in the literature.
AbstractList This study introduces an innovative multichannel approach that focuses on the features and configurations of fingers in isolated sign language recognition. The foundation of this approach is based on three different types of data, derived from finger pose data obtained using MediaPipe and processed in separate channels. Using these multichannel data, we trained the proposed MultiChannel-MobileNetV2 model to provide a detailed analysis of finger movements. In our study, we first subject the features extracted from all trained models to dimensionality reduction using Principal Component Analysis. Subsequently, we combine these processed features for classification using a Support Vector Machine. Furthermore, our proposed method includes processing body and facial information using MobileNetV2. Our final proposed sign language recognition method has achieved remarkable accuracy rates of 97.15%, 95.13%, 99.78%, and 95.37% on the BosphorusSign22k-general, BosphorusSign22k, LSA64, and GSL datasets, respectively. These results underscore the generalizability and adaptability of the proposed method, proving its competitive edge over existing studies in the literature.
Audience Academic
Author Baykan, Omer Kaan
Akdag, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Akdag
  fullname: Akdag, Ali
– sequence: 2
  givenname: Omer Kaan
  surname: Baykan
  fullname: Baykan, Omer Kaan
BookMark eNp9kE9LAzEQxYMoWGs_gZeA563JZv_lWFurhYpi9byk2cmSspvUJCv47U2pBxFxcphJ3vtl4F2gU2MNIHRFyZQxTm6gAxmcNVp6ykhFc05P0CglJU94ytPTH_M5mni_I7E4ZRUjI1Q_Dl3QySY4ED1eeduJAA3e6NbgtTDtIFrALyBta3TQ1uBb4aMeh6U2LTi8BBEGBx4vwOmPKClne_xsPeCFCOISnSnReZh89zF6W969zh-S9dP9aj5bJ5IVNCSigEqyBirViDJPScVyRvNCqrxoUh6vcltWUaSqJDQTipS52hLgKQUOWZOyMbo-_rt39n0AH-qdHZyJK2tGsqLiJSMH1_ToakUHtTbKBidkPA30WsZYlY7vs5IzwvMi4xFgR0A6670DVe-d7oX7rCmpD-nXf6QfKf6LkjqIQ3xxne7-Zb8A3dKQAg
CitedBy_id crossref_primary_10_1007_s10044_024_01403_8
crossref_primary_10_1007_s40031_024_01118_8
Cites_doi 10.1109/ICAEEE.2018.8642983
10.1007/978-3-030-66096-3_21
10.3906/elk-2005-156
10.1109/ACCESS.2020.3028072
10.1109/CVPR.2016.308
10.1117/12.2266453
10.1109/NRSC.2017.7893499
10.3390/fi11040091
10.1207/s15516709cog1402_1
10.1109/ISCID.2015.254
10.1109/ICCVW.2019.00164
10.1109/ICISET.2016.7856479
10.3390/electronics11193228
10.3389/fnins.2023.1148191
10.1088/1742-6596/1230/1/012017
10.1109/icABCD54961.2022.9856310
10.1109/TPAMI.2012.59
10.1109/ICIG.2007.153
10.1109/CVPR.2019.00429
10.1007/978-3-319-47955-2_28
10.1007/s10489-022-03649-3
10.1016/j.procs.2020.06.022
10.1038/s41592-018-0019-x
10.1016/j.eswa.2022.118914
10.1016/j.aiopen.2021.01.001
10.1007/s00521-021-06467-9
10.1016/j.ress.2019.106706
10.1109/TMM.2018.2889563
10.3390/s22165959
10.1109/CVPR.2018.00675
10.3390/s23167156
10.1109/INMIC.2014.7097332
10.3390/s23187970
10.1109/WACVW54805.2022.00024
10.1016/j.eswa.2005.11.018
10.1134/S1054661812040062
10.1038/nbt0308-303
10.1109/IST.2018.8577085
10.1007/s10044-014-0400-z
10.1109/CVPR.2017.502
10.1145/3584984
10.1109/CVPR.2018.00474
10.1007/978-3-319-93000-8_45
10.1162/neco.1997.9.8.1735
10.18653/v1/2022.acl-long.150
10.1109/IWCIA.2015.7449458
10.1007/s13369-022-07144-2
10.1109/ICCSP48568.2020.9182351
10.1109/ICAECC.2014.7002401
10.1109/3DTV.2018.8478467
10.1007/s00138-022-01367-x
10.1109/IACC.2016.71
10.1016/j.jvcir.2016.07.020
10.1016/S0893-6080(99)00032-5
10.1109/ICCVW60793.2023.00345
10.33166/AETiC.2020.04.003
10.1016/j.eswa.2021.115601
10.1108/k.2001.30.1.103.6
10.1007/s11831-019-09384-2
10.1007/s00371-019-01725-3
10.3390/app13053029
10.1016/j.eswa.2022.118559
10.1038/s41598-022-15699-1
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics13081591
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A793095649
10_3390_electronics13081591
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
PMFND
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-a6e8c3de8fda75208353156cf56d29083cb788fd1f7014af075fb0e921e9e4d23
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sat Jul 26 00:26:32 EDT 2025
Tue Jun 10 21:06:35 EDT 2025
Thu Apr 24 22:56:02 EDT 2025
Tue Jul 01 04:07:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a6e8c3de8fda75208353156cf56d29083cb788fd1f7014af075fb0e921e9e4d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3046897302?pq-origsite=%requestingapplication%
PQID 3046897302
PQPubID 2032404
ParticipantIDs proquest_journals_3046897302
gale_infotracacademiconefile_A793095649
crossref_primary_10_3390_electronics13081591
crossref_citationtrail_10_3390_electronics13081591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Elman (ref_34) 1990; 14
ref_50
Altman (ref_64) 2018; 15
ref_14
ref_57
ref_12
ref_56
Venugopalan (ref_8) 2021; 185
ref_54
ref_53
ref_52
ref_51
Cui (ref_49) 2019; 21
Aremu (ref_65) 2020; 195
Damaneh (ref_7) 2023; 211
ref_19
ref_18
ref_17
Andrew (ref_67) 2001; 30
Alyami (ref_78) 2023; 23
ref_16
ref_15
ref_59
Yang (ref_20) 2014; 27
ref_60
Aldhahri (ref_31) 2023; 48
ref_25
ref_24
ref_22
Polat (ref_58) 2021; 29
ref_63
Husein (ref_61) 2019; 1230
ref_27
ref_26
Imran (ref_75) 2020; 36
(ref_13) 2012; 22
ref_72
ref_71
Ji (ref_40) 2013; 35
Fang (ref_81) 2023; 53
ref_36
ref_79
Hochreiter (ref_35) 1997; 9
ref_33
ref_77
ref_32
ref_76
ref_74
ref_73
ref_39
Wang (ref_43) 2021; 34
ref_38
Sincan (ref_47) 2020; 8
ref_37
Lim (ref_21) 2016; 40
Zhou (ref_55) 2020; 1
Sharma (ref_28) 2020; 173
ref_82
Munib (ref_11) 2007; 32
ref_80
Singla (ref_62) 2014; 4
Miozzo (ref_10) 2022; 12
ref_46
ref_45
ref_44
Amari (ref_68) 1999; 12
Wadhawan (ref_2) 2021; 28
ref_42
ref_41
(ref_66) 2008; 26
ref_1
ref_3
ref_48
ref_9
Rahim (ref_29) 2020; 4
Fagiani (ref_23) 2015; 18
ref_5
ref_4
Akarun (ref_70) 2023; 17
Das (ref_30) 2023; 213
ref_6
Akarun (ref_69) 2023; 34
References_xml – ident: ref_17
  doi: 10.1109/ICAEEE.2018.8642983
– ident: ref_57
  doi: 10.1007/978-3-030-66096-3_21
– ident: ref_80
– volume: 29
  start-page: 1171
  year: 2021
  ident: ref_58
  article-title: Turkish Sign Language Recognition Based on Multistream Data Fusion
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-2005-156
– ident: ref_26
– volume: 8
  start-page: 181340
  year: 2020
  ident: ref_47
  article-title: AUTSL: A Large Scale Multi-Modal Turkish Sign Language Dataset and Baseline Methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028072
– ident: ref_51
  doi: 10.1109/CVPR.2016.308
– ident: ref_16
  doi: 10.1117/12.2266453
– ident: ref_6
  doi: 10.1109/NRSC.2017.7893499
– ident: ref_74
  doi: 10.3390/fi11040091
– volume: 14
  start-page: 179
  year: 1990
  ident: ref_34
  article-title: Finding Structure in Time
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
– ident: ref_1
– ident: ref_24
  doi: 10.1109/ISCID.2015.254
– ident: ref_25
  doi: 10.1109/ICCVW.2019.00164
– ident: ref_15
  doi: 10.1109/ICISET.2016.7856479
– ident: ref_52
  doi: 10.3390/electronics11193228
– volume: 17
  start-page: 1148191
  year: 2023
  ident: ref_70
  article-title: Multi-Cue Temporal Modeling for Skeleton-Based Sign Language Recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2023.1148191
– volume: 1230
  start-page: 012017
  year: 2019
  ident: ref_61
  article-title: Motion Detect Application with Frame Difference Method on a Surveillance Camera
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1230/1/012017
– ident: ref_76
  doi: 10.1109/icABCD54961.2022.9856310
– volume: 35
  start-page: 221
  year: 2013
  ident: ref_40
  article-title: 3D Convolutional Neural Networks for Human Action Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.59
– ident: ref_60
  doi: 10.1109/ICIG.2007.153
– ident: ref_27
– ident: ref_50
  doi: 10.1109/CVPR.2019.00429
– ident: ref_48
– ident: ref_71
  doi: 10.1007/978-3-319-47955-2_28
– volume: 53
  start-page: 4380
  year: 2023
  ident: ref_81
  article-title: Adversarial Multi-Task Deep Learning for Signer-Independent Feature Representation
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03649-3
– volume: 173
  start-page: 181
  year: 2020
  ident: ref_28
  article-title: Hand Gesture Recognition Using Image Processing and Feature Extraction Techniques
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.06.022
– volume: 15
  start-page: 399
  year: 2018
  ident: ref_64
  article-title: The Curse(s) of Dimensionality This-Month
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0019-x
– volume: 213
  start-page: 118914
  year: 2023
  ident: ref_30
  article-title: A Hybrid Approach for Bangla Sign Language Recognition Using Deep Transfer Learning Model with Random Forest Classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118914
– volume: 1
  start-page: 57
  year: 2020
  ident: ref_55
  article-title: Graph Neural Networks: A Review of Methods and Applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– ident: ref_38
– volume: 34
  start-page: 2413
  year: 2021
  ident: ref_43
  article-title: (2+1)D-SLR: An Efficient Network for Video Sign Language Recognition
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06467-9
– ident: ref_45
– volume: 195
  start-page: 106706
  year: 2020
  ident: ref_65
  article-title: A Machine Learning Approach to Circumventing the Curse of Dimensionality in Discontinuous Time Series Machine Data
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.106706
– ident: ref_59
– volume: 21
  start-page: 1880
  year: 2019
  ident: ref_49
  article-title: A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2018.2889563
– ident: ref_32
  doi: 10.3390/s22165959
– ident: ref_53
– ident: ref_41
  doi: 10.1109/CVPR.2018.00675
– ident: ref_54
  doi: 10.3390/s23167156
– ident: ref_4
  doi: 10.1109/INMIC.2014.7097332
– ident: ref_33
  doi: 10.3390/s23187970
– ident: ref_77
  doi: 10.1109/WACVW54805.2022.00024
– volume: 32
  start-page: 24
  year: 2007
  ident: ref_11
  article-title: American Sign Language (ASL) Recognition Based on Hough Transform and Neural Networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.11.018
– volume: 22
  start-page: 519
  year: 2012
  ident: ref_13
  article-title: Local Binary Pattern Based Features for Sign Language Recognition
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/S1054661812040062
– volume: 26
  start-page: 303
  year: 2008
  ident: ref_66
  article-title: What Is Principal Component Analysis?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0308-303
– ident: ref_73
  doi: 10.1109/IST.2018.8577085
– volume: 18
  start-page: 385
  year: 2015
  ident: ref_23
  article-title: Signer Independent Isolated Italian Sign Recognition Based on Hidden Markov Models
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-014-0400-z
– ident: ref_82
  doi: 10.1109/CVPR.2017.502
– volume: 27
  start-page: 741
  year: 2014
  ident: ref_20
  article-title: Chinese Sign Language Recognition Method Based on Depth Image Information and SURF-BoW
  publication-title: Moshi Shibie Yu Rengong Zhineng/Pattern Recognit. Artif. Intell.
– ident: ref_37
– volume: 23
  start-page: 1
  year: 2023
  ident: ref_78
  article-title: Isolated Arabic Sign Language Recognition Using A Transformer-Based Model and Landmark Keypoints
  publication-title: ACM Trans. Asian Low-Resour. Lang. Inf. Process.
  doi: 10.1145/3584984
– ident: ref_14
– ident: ref_44
– ident: ref_63
  doi: 10.1109/CVPR.2018.00474
– ident: ref_42
  doi: 10.1007/978-3-319-93000-8_45
– ident: ref_79
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_35
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_56
  doi: 10.18653/v1/2022.acl-long.150
– ident: ref_18
  doi: 10.1109/IWCIA.2015.7449458
– volume: 48
  start-page: 2147
  year: 2023
  ident: ref_31
  article-title: Arabic Sign Language Recognition Using Convolutional Neural Network and MobileNet
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-022-07144-2
– ident: ref_3
  doi: 10.1109/ICCSP48568.2020.9182351
– ident: ref_5
  doi: 10.1109/ICAECC.2014.7002401
– ident: ref_72
  doi: 10.1109/3DTV.2018.8478467
– volume: 34
  start-page: 12
  year: 2023
  ident: ref_69
  article-title: Aligning Accumulative Representations for Sign Language Recognition
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-022-01367-x
– ident: ref_12
  doi: 10.1109/IACC.2016.71
– ident: ref_46
– volume: 40
  start-page: 538
  year: 2016
  ident: ref_21
  article-title: Block-Based Histogram of Optical Flow for Isolated Sign Language Recognition
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2016.07.020
– volume: 12
  start-page: 783
  year: 1999
  ident: ref_68
  article-title: Improving Support Vector Machine Classifiers by Modifying Kernel Functions
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(99)00032-5
– ident: ref_9
  doi: 10.1109/ICCVW60793.2023.00345
– volume: 4
  start-page: 20
  year: 2020
  ident: ref_29
  article-title: Hand Gesture-Based Sign Alphabet Recognition and Sentence Interpretation Using a Convolutional Neural Network
  publication-title: Ann. Emerg. Technol. Comput.
  doi: 10.33166/AETiC.2020.04.003
– volume: 185
  start-page: 115601
  year: 2021
  ident: ref_8
  article-title: Applying Deep Neural Networks for the Automatic Recognition of Sign Language Words: A Communication Aid to Deaf Agriculturists
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115601
– volume: 30
  start-page: 103
  year: 2001
  ident: ref_67
  article-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
  publication-title: Kybernetes
  doi: 10.1108/k.2001.30.1.103.6
– volume: 28
  start-page: 785
  year: 2021
  ident: ref_2
  article-title: Sign Language Recognition Systems: A Decade Systematic Literature Review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-019-09384-2
– volume: 36
  start-page: 1233
  year: 2020
  ident: ref_75
  article-title: Deep Motion Templates and Extreme Learning Machine for Sign Language Recognition
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01725-3
– ident: ref_36
– ident: ref_39
  doi: 10.3390/app13053029
– ident: ref_19
– volume: 4
  start-page: 1559
  year: 2014
  ident: ref_62
  article-title: Motion Detection Based on Frame Difference Method
  publication-title: Int. J. Inf. Comput. Technol.
– ident: ref_22
– volume: 211
  start-page: 118559
  year: 2023
  ident: ref_7
  article-title: Static Hand Gesture Recognition in Sign Language Based on Convolutional Neural Network with Feature Extraction Method Using ORB Descriptor and Gabor Filter
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118559
– volume: 12
  start-page: 11980
  year: 2022
  ident: ref_10
  article-title: How the Hand Has Shaped Sign Languages
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-15699-1
SSID ssj0000913830
Score 2.3070343
Snippet This study introduces an innovative multichannel approach that focuses on the features and configurations of fingers in isolated sign language recognition. The...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1591
SubjectTerms Accuracy
Classification
Communication
Datasets
Machine learning
Methods
Neural networks
Principal components analysis
Sign language
Support vector machines
Title Multi-Stream Isolated Sign Language Recognition Based on Finger Features Derived from Pose Data
URI https://www.proquest.com/docview/3046897302
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEG4EXvTB-DOiSPpg4osLrO1G92RAQDRACEjCW7O1nTHRgTL8-71uBTUhvCxbui1N73r3fdf2DqEbrpSrPOY6GryXw3SgHe7TCC5SUhJ5RGUBt8HQ703Z88yb2YDb0m6rXNvEzFCruTQx8ppZweMB6CO5X3w6pmqUWV21JTQKqAQmmAP5KrU6w9F4E2UxWS85refphijw-9pvdZklmG8O3tz955K2G-bM23SP0KGFibiZy_UY7enkBB38SR54ikR2dtYxy8rhB34CHQLYqPDk7TXBfRuFxOP1_qB5glvgsBSGm24WysMG_a2AbeM2_PEbmsxREzyaLzVuh2l4hqbdzstDz7HlEhxJfTd1Ql9zSZXmsQobHjHYigI7k7HnKxLAo4yA78bKjRvAi8IYwEIc1XVAXJAQU4Seo2IyT_QFwkxGOgRwoRqRZJTUg5hFAK0ASga-ZDIoI7IeMSFtLnFT0uJdAKcwwyy2DHMZ3W0-WuSpNHa_fmtEIcxEg3_L0J4XgB6alFWiCZbFZFFk0JvKWlrCzsCl-NWXy93NV2ifAFDJd-NUUDH9WulrABppVEUF3n2solKzPehPqla3fgBMXNdr
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDI4mOAAHxFM8BuQA4kLFmqRde0BoMMYG24Rgk7iFNkkREnRANxB_it-I3QcDCXHbpWqVNkodx_7sxDYhu57WtnaEbRnQXpYwvrE8l4dwUYqz0GE6dbh1um6zLy5undsS-SxiYfBYZSETU0GtBwp95Ie4g-f5wI_s-PnFwqpRuLtalNDI2OLSfLyDyZYcteowv3uMNc56p00rrypgKe7aQytwjae4Nl6kg6rDEIJwMGJU5Lia-fCoQjALI21HVTAfggh0ahRWjM9s-BGhMdEBiPxpwbmPK8prnH_7dDDHpscrWXIjaK8cjmvZJKAsPMAO9i8F-LcaSHVbY4HM56CU1jIuWiQlEy-RuR-pCpeJTCN1LdzEDp5oCzgWQKqmNw_3MW3nPk96XZxGGsT0BNSjpnDTSB2HFLHmCGx7Woce36AJA1vo1SAxtB4MgxXSnwgZV8lUPIjNGqFChSYAKKOroRKcVfxIhADkALj6rhLKXyesoJhUeeZyLKDxKMGCQTLLP8i8Tg6-P3rOEnf8__o-ToXEZQ19qyCPToARYoIsWQM5hjkbBYymXMyWzNd7IsfcufF_8w6ZafY6bdludS83ySwDiJSdAyqTqeHryGwBxBmG2ylfUXI3aUb-AvsrEF4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ6QIyH6QFQ0gqj7gOGF5trdba99MAQ8LpzA5YKS8La2u1tioj30Dg3_mn-d3_QHaEJ446Vps-1mOzs7883szgzRVupc5GIdBR7aK9A-80GaqAIXa5UsYulqh9vJJDk80x_P4_Ml-tPFwvCxyk4m1oLazSz7yPu8g5dm4EfZL9tjEdPhaPfyR8AVpHintSun0bDIkb_-DfNt_n48xFy_k3J08PnDYdBWGAisSqJFkCc-tcr5tHT5IJYMRxQMGlvGiZMZHm0BE7F0UTmAKZGX0K9lEfpMRvgp7TjpAcT_8gBWUdij5f2DyfT0xsPDGTdTFTapjpTKwv5tZZs5VEcKJBH9pw7vVgq1phs9odUWooq9hqee0pKvntHjfxIXrpGp43YD3tLOv4sx-BeQ1YlPXy8qcdx6QMVpdzZpVol9KEsncDOq3YiCkecVLH0xRI-_0MRhLmI6m3sxzBf5czp7EEK-oF41q_xLEtoWPgewcYPCaiXDrNQFYB1gbJZYbbN1kh3FjG3zmHM5jW8G9gyT2dxB5nXaufnosknjcf_r2zwVhhc5-rZ5G6uAEXK6LLMHqcYZHDVGs9nNlmlX_9zc8urG_c1vaQVMbI7Hk6NX9EgCLzWHgjapt_h55V8D7yyKNy1jCfry0Lz8F-1lFfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Stream+Isolated+Sign+Language+Recognition+Based+on+Finger+Features+Derived+from+Pose+Data&rft.jtitle=Electronics+%28Basel%29&rft.au=Akdag%2C+Ali&rft.au=Baykan%2C+Omer+Kaan&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=8&rft_id=info:doi/10.3390%2Felectronics13081591&rft.externalDocID=A793095649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon