Multi-Stream Isolated Sign Language Recognition Based on Finger Features Derived from Pose Data
This study introduces an innovative multichannel approach that focuses on the features and configurations of fingers in isolated sign language recognition. The foundation of this approach is based on three different types of data, derived from finger pose data obtained using MediaPipe and processed...
Saved in:
Published in | Electronics (Basel) Vol. 13; no. 8; p. 1591 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study introduces an innovative multichannel approach that focuses on the features and configurations of fingers in isolated sign language recognition. The foundation of this approach is based on three different types of data, derived from finger pose data obtained using MediaPipe and processed in separate channels. Using these multichannel data, we trained the proposed MultiChannel-MobileNetV2 model to provide a detailed analysis of finger movements. In our study, we first subject the features extracted from all trained models to dimensionality reduction using Principal Component Analysis. Subsequently, we combine these processed features for classification using a Support Vector Machine. Furthermore, our proposed method includes processing body and facial information using MobileNetV2. Our final proposed sign language recognition method has achieved remarkable accuracy rates of 97.15%, 95.13%, 99.78%, and 95.37% on the BosphorusSign22k-general, BosphorusSign22k, LSA64, and GSL datasets, respectively. These results underscore the generalizability and adaptability of the proposed method, proving its competitive edge over existing studies in the literature. |
---|---|
AbstractList | This study introduces an innovative multichannel approach that focuses on the features and configurations of fingers in isolated sign language recognition. The foundation of this approach is based on three different types of data, derived from finger pose data obtained using MediaPipe and processed in separate channels. Using these multichannel data, we trained the proposed MultiChannel-MobileNetV2 model to provide a detailed analysis of finger movements. In our study, we first subject the features extracted from all trained models to dimensionality reduction using Principal Component Analysis. Subsequently, we combine these processed features for classification using a Support Vector Machine. Furthermore, our proposed method includes processing body and facial information using MobileNetV2. Our final proposed sign language recognition method has achieved remarkable accuracy rates of 97.15%, 95.13%, 99.78%, and 95.37% on the BosphorusSign22k-general, BosphorusSign22k, LSA64, and GSL datasets, respectively. These results underscore the generalizability and adaptability of the proposed method, proving its competitive edge over existing studies in the literature. |
Audience | Academic |
Author | Baykan, Omer Kaan Akdag, Ali |
Author_xml | – sequence: 1 givenname: Ali surname: Akdag fullname: Akdag, Ali – sequence: 2 givenname: Omer Kaan surname: Baykan fullname: Baykan, Omer Kaan |
BookMark | eNp9kE9LAzEQxYMoWGs_gZeA563JZv_lWFurhYpi9byk2cmSspvUJCv47U2pBxFxcphJ3vtl4F2gU2MNIHRFyZQxTm6gAxmcNVp6ykhFc05P0CglJU94ytPTH_M5mni_I7E4ZRUjI1Q_Dl3QySY4ED1eeduJAA3e6NbgtTDtIFrALyBta3TQ1uBb4aMeh6U2LTi8BBEGBx4vwOmPKClne_xsPeCFCOISnSnReZh89zF6W969zh-S9dP9aj5bJ5IVNCSigEqyBirViDJPScVyRvNCqrxoUh6vcltWUaSqJDQTipS52hLgKQUOWZOyMbo-_rt39n0AH-qdHZyJK2tGsqLiJSMH1_ToakUHtTbKBidkPA30WsZYlY7vs5IzwvMi4xFgR0A6670DVe-d7oX7rCmpD-nXf6QfKf6LkjqIQ3xxne7-Zb8A3dKQAg |
CitedBy_id | crossref_primary_10_1007_s10044_024_01403_8 crossref_primary_10_1007_s40031_024_01118_8 |
Cites_doi | 10.1109/ICAEEE.2018.8642983 10.1007/978-3-030-66096-3_21 10.3906/elk-2005-156 10.1109/ACCESS.2020.3028072 10.1109/CVPR.2016.308 10.1117/12.2266453 10.1109/NRSC.2017.7893499 10.3390/fi11040091 10.1207/s15516709cog1402_1 10.1109/ISCID.2015.254 10.1109/ICCVW.2019.00164 10.1109/ICISET.2016.7856479 10.3390/electronics11193228 10.3389/fnins.2023.1148191 10.1088/1742-6596/1230/1/012017 10.1109/icABCD54961.2022.9856310 10.1109/TPAMI.2012.59 10.1109/ICIG.2007.153 10.1109/CVPR.2019.00429 10.1007/978-3-319-47955-2_28 10.1007/s10489-022-03649-3 10.1016/j.procs.2020.06.022 10.1038/s41592-018-0019-x 10.1016/j.eswa.2022.118914 10.1016/j.aiopen.2021.01.001 10.1007/s00521-021-06467-9 10.1016/j.ress.2019.106706 10.1109/TMM.2018.2889563 10.3390/s22165959 10.1109/CVPR.2018.00675 10.3390/s23167156 10.1109/INMIC.2014.7097332 10.3390/s23187970 10.1109/WACVW54805.2022.00024 10.1016/j.eswa.2005.11.018 10.1134/S1054661812040062 10.1038/nbt0308-303 10.1109/IST.2018.8577085 10.1007/s10044-014-0400-z 10.1109/CVPR.2017.502 10.1145/3584984 10.1109/CVPR.2018.00474 10.1007/978-3-319-93000-8_45 10.1162/neco.1997.9.8.1735 10.18653/v1/2022.acl-long.150 10.1109/IWCIA.2015.7449458 10.1007/s13369-022-07144-2 10.1109/ICCSP48568.2020.9182351 10.1109/ICAECC.2014.7002401 10.1109/3DTV.2018.8478467 10.1007/s00138-022-01367-x 10.1109/IACC.2016.71 10.1016/j.jvcir.2016.07.020 10.1016/S0893-6080(99)00032-5 10.1109/ICCVW60793.2023.00345 10.33166/AETiC.2020.04.003 10.1016/j.eswa.2021.115601 10.1108/k.2001.30.1.103.6 10.1007/s11831-019-09384-2 10.1007/s00371-019-01725-3 10.3390/app13053029 10.1016/j.eswa.2022.118559 10.1038/s41598-022-15699-1 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics13081591 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | A793095649 10_3390_electronics13081591 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC PMFND 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c361t-a6e8c3de8fda75208353156cf56d29083cb788fd1f7014af075fb0e921e9e4d23 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Sat Jul 26 00:26:32 EDT 2025 Tue Jun 10 21:06:35 EDT 2025 Thu Apr 24 22:56:02 EDT 2025 Tue Jul 01 04:07:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-a6e8c3de8fda75208353156cf56d29083cb788fd1f7014af075fb0e921e9e4d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3046897302?pq-origsite=%requestingapplication% |
PQID | 3046897302 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_3046897302 gale_infotracacademiconefile_A793095649 crossref_primary_10_3390_electronics13081591 crossref_citationtrail_10_3390_electronics13081591 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Elman (ref_34) 1990; 14 ref_50 Altman (ref_64) 2018; 15 ref_14 ref_57 ref_12 ref_56 Venugopalan (ref_8) 2021; 185 ref_54 ref_53 ref_52 ref_51 Cui (ref_49) 2019; 21 Aremu (ref_65) 2020; 195 Damaneh (ref_7) 2023; 211 ref_19 ref_18 ref_17 Andrew (ref_67) 2001; 30 Alyami (ref_78) 2023; 23 ref_16 ref_15 ref_59 Yang (ref_20) 2014; 27 ref_60 Aldhahri (ref_31) 2023; 48 ref_25 ref_24 ref_22 Polat (ref_58) 2021; 29 ref_63 Husein (ref_61) 2019; 1230 ref_27 ref_26 Imran (ref_75) 2020; 36 (ref_13) 2012; 22 ref_72 ref_71 Ji (ref_40) 2013; 35 Fang (ref_81) 2023; 53 ref_36 ref_79 Hochreiter (ref_35) 1997; 9 ref_33 ref_77 ref_32 ref_76 ref_74 ref_73 ref_39 Wang (ref_43) 2021; 34 ref_38 Sincan (ref_47) 2020; 8 ref_37 Lim (ref_21) 2016; 40 Zhou (ref_55) 2020; 1 Sharma (ref_28) 2020; 173 ref_82 Munib (ref_11) 2007; 32 ref_80 Singla (ref_62) 2014; 4 Miozzo (ref_10) 2022; 12 ref_46 ref_45 ref_44 Amari (ref_68) 1999; 12 Wadhawan (ref_2) 2021; 28 ref_42 ref_41 (ref_66) 2008; 26 ref_1 ref_3 ref_48 ref_9 Rahim (ref_29) 2020; 4 Fagiani (ref_23) 2015; 18 ref_5 ref_4 Akarun (ref_70) 2023; 17 Das (ref_30) 2023; 213 ref_6 Akarun (ref_69) 2023; 34 |
References_xml | – ident: ref_17 doi: 10.1109/ICAEEE.2018.8642983 – ident: ref_57 doi: 10.1007/978-3-030-66096-3_21 – ident: ref_80 – volume: 29 start-page: 1171 year: 2021 ident: ref_58 article-title: Turkish Sign Language Recognition Based on Multistream Data Fusion publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-2005-156 – ident: ref_26 – volume: 8 start-page: 181340 year: 2020 ident: ref_47 article-title: AUTSL: A Large Scale Multi-Modal Turkish Sign Language Dataset and Baseline Methods publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028072 – ident: ref_51 doi: 10.1109/CVPR.2016.308 – ident: ref_16 doi: 10.1117/12.2266453 – ident: ref_6 doi: 10.1109/NRSC.2017.7893499 – ident: ref_74 doi: 10.3390/fi11040091 – volume: 14 start-page: 179 year: 1990 ident: ref_34 article-title: Finding Structure in Time publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – ident: ref_1 – ident: ref_24 doi: 10.1109/ISCID.2015.254 – ident: ref_25 doi: 10.1109/ICCVW.2019.00164 – ident: ref_15 doi: 10.1109/ICISET.2016.7856479 – ident: ref_52 doi: 10.3390/electronics11193228 – volume: 17 start-page: 1148191 year: 2023 ident: ref_70 article-title: Multi-Cue Temporal Modeling for Skeleton-Based Sign Language Recognition publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1148191 – volume: 1230 start-page: 012017 year: 2019 ident: ref_61 article-title: Motion Detect Application with Frame Difference Method on a Surveillance Camera publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1230/1/012017 – ident: ref_76 doi: 10.1109/icABCD54961.2022.9856310 – volume: 35 start-page: 221 year: 2013 ident: ref_40 article-title: 3D Convolutional Neural Networks for Human Action Recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.59 – ident: ref_60 doi: 10.1109/ICIG.2007.153 – ident: ref_27 – ident: ref_50 doi: 10.1109/CVPR.2019.00429 – ident: ref_48 – ident: ref_71 doi: 10.1007/978-3-319-47955-2_28 – volume: 53 start-page: 4380 year: 2023 ident: ref_81 article-title: Adversarial Multi-Task Deep Learning for Signer-Independent Feature Representation publication-title: Appl. Intell. doi: 10.1007/s10489-022-03649-3 – volume: 173 start-page: 181 year: 2020 ident: ref_28 article-title: Hand Gesture Recognition Using Image Processing and Feature Extraction Techniques publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.06.022 – volume: 15 start-page: 399 year: 2018 ident: ref_64 article-title: The Curse(s) of Dimensionality This-Month publication-title: Nat. Methods doi: 10.1038/s41592-018-0019-x – volume: 213 start-page: 118914 year: 2023 ident: ref_30 article-title: A Hybrid Approach for Bangla Sign Language Recognition Using Deep Transfer Learning Model with Random Forest Classifier publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118914 – volume: 1 start-page: 57 year: 2020 ident: ref_55 article-title: Graph Neural Networks: A Review of Methods and Applications publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – ident: ref_38 – volume: 34 start-page: 2413 year: 2021 ident: ref_43 article-title: (2+1)D-SLR: An Efficient Network for Video Sign Language Recognition publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06467-9 – ident: ref_45 – volume: 195 start-page: 106706 year: 2020 ident: ref_65 article-title: A Machine Learning Approach to Circumventing the Curse of Dimensionality in Discontinuous Time Series Machine Data publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.106706 – ident: ref_59 – volume: 21 start-page: 1880 year: 2019 ident: ref_49 article-title: A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2018.2889563 – ident: ref_32 doi: 10.3390/s22165959 – ident: ref_53 – ident: ref_41 doi: 10.1109/CVPR.2018.00675 – ident: ref_54 doi: 10.3390/s23167156 – ident: ref_4 doi: 10.1109/INMIC.2014.7097332 – ident: ref_33 doi: 10.3390/s23187970 – ident: ref_77 doi: 10.1109/WACVW54805.2022.00024 – volume: 32 start-page: 24 year: 2007 ident: ref_11 article-title: American Sign Language (ASL) Recognition Based on Hough Transform and Neural Networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.11.018 – volume: 22 start-page: 519 year: 2012 ident: ref_13 article-title: Local Binary Pattern Based Features for Sign Language Recognition publication-title: Pattern Recognit. Image Anal. doi: 10.1134/S1054661812040062 – volume: 26 start-page: 303 year: 2008 ident: ref_66 article-title: What Is Principal Component Analysis? publication-title: Nat. Biotechnol. doi: 10.1038/nbt0308-303 – ident: ref_73 doi: 10.1109/IST.2018.8577085 – volume: 18 start-page: 385 year: 2015 ident: ref_23 article-title: Signer Independent Isolated Italian Sign Recognition Based on Hidden Markov Models publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-014-0400-z – ident: ref_82 doi: 10.1109/CVPR.2017.502 – volume: 27 start-page: 741 year: 2014 ident: ref_20 article-title: Chinese Sign Language Recognition Method Based on Depth Image Information and SURF-BoW publication-title: Moshi Shibie Yu Rengong Zhineng/Pattern Recognit. Artif. Intell. – ident: ref_37 – volume: 23 start-page: 1 year: 2023 ident: ref_78 article-title: Isolated Arabic Sign Language Recognition Using A Transformer-Based Model and Landmark Keypoints publication-title: ACM Trans. Asian Low-Resour. Lang. Inf. Process. doi: 10.1145/3584984 – ident: ref_14 – ident: ref_44 – ident: ref_63 doi: 10.1109/CVPR.2018.00474 – ident: ref_42 doi: 10.1007/978-3-319-93000-8_45 – ident: ref_79 – volume: 9 start-page: 1735 year: 1997 ident: ref_35 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_56 doi: 10.18653/v1/2022.acl-long.150 – ident: ref_18 doi: 10.1109/IWCIA.2015.7449458 – volume: 48 start-page: 2147 year: 2023 ident: ref_31 article-title: Arabic Sign Language Recognition Using Convolutional Neural Network and MobileNet publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-07144-2 – ident: ref_3 doi: 10.1109/ICCSP48568.2020.9182351 – ident: ref_5 doi: 10.1109/ICAECC.2014.7002401 – ident: ref_72 doi: 10.1109/3DTV.2018.8478467 – volume: 34 start-page: 12 year: 2023 ident: ref_69 article-title: Aligning Accumulative Representations for Sign Language Recognition publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-022-01367-x – ident: ref_12 doi: 10.1109/IACC.2016.71 – ident: ref_46 – volume: 40 start-page: 538 year: 2016 ident: ref_21 article-title: Block-Based Histogram of Optical Flow for Isolated Sign Language Recognition publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2016.07.020 – volume: 12 start-page: 783 year: 1999 ident: ref_68 article-title: Improving Support Vector Machine Classifiers by Modifying Kernel Functions publication-title: Neural Netw. doi: 10.1016/S0893-6080(99)00032-5 – ident: ref_9 doi: 10.1109/ICCVW60793.2023.00345 – volume: 4 start-page: 20 year: 2020 ident: ref_29 article-title: Hand Gesture-Based Sign Alphabet Recognition and Sentence Interpretation Using a Convolutional Neural Network publication-title: Ann. Emerg. Technol. Comput. doi: 10.33166/AETiC.2020.04.003 – volume: 185 start-page: 115601 year: 2021 ident: ref_8 article-title: Applying Deep Neural Networks for the Automatic Recognition of Sign Language Words: A Communication Aid to Deaf Agriculturists publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115601 – volume: 30 start-page: 103 year: 2001 ident: ref_67 article-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods publication-title: Kybernetes doi: 10.1108/k.2001.30.1.103.6 – volume: 28 start-page: 785 year: 2021 ident: ref_2 article-title: Sign Language Recognition Systems: A Decade Systematic Literature Review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-019-09384-2 – volume: 36 start-page: 1233 year: 2020 ident: ref_75 article-title: Deep Motion Templates and Extreme Learning Machine for Sign Language Recognition publication-title: Vis. Comput. doi: 10.1007/s00371-019-01725-3 – ident: ref_36 – ident: ref_39 doi: 10.3390/app13053029 – ident: ref_19 – volume: 4 start-page: 1559 year: 2014 ident: ref_62 article-title: Motion Detection Based on Frame Difference Method publication-title: Int. J. Inf. Comput. Technol. – ident: ref_22 – volume: 211 start-page: 118559 year: 2023 ident: ref_7 article-title: Static Hand Gesture Recognition in Sign Language Based on Convolutional Neural Network with Feature Extraction Method Using ORB Descriptor and Gabor Filter publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118559 – volume: 12 start-page: 11980 year: 2022 ident: ref_10 article-title: How the Hand Has Shaped Sign Languages publication-title: Sci. Rep. doi: 10.1038/s41598-022-15699-1 |
SSID | ssj0000913830 |
Score | 2.3070343 |
Snippet | This study introduces an innovative multichannel approach that focuses on the features and configurations of fingers in isolated sign language recognition. The... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1591 |
SubjectTerms | Accuracy Classification Communication Datasets Machine learning Methods Neural networks Principal components analysis Sign language Support vector machines |
Title | Multi-Stream Isolated Sign Language Recognition Based on Finger Features Derived from Pose Data |
URI | https://www.proquest.com/docview/3046897302 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEG4EXvTB-DOiSPpg4osLrO1G92RAQDRACEjCW7O1nTHRgTL8-71uBTUhvCxbui1N73r3fdf2DqEbrpSrPOY6GryXw3SgHe7TCC5SUhJ5RGUBt8HQ703Z88yb2YDb0m6rXNvEzFCruTQx8ppZweMB6CO5X3w6pmqUWV21JTQKqAQmmAP5KrU6w9F4E2UxWS85refphijw-9pvdZklmG8O3tz955K2G-bM23SP0KGFibiZy_UY7enkBB38SR54ikR2dtYxy8rhB34CHQLYqPDk7TXBfRuFxOP1_qB5glvgsBSGm24WysMG_a2AbeM2_PEbmsxREzyaLzVuh2l4hqbdzstDz7HlEhxJfTd1Ql9zSZXmsQobHjHYigI7k7HnKxLAo4yA78bKjRvAi8IYwEIc1XVAXJAQU4Seo2IyT_QFwkxGOgRwoRqRZJTUg5hFAK0ASga-ZDIoI7IeMSFtLnFT0uJdAKcwwyy2DHMZ3W0-WuSpNHa_fmtEIcxEg3_L0J4XgB6alFWiCZbFZFFk0JvKWlrCzsCl-NWXy93NV2ifAFDJd-NUUDH9WulrABppVEUF3n2solKzPehPqla3fgBMXNdr |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDI4mOAAHxFM8BuQA4kLFmqRde0BoMMYG24Rgk7iFNkkREnRANxB_it-I3QcDCXHbpWqVNkodx_7sxDYhu57WtnaEbRnQXpYwvrE8l4dwUYqz0GE6dbh1um6zLy5undsS-SxiYfBYZSETU0GtBwp95Ie4g-f5wI_s-PnFwqpRuLtalNDI2OLSfLyDyZYcteowv3uMNc56p00rrypgKe7aQytwjae4Nl6kg6rDEIJwMGJU5Lia-fCoQjALI21HVTAfggh0ahRWjM9s-BGhMdEBiPxpwbmPK8prnH_7dDDHpscrWXIjaK8cjmvZJKAsPMAO9i8F-LcaSHVbY4HM56CU1jIuWiQlEy-RuR-pCpeJTCN1LdzEDp5oCzgWQKqmNw_3MW3nPk96XZxGGsT0BNSjpnDTSB2HFLHmCGx7Woce36AJA1vo1SAxtB4MgxXSnwgZV8lUPIjNGqFChSYAKKOroRKcVfxIhADkALj6rhLKXyesoJhUeeZyLKDxKMGCQTLLP8i8Tg6-P3rOEnf8__o-ToXEZQ19qyCPToARYoIsWQM5hjkbBYymXMyWzNd7IsfcufF_8w6ZafY6bdludS83ySwDiJSdAyqTqeHryGwBxBmG2ylfUXI3aUb-AvsrEF4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ6QIyH6QFQ0gqj7gOGF5trdba99MAQ8LpzA5YKS8La2u1tioj30Dg3_mn-d3_QHaEJ446Vps-1mOzs7883szgzRVupc5GIdBR7aK9A-80GaqAIXa5UsYulqh9vJJDk80x_P4_Ml-tPFwvCxyk4m1oLazSz7yPu8g5dm4EfZL9tjEdPhaPfyR8AVpHintSun0bDIkb_-DfNt_n48xFy_k3J08PnDYdBWGAisSqJFkCc-tcr5tHT5IJYMRxQMGlvGiZMZHm0BE7F0UTmAKZGX0K9lEfpMRvgp7TjpAcT_8gBWUdij5f2DyfT0xsPDGTdTFTapjpTKwv5tZZs5VEcKJBH9pw7vVgq1phs9odUWooq9hqee0pKvntHjfxIXrpGp43YD3tLOv4sx-BeQ1YlPXy8qcdx6QMVpdzZpVol9KEsncDOq3YiCkecVLH0xRI-_0MRhLmI6m3sxzBf5czp7EEK-oF41q_xLEtoWPgewcYPCaiXDrNQFYB1gbJZYbbN1kh3FjG3zmHM5jW8G9gyT2dxB5nXaufnosknjcf_r2zwVhhc5-rZ5G6uAEXK6LLMHqcYZHDVGs9nNlmlX_9zc8urG_c1vaQVMbI7Hk6NX9EgCLzWHgjapt_h55V8D7yyKNy1jCfry0Lz8F-1lFfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Stream+Isolated+Sign+Language+Recognition+Based+on+Finger+Features+Derived+from+Pose+Data&rft.jtitle=Electronics+%28Basel%29&rft.au=Akdag%2C+Ali&rft.au=Baykan%2C+Omer+Kaan&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=8&rft_id=info:doi/10.3390%2Felectronics13081591&rft.externalDocID=A793095649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |