Distributed Online Multi-Label Learning with Privacy Protection in Internet of Things

With the widespread use of end devices, online multi-label learning has become popular as the data generated by users using the Internet of Things devices have become huge and rapidly updated. However, in many scenarios, the user data are often generated in a geographically distributed manner that i...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 4; p. 2713
Main Authors Huang , Fan, Yang, Nan, Chen , Huaming, Bao, Wei, Yuan, Dong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the widespread use of end devices, online multi-label learning has become popular as the data generated by users using the Internet of Things devices have become huge and rapidly updated. However, in many scenarios, the user data are often generated in a geographically distributed manner that is often inefficient and difficult to centralize for training machine learning models. At the same time, current mainstream distributed learning algorithms always require a centralized server to aggregate data from distributed nodes, which inevitably causes risks to the privacy of users. To overcome this issue, we propose a distributed approach for multi-label classification, which trains the models in distributed computing nodes without sharing the source data from each node. In our proposed method, each node trains its model with its local online data while it also learns from the neighbour nodes without transferring the training data. As a result, our proposed method achieved the online distributed approach for multi-label classification without losing performance when taking existing centralized algorithms as a reference. Experiments show that our algorithm outperforms the centralized online multi-label classification algorithm in F1 score, being 0.0776 higher in macro F1 score and 0.1471 higher for micro F1 score on average. However, for the Hamming loss, both algorithms beat each other on some datasets, and our proposed algorithm loses 0.005 compared to the centralized approach on average, which can be neglected. Furthermore, the size of the network and the degree of connectivity are not factors that affect the performance of this distributed online multi-label learning algorithm.
AbstractList With the widespread use of end devices, online multi-label learning has become popular as the data generated by users using the Internet of Things devices have become huge and rapidly updated. However, in many scenarios, the user data are often generated in a geographically distributed manner that is often inefficient and difficult to centralize for training machine learning models. At the same time, current mainstream distributed learning algorithms always require a centralized server to aggregate data from distributed nodes, which inevitably causes risks to the privacy of users. To overcome this issue, we propose a distributed approach for multi-label classification, which trains the models in distributed computing nodes without sharing the source data from each node. In our proposed method, each node trains its model with its local online data while it also learns from the neighbour nodes without transferring the training data. As a result, our proposed method achieved the online distributed approach for multi-label classification without losing performance when taking existing centralized algorithms as a reference. Experiments show that our algorithm outperforms the centralized online multi-label classification algorithm in F1 score, being 0.0776 higher in macro F1 score and 0.1471 higher for micro F1 score on average. However, for the Hamming loss, both algorithms beat each other on some datasets, and our proposed algorithm loses 0.005 compared to the centralized approach on average, which can be neglected. Furthermore, the size of the network and the degree of connectivity are not factors that affect the performance of this distributed online multi-label learning algorithm.
Audience Academic
Author Bao, Wei
Yuan, Dong
Huang, Fan
Yang, Nan
Chen, Huaming
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0000-0003-4071-4377
  surname: Huang 
  fullname: Huang , Fan
– sequence: 2
  givenname: Nan
  surname: Yang
  fullname: Yang, Nan
– sequence: 3
  givenname: Huaming
  orcidid: 0000-0001-5678-472X
  surname: Chen 
  fullname: Chen , Huaming
– sequence: 4
  givenname: Wei
  surname: Bao
  fullname: Bao, Wei
– sequence: 5
  givenname: Dong
  surname: Yuan
  fullname: Yuan, Dong
BookMark eNpNUctqHDEQFMGBOI5P-QFBjmEctaQZaY7GeS1scA72WejRWmsZSxuNNsF_HyUbgrsP1XRXFwX1mpzlkpGQt8CuhJjZB3s4gGCSKxAvyDlnahqEBHX2bH5FLtd1z3rNIDSwc3L_Ma2tJndsGOhtXlJG-u24tDRsrcOFbtHWnPKO_krtgX6v6af1Tx1LQ99SyTRluskNa8ZGS6R3D528viEvo11WvPyHF-T-86e7m6_D9vbL5uZ6O3gxQRvsxFzQCmIEqf3sPZslWOAigItunJRjinHBIVrhHfar1MFN44Q6yBGVuCCbk24odm8ONT3a-mSKTebvotSdsbUlv6AZuQMnfZDKcjkqpyelXcAJwywjRuha705ah1p-HHFtZl-ONXf7his1j1xKmDvr6sTa2S6aciytWt874GPyPZCY-v5ajTBrzWfWH96fHnwt61ox_rcJzPzJzTzLTfwGIqyLfA
Cites_doi 10.1109/JIOT.2014.2306328
10.1016/j.inffus.2017.12.001
10.3233/JIFS-16724
10.1109/ACCESS.2019.2962059
10.4018/jdwm.2007070101
10.1109/ICDMW.2014.87
10.1109/IJCNN.2017.7965964
10.1145/1871437.1871485
10.1145/1076034.1076080
10.1002/(SICI)1099-1506(199801/02)5:1<11::AID-NLA123>3.0.CO;2-F
10.3390/app122111303
10.1007/BFb0026664
10.7551/mitpress/1120.001.0001
10.1007/s10994-011-5256-5
10.1109/TKDE.2013.39
10.1007/3-540-47979-1_7
10.1109/TASL.2007.913750
10.1007/s10994-012-5279-6
10.1109/NCG.2018.8592966
10.1109/CIS.2009.168
10.1002/widm.1139
10.3390/app122312320
10.1007/b94425
10.1016/j.neucom.2015.12.035
10.1016/j.patcog.2004.03.009
10.1007/11425274_17
10.3115/1572392.1572411
10.1109/IJCNN.2016.7727422
10.24963/ijcai.2020/189
10.1016/j.patcog.2006.12.019
10.1145/3269206.3271774
10.1109/ACSSC.2006.356622
10.1109/TAC.2019.2894588
10.1109/HIS.2006.264925
10.1023/B:SUPE.0000026847.75355.69
10.1016/S0377-0427(99)00235-6
10.1007/s10994-016-5613-5
10.1007/3-540-44794-6_4
10.1109/TKDE.2006.162
10.1007/3-540-46632-0_15
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13042713
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
ProQuest Central China
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_52b1b4cd47a2457b8678bde6ed94fef1
A751988290
10_3390_app13042713
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARAPS
ARCSS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6-
K6V
K7-
KB.
KC.
KQ8
L6V
LK5
LK8
M0K
M7P
M7R
M7S
MODMG
M~E
N95
OK1
P62
PATMY
PCBAR
PDBOC
PIMPY
PROAC
PYCSY
RIG
TUS
BGLVJ
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-a60bd871ff148c9cc0941a123d1bfb567b0702321fa3cbe09448db656e8d45e73
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Tue Oct 22 15:11:09 EDT 2024
Tue Oct 29 09:05:58 EDT 2024
Fri Feb 02 04:09:05 EST 2024
Fri Aug 23 00:32:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a60bd871ff148c9cc0941a123d1bfb567b0702321fa3cbe09448db656e8d45e73
ORCID 0000-0001-5678-472X
0000-0003-4071-4377
OpenAccessLink https://doaj.org/article/52b1b4cd47a2457b8678bde6ed94fef1
PQID 2779524419
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_52b1b4cd47a2457b8678bde6ed94fef1
proquest_journals_2779524419
gale_infotracacademiconefile_A751988290
crossref_primary_10_3390_app13042713
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tsoumakas (ref_19) 2007; 3
Read (ref_41) 2012; 88
ref_14
ref_13
ref_12
Turnbull (ref_51) 2008; 16
ref_55
ref_10
ref_54
ref_53
Zanella (ref_2) 2014; 1
Karalic (ref_16) 1991; 15
Kok (ref_25) 2007; Volume 4702
ref_17
ref_15
Moyano (ref_36) 2018; 44
Renaut (ref_46) 1998; 5
Siebes (ref_29) 2001; Volume 2168
ref_24
ref_23
Crammer (ref_33) 2003; 3
Zhang (ref_26) 2007; 40
Zhang (ref_21) 2013; 26
Zhu (ref_18) 1999; Volume 1741
ref_27
Heyden (ref_52) 2002; Volume 2353
Read (ref_22) 2011; 85
Zhang (ref_38) 2017; 33
Gibaja (ref_35) 2014; 4
Hacid (ref_11) 2005; Volume 3488
ref_32
ref_31
ref_30
Zhang (ref_34) 2006; 18
Liu (ref_28) 2016; 182
ref_39
Boutell (ref_20) 2004; 37
ref_37
Osojnik (ref_42) 2017; 106
Yang (ref_47) 2004; 29
Frommer (ref_45) 1999; 110
ref_44
ref_43
ref_40
ref_1
ref_3
ref_49
Wang (ref_50) 2019; 64
ref_48
ref_9
ref_5
Zheng (ref_8) 2019; 8
ref_4
ref_7
ref_6
References_xml – volume: 1
  start-page: 22
  year: 2014
  ident: ref_2
  article-title: Internet of things for smart cities
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2014.2306328
  contributor:
    fullname: Zanella
– ident: ref_49
– volume: 44
  start-page: 33
  year: 2018
  ident: ref_36
  article-title: Review of ensembles of multi-label classifiers: Models, experimental study and prospects
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.12.001
  contributor:
    fullname: Moyano
– volume: Volume 4702
  start-page: 605
  year: 2007
  ident: ref_25
  article-title: Multi-label lazy associative classification
  publication-title: Knowledge Discovery in Databases: PKDD 2007
  contributor:
    fullname: Kok
– volume: 33
  start-page: 1143
  year: 2017
  ident: ref_38
  article-title: Dual weighted extreme learning machine for imbalanced data stream classification
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-16724
  contributor:
    fullname: Zhang
– volume: 8
  start-page: 1249
  year: 2019
  ident: ref_8
  article-title: A survey on multi-label data stream classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962059
  contributor:
    fullname: Zheng
– volume: 3
  start-page: 1
  year: 2007
  ident: ref_19
  article-title: Multi-label classification: An overview
  publication-title: Int. J. Data Warehous. Min. (IJDWM)
  doi: 10.4018/jdwm.2007070101
  contributor:
    fullname: Tsoumakas
– ident: ref_27
  doi: 10.1109/ICDMW.2014.87
– ident: ref_1
– ident: ref_23
– ident: ref_39
  doi: 10.1109/IJCNN.2017.7965964
– ident: ref_24
  doi: 10.1145/1871437.1871485
– ident: ref_12
  doi: 10.1145/1076034.1076080
– volume: 5
  start-page: 11
  year: 1998
  ident: ref_46
  article-title: A parallel multisplitting solution of the least squares problem
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/(SICI)1099-1506(199801/02)5:1<11::AID-NLA123>3.0.CO;2-F
  contributor:
    fullname: Renaut
– ident: ref_6
  doi: 10.3390/app122111303
– ident: ref_9
  doi: 10.1007/BFb0026664
– ident: ref_55
  doi: 10.7551/mitpress/1120.001.0001
– ident: ref_13
– ident: ref_17
– volume: 85
  start-page: 333
  year: 2011
  ident: ref_22
  article-title: Classifier chains for multi-label classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-011-5256-5
  contributor:
    fullname: Read
– volume: 26
  start-page: 1819
  year: 2013
  ident: ref_21
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.39
  contributor:
    fullname: Zhang
– volume: Volume 2353
  start-page: 97
  year: 2002
  ident: ref_52
  article-title: Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
  publication-title: Computer Vision—ECCV 2002
  doi: 10.1007/3-540-47979-1_7
  contributor:
    fullname: Heyden
– volume: 16
  start-page: 467
  year: 2008
  ident: ref_51
  article-title: Semantic annotation and retrieval of music and sound effects
  publication-title: IEEE Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASL.2007.913750
  contributor:
    fullname: Turnbull
– ident: ref_53
– ident: ref_30
– volume: 88
  start-page: 243
  year: 2012
  ident: ref_41
  article-title: Scalable and efficient multi-label classification for evolving data streams
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-012-5279-6
  contributor:
    fullname: Read
– ident: ref_40
  doi: 10.1109/NCG.2018.8592966
– ident: ref_3
– ident: ref_32
  doi: 10.1109/CIS.2009.168
– volume: 4
  start-page: 411
  year: 2014
  ident: ref_35
  article-title: Multi-label learning: A review of the state of the art and ongoing research
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1139
  contributor:
    fullname: Gibaja
– ident: ref_7
  doi: 10.3390/app122312320
– ident: ref_10
  doi: 10.1007/b94425
– volume: 182
  start-page: 187
  year: 2016
  ident: ref_28
  article-title: Neighbour selection for multilabel classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.035
  contributor:
    fullname: Liu
– volume: 3
  start-page: 1025
  year: 2003
  ident: ref_33
  article-title: A family of additive online algorithms for category ranking
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Crammer
– volume: 37
  start-page: 1757
  year: 2004
  ident: ref_20
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.03.009
  contributor:
    fullname: Boutell
– ident: ref_14
– ident: ref_44
– volume: Volume 3488
  start-page: 161
  year: 2005
  ident: ref_11
  article-title: Evaluation of two systems on multi-class multi-label document classification
  publication-title: Foundations of Intelligent Systems
  doi: 10.1007/11425274_17
  contributor:
    fullname: Hacid
– ident: ref_54
  doi: 10.3115/1572392.1572411
– ident: ref_37
  doi: 10.1109/IJCNN.2016.7727422
– ident: ref_5
  doi: 10.24963/ijcai.2020/189
– volume: 40
  start-page: 2038
  year: 2007
  ident: ref_26
  article-title: ML-KNN: A lazy learning approach to multi-label learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.12.019
  contributor:
    fullname: Zhang
– ident: ref_4
  doi: 10.1145/3269206.3271774
– ident: ref_48
  doi: 10.1109/ACSSC.2006.356622
– volume: 64
  start-page: 4217
  year: 2019
  ident: ref_50
  article-title: A distributed algorithm for least squares solutions
  publication-title: IEEE Trans. Autom. Control.
  doi: 10.1109/TAC.2019.2894588
  contributor:
    fullname: Wang
– ident: ref_31
  doi: 10.1109/HIS.2006.264925
– volume: 29
  start-page: 145
  year: 2004
  ident: ref_47
  article-title: Parallel MCGLS and ICGLS methods for least squares problems on distributed memory architectures
  publication-title: J. Supercomput.
  doi: 10.1023/B:SUPE.0000026847.75355.69
  contributor:
    fullname: Yang
– ident: ref_15
– volume: 15
  start-page: 12
  year: 1991
  ident: ref_16
  article-title: Significance level based multiple tree classification
  publication-title: Informatica
  contributor:
    fullname: Karalic
– volume: 110
  start-page: 205
  year: 1999
  ident: ref_45
  article-title: A unified approach to parallel space decomposition methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00235-6
  contributor:
    fullname: Frommer
– volume: 106
  start-page: 745
  year: 2017
  ident: ref_42
  article-title: Multi-label classification via multi-target regression on data streams
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-016-5613-5
  contributor:
    fullname: Osojnik
– volume: Volume 2168
  start-page: 42
  year: 2001
  ident: ref_29
  article-title: Knowledge discovery in multi-label phenotype data
  publication-title: Principles of Data Mining and Knowledge Discovery
  doi: 10.1007/3-540-44794-6_4
  contributor:
    fullname: Siebes
– volume: 18
  start-page: 1338
  year: 2006
  ident: ref_34
  article-title: Multilabel neural networks with applications to functional genomics and text categorization
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2006.162
  contributor:
    fullname: Zhang
– ident: ref_43
– volume: Volume 1741
  start-page: 143
  year: 1999
  ident: ref_18
  article-title: Efficient approximation algorithms for multi-label map labeling
  publication-title: Algorithms and Computation
  doi: 10.1007/3-540-46632-0_15
  contributor:
    fullname: Zhu
SSID ssj0000913810
Score 2.2851036
Snippet With the widespread use of end devices, online multi-label learning has become popular as the data generated by users using the Internet of Things devices have...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 2713
SubjectTerms Algorithms
Analysis
Big Data
Classification
Data mining
Distance learning
distributed learning
Distributed processing
Geographical distribution
Graph representations
Internet
Internet of Things
Iterative methods
Machine learning
multi-label classification
Nodes
online learning
Privacy
Privacy, Right of
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEC7i5qKHYKLixhj6EFAPjdvbr5mT5EmQGIK4kFvTzxCQ3bg7Cv57q2Z6YzzE00B3H4aqrsdX3f0VwIEyysaSNDeNylwhIOBeG8WpqbnQxYjYc-l9uTTnM_X5Wl_XgtuqXqtc-8TeUadFpBr5x6m1rcZYJNpPdz84dY2i09XaQuMJbE4RKUxGsHl0enn19b7KQqyXjZgMD_Mk4ns6FxYE4a2Q_4SinrH_Mb_cB5uz57BVs0R2OKh1GzbyfAeePeAO3IHtapUr9r5SR394AbMT4sGlFlY5sYFFlPVPbPmFD_k7q2yqN4zKr-xqefvLx9_47bkaUEPsds6GGmHu2KKwoavnS5idnX47Pue1cQKP0oiOezMJCZFQKQh2YhsjYjjhMUYlEUrQxgY0dEylRPEyhoyzqkkBM7vcJKWzla9gNF_M82tg3mR0iZjGKFtUkaqV0sYckp_ggFZyDAdrGbq7gR_DIa4gUbsHoh7DEcn3fgmRWvcDi-WNqzbi9DSIoGJS1k-VtqHBQBpSNjm1quQixvCOtOPI9Lqlj76-IMA_JRIrd2gxHW3oZHgMe2sFumqTK_d3B-3-f_oNPKWm8sPd7D0Ydcuf-S2mHl3Yr_vrD_UO19Q
  priority: 102
  providerName: ProQuest
Title Distributed Online Multi-Label Learning with Privacy Protection in Internet of Things
URI https://www.proquest.com/docview/2779524419
https://doaj.org/article/52b1b4cd47a2457b8678bde6ed94fef1
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25SgRBEC08Eg3EE9dj6UBQg8Ht7Wsm9FpFVERcMGv6FEFWWUfBv7d6epQ1EBOjgZ4Jmqqpqvf6eAWwwyVXLnpRyJKHgiMhKIyQvEhNzamIkrpGS-_qWp4P-cW9uJ9o9ZXOhGV54Gy4A9G31HLnuTJ9LpQtMbtaH2TwFY8hZuLTqybIVJODK5qkq_KFPIa8Pu0H00TdFWU_SlCj1P9bPm6KzGARFlp0SA7zrJZgKoyWYX5CM3AZltpofCV7rWT0_goMT5L-bWpdFTzJ6qGkuVpbXBobnkirovpA0rIruRk_vhv3gc9GowE9Qx5HJK8Nhpo8R5K7ea7CcHB6d3xetA0TCsckrQsje9YjA4oRSY6rnEPuRg3WJk9ttEIqiwGOEIpGw5wN-JaX3iKiC6XnIii2BjOj51FYB2JkwFSI8IWryCPjFWPKBetNDwcEZx3Y-bKhfsm6GBr5RDK1njB1B46Sfb8_SWLWzQC6WLcu1n-5uAO7yTs6hVw9Ns60Nwdwpkm8Sh8qhKFl2hHuwNaXA3Ubi6-6r1QlEMXQauM_ZrMJc6nlfD65vQUz9fgtbCMwqW0XpsvBWRdmj06vb267zR_5CQo54lo
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BOQAHRAuogQI-VAIOFnH82j2h8ggB0opDI_Vm-VlVQklJFiT-PTO7TikHOK3k3cNqxvO05_sADpVRNpakuWlU5goLAu61UZxIzYUuRsQeS-_4xMwW6vOZPqsNt029Vrn1ib2jTqtIPfLXE2tbjbFItG8uv3NijaLT1UqhcRNuKYmxmibFpx-veiyEedmI8TCWJ7G6p1NhQQW8FfKvQNTj9f_LK_ehZnof7tUckR0NSt2FG3m5B3evIQfuwW61yQ17WYGjXz2AxXtCwSUCq5zYgCHK-gFbPvchf2MVS_WcUfOVfV1f_PTxFz57pAbUD7tYsqFDmDu2Kmzg9HwIi-mH03czXmkTeEQZdNybcUhYB5WCpU5sY8QKTniMUEmEErSxAc0cEylRvIwh41vVpIB5XW6S0tnKR7CzXC3zPjBvMjpETGKULapI1UppYw7Jj3FBKzmCw60M3eWAjuGwqiBRu2uiHsFbku_VJwRp3S-s1ueuWojTkyCCiklZP1HahgbDaEjZ5NSqkosYwQvSjiPD69Y--jo_gH9KEFbuyGIy2tC58AgOtgp01SI37s_-efz_18_h9uz0eO7mn06-PIE7RC8_3NI-gJ1u_SM_xSSkC8_6nfYbmDHZXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEC40guhBTFRcTWIfAuqhyfb2a-YkiXGNGkMOLuTW9DMEZDfujoL_3qqZ3hgP8TTQ3Yeh3lVd_RXAnjLKxpI0N43KXGFCwL02itNQc6GLEbHH0vt6ao5n6vO5Pq_9T6vaVrm2ib2hTotINfL9ibWtRl8k2v1S2yLOjqbvrn5wmiBFN611nMZduIde0ZCEN9OP1_UWwr9sxHh4oicx06cbYkHJvBXyH6fUY_ffZqF7tzN9DI9qvMgOBgZvwp0834KHN1AEt2Cz6ueKvakg0m-fwOyIEHFpmFVObMATZf1jW37iQ_7OKq7qBaNCLDtbXv7y8Td-e9QG5BW7nLOhWpg7tihsmO_5FGbTD9_eH_M6QoFHaUTHvRmHhDlRKZj2xDZGzOaER2-VRChBGxtQ5TGoEsXLGDLuqiYFjPFyk5TOVj6Djflinp8D8yajccSARtmiilStlDbmkPwYF7SSI9hb09BdDUgZDjMMIrW7QeoRHBJ9r48QvHW_sFheuKotTk-CCComZf1EaRsadKkhZZNTq0ouYgSviTuOlLBb-ujrWwL8U4KzcgcWA9OG7ohHsL1moKvauXJ_ZenF_7dfwX0UMnfy6fTLS3hAk-aHhu1t2OiWP_MOxiNd2O0F7Q_GHt2d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Online+Multi-Label+Learning+with+Privacy+Protection+in+Internet+of+Things&rft.jtitle=Applied+sciences&rft.au=Fan+Huang%C2%A0&rft.au=Nan+Yang&rft.au=Huaming+Chen%C2%A0&rft.au=Wei+Bao&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=4&rft.spage=2713&rft_id=info:doi/10.3390%2Fapp13042713&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_52b1b4cd47a2457b8678bde6ed94fef1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon