Distributed Online Multi-Label Learning with Privacy Protection in Internet of Things
With the widespread use of end devices, online multi-label learning has become popular as the data generated by users using the Internet of Things devices have become huge and rapidly updated. However, in many scenarios, the user data are often generated in a geographically distributed manner that i...
Saved in:
Published in | Applied sciences Vol. 13; no. 4; p. 2713 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the widespread use of end devices, online multi-label learning has become popular as the data generated by users using the Internet of Things devices have become huge and rapidly updated. However, in many scenarios, the user data are often generated in a geographically distributed manner that is often inefficient and difficult to centralize for training machine learning models. At the same time, current mainstream distributed learning algorithms always require a centralized server to aggregate data from distributed nodes, which inevitably causes risks to the privacy of users. To overcome this issue, we propose a distributed approach for multi-label classification, which trains the models in distributed computing nodes without sharing the source data from each node. In our proposed method, each node trains its model with its local online data while it also learns from the neighbour nodes without transferring the training data. As a result, our proposed method achieved the online distributed approach for multi-label classification without losing performance when taking existing centralized algorithms as a reference. Experiments show that our algorithm outperforms the centralized online multi-label classification algorithm in F1 score, being 0.0776 higher in macro F1 score and 0.1471 higher for micro F1 score on average. However, for the Hamming loss, both algorithms beat each other on some datasets, and our proposed algorithm loses 0.005 compared to the centralized approach on average, which can be neglected. Furthermore, the size of the network and the degree of connectivity are not factors that affect the performance of this distributed online multi-label learning algorithm. |
---|---|
AbstractList | With the widespread use of end devices, online multi-label learning has become popular as the data generated by users using the Internet of Things devices have become huge and rapidly updated. However, in many scenarios, the user data are often generated in a geographically distributed manner that is often inefficient and difficult to centralize for training machine learning models. At the same time, current mainstream distributed learning algorithms always require a centralized server to aggregate data from distributed nodes, which inevitably causes risks to the privacy of users. To overcome this issue, we propose a distributed approach for multi-label classification, which trains the models in distributed computing nodes without sharing the source data from each node. In our proposed method, each node trains its model with its local online data while it also learns from the neighbour nodes without transferring the training data. As a result, our proposed method achieved the online distributed approach for multi-label classification without losing performance when taking existing centralized algorithms as a reference. Experiments show that our algorithm outperforms the centralized online multi-label classification algorithm in F1 score, being 0.0776 higher in macro F1 score and 0.1471 higher for micro F1 score on average. However, for the Hamming loss, both algorithms beat each other on some datasets, and our proposed algorithm loses 0.005 compared to the centralized approach on average, which can be neglected. Furthermore, the size of the network and the degree of connectivity are not factors that affect the performance of this distributed online multi-label learning algorithm. |
Audience | Academic |
Author | Bao, Wei Yuan, Dong Huang, Fan Yang, Nan Chen, Huaming |
Author_xml | – sequence: 1 givenname: Fan orcidid: 0000-0003-4071-4377 surname: Huang fullname: Huang , Fan – sequence: 2 givenname: Nan surname: Yang fullname: Yang, Nan – sequence: 3 givenname: Huaming orcidid: 0000-0001-5678-472X surname: Chen fullname: Chen , Huaming – sequence: 4 givenname: Wei surname: Bao fullname: Bao, Wei – sequence: 5 givenname: Dong surname: Yuan fullname: Yuan, Dong |
BookMark | eNpNUctqHDEQFMGBOI5P-QFBjmEctaQZaY7GeS1scA72WejRWmsZSxuNNsF_HyUbgrsP1XRXFwX1mpzlkpGQt8CuhJjZB3s4gGCSKxAvyDlnahqEBHX2bH5FLtd1z3rNIDSwc3L_Ma2tJndsGOhtXlJG-u24tDRsrcOFbtHWnPKO_krtgX6v6af1Tx1LQ99SyTRluskNa8ZGS6R3D528viEvo11WvPyHF-T-86e7m6_D9vbL5uZ6O3gxQRvsxFzQCmIEqf3sPZslWOAigItunJRjinHBIVrhHfar1MFN44Q6yBGVuCCbk24odm8ONT3a-mSKTebvotSdsbUlv6AZuQMnfZDKcjkqpyelXcAJwywjRuha705ah1p-HHFtZl-ONXf7his1j1xKmDvr6sTa2S6aciytWt874GPyPZCY-v5ajTBrzWfWH96fHnwt61ox_rcJzPzJzTzLTfwGIqyLfA |
Cites_doi | 10.1109/JIOT.2014.2306328 10.1016/j.inffus.2017.12.001 10.3233/JIFS-16724 10.1109/ACCESS.2019.2962059 10.4018/jdwm.2007070101 10.1109/ICDMW.2014.87 10.1109/IJCNN.2017.7965964 10.1145/1871437.1871485 10.1145/1076034.1076080 10.1002/(SICI)1099-1506(199801/02)5:1<11::AID-NLA123>3.0.CO;2-F 10.3390/app122111303 10.1007/BFb0026664 10.7551/mitpress/1120.001.0001 10.1007/s10994-011-5256-5 10.1109/TKDE.2013.39 10.1007/3-540-47979-1_7 10.1109/TASL.2007.913750 10.1007/s10994-012-5279-6 10.1109/NCG.2018.8592966 10.1109/CIS.2009.168 10.1002/widm.1139 10.3390/app122312320 10.1007/b94425 10.1016/j.neucom.2015.12.035 10.1016/j.patcog.2004.03.009 10.1007/11425274_17 10.3115/1572392.1572411 10.1109/IJCNN.2016.7727422 10.24963/ijcai.2020/189 10.1016/j.patcog.2006.12.019 10.1145/3269206.3271774 10.1109/ACSSC.2006.356622 10.1109/TAC.2019.2894588 10.1109/HIS.2006.264925 10.1023/B:SUPE.0000026847.75355.69 10.1016/S0377-0427(99)00235-6 10.1007/s10994-016-5613-5 10.1007/3-540-44794-6_4 10.1109/TKDE.2006.162 10.1007/3-540-46632-0_15 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app13042713 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic ProQuest Central China |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_52b1b4cd47a2457b8678bde6ed94fef1 A751988290 10_3390_app13042713 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARAPS ARCSS ATCPS BBNVY BCNDV BENPR BHPHI BKSAR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ HCIFZ IAO ITC K6- K6V K7- KB. KC. KQ8 L6V LK5 LK8 M0K M7P M7R M7S MODMG M~E N95 OK1 P62 PATMY PCBAR PDBOC PIMPY PROAC PYCSY RIG TUS BGLVJ ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c361t-a60bd871ff148c9cc0941a123d1bfb567b0702321fa3cbe09448db656e8d45e73 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Tue Oct 22 15:11:09 EDT 2024 Tue Oct 29 09:05:58 EDT 2024 Fri Feb 02 04:09:05 EST 2024 Fri Aug 23 00:32:43 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-a60bd871ff148c9cc0941a123d1bfb567b0702321fa3cbe09448db656e8d45e73 |
ORCID | 0000-0001-5678-472X 0000-0003-4071-4377 |
OpenAccessLink | https://doaj.org/article/52b1b4cd47a2457b8678bde6ed94fef1 |
PQID | 2779524419 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_52b1b4cd47a2457b8678bde6ed94fef1 proquest_journals_2779524419 gale_infotracacademiconefile_A751988290 crossref_primary_10_3390_app13042713 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Tsoumakas (ref_19) 2007; 3 Read (ref_41) 2012; 88 ref_14 ref_13 ref_12 Turnbull (ref_51) 2008; 16 ref_55 ref_10 ref_54 ref_53 Zanella (ref_2) 2014; 1 Karalic (ref_16) 1991; 15 Kok (ref_25) 2007; Volume 4702 ref_17 ref_15 Moyano (ref_36) 2018; 44 Renaut (ref_46) 1998; 5 Siebes (ref_29) 2001; Volume 2168 ref_24 ref_23 Crammer (ref_33) 2003; 3 Zhang (ref_26) 2007; 40 Zhang (ref_21) 2013; 26 Zhu (ref_18) 1999; Volume 1741 ref_27 Heyden (ref_52) 2002; Volume 2353 Read (ref_22) 2011; 85 Zhang (ref_38) 2017; 33 Gibaja (ref_35) 2014; 4 Hacid (ref_11) 2005; Volume 3488 ref_32 ref_31 ref_30 Zhang (ref_34) 2006; 18 Liu (ref_28) 2016; 182 ref_39 Boutell (ref_20) 2004; 37 ref_37 Osojnik (ref_42) 2017; 106 Yang (ref_47) 2004; 29 Frommer (ref_45) 1999; 110 ref_44 ref_43 ref_40 ref_1 ref_3 ref_49 Wang (ref_50) 2019; 64 ref_48 ref_9 ref_5 Zheng (ref_8) 2019; 8 ref_4 ref_7 ref_6 |
References_xml | – volume: 1 start-page: 22 year: 2014 ident: ref_2 article-title: Internet of things for smart cities publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2014.2306328 contributor: fullname: Zanella – ident: ref_49 – volume: 44 start-page: 33 year: 2018 ident: ref_36 article-title: Review of ensembles of multi-label classifiers: Models, experimental study and prospects publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.12.001 contributor: fullname: Moyano – volume: Volume 4702 start-page: 605 year: 2007 ident: ref_25 article-title: Multi-label lazy associative classification publication-title: Knowledge Discovery in Databases: PKDD 2007 contributor: fullname: Kok – volume: 33 start-page: 1143 year: 2017 ident: ref_38 article-title: Dual weighted extreme learning machine for imbalanced data stream classification publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-16724 contributor: fullname: Zhang – volume: 8 start-page: 1249 year: 2019 ident: ref_8 article-title: A survey on multi-label data stream classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962059 contributor: fullname: Zheng – volume: 3 start-page: 1 year: 2007 ident: ref_19 article-title: Multi-label classification: An overview publication-title: Int. J. Data Warehous. Min. (IJDWM) doi: 10.4018/jdwm.2007070101 contributor: fullname: Tsoumakas – ident: ref_27 doi: 10.1109/ICDMW.2014.87 – ident: ref_1 – ident: ref_23 – ident: ref_39 doi: 10.1109/IJCNN.2017.7965964 – ident: ref_24 doi: 10.1145/1871437.1871485 – ident: ref_12 doi: 10.1145/1076034.1076080 – volume: 5 start-page: 11 year: 1998 ident: ref_46 article-title: A parallel multisplitting solution of the least squares problem publication-title: Numer. Linear Algebra Appl. doi: 10.1002/(SICI)1099-1506(199801/02)5:1<11::AID-NLA123>3.0.CO;2-F contributor: fullname: Renaut – ident: ref_6 doi: 10.3390/app122111303 – ident: ref_9 doi: 10.1007/BFb0026664 – ident: ref_55 doi: 10.7551/mitpress/1120.001.0001 – ident: ref_13 – ident: ref_17 – volume: 85 start-page: 333 year: 2011 ident: ref_22 article-title: Classifier chains for multi-label classification publication-title: Mach. Learn. doi: 10.1007/s10994-011-5256-5 contributor: fullname: Read – volume: 26 start-page: 1819 year: 2013 ident: ref_21 article-title: A review on multi-label learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.39 contributor: fullname: Zhang – volume: Volume 2353 start-page: 97 year: 2002 ident: ref_52 article-title: Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary publication-title: Computer Vision—ECCV 2002 doi: 10.1007/3-540-47979-1_7 contributor: fullname: Heyden – volume: 16 start-page: 467 year: 2008 ident: ref_51 article-title: Semantic annotation and retrieval of music and sound effects publication-title: IEEE Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASL.2007.913750 contributor: fullname: Turnbull – ident: ref_53 – ident: ref_30 – volume: 88 start-page: 243 year: 2012 ident: ref_41 article-title: Scalable and efficient multi-label classification for evolving data streams publication-title: Mach. Learn. doi: 10.1007/s10994-012-5279-6 contributor: fullname: Read – ident: ref_40 doi: 10.1109/NCG.2018.8592966 – ident: ref_3 – ident: ref_32 doi: 10.1109/CIS.2009.168 – volume: 4 start-page: 411 year: 2014 ident: ref_35 article-title: Multi-label learning: A review of the state of the art and ongoing research publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1139 contributor: fullname: Gibaja – ident: ref_7 doi: 10.3390/app122312320 – ident: ref_10 doi: 10.1007/b94425 – volume: 182 start-page: 187 year: 2016 ident: ref_28 article-title: Neighbour selection for multilabel classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.035 contributor: fullname: Liu – volume: 3 start-page: 1025 year: 2003 ident: ref_33 article-title: A family of additive online algorithms for category ranking publication-title: J. Mach. Learn. Res. contributor: fullname: Crammer – volume: 37 start-page: 1757 year: 2004 ident: ref_20 article-title: Learning multi-label scene classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.03.009 contributor: fullname: Boutell – ident: ref_14 – ident: ref_44 – volume: Volume 3488 start-page: 161 year: 2005 ident: ref_11 article-title: Evaluation of two systems on multi-class multi-label document classification publication-title: Foundations of Intelligent Systems doi: 10.1007/11425274_17 contributor: fullname: Hacid – ident: ref_54 doi: 10.3115/1572392.1572411 – ident: ref_37 doi: 10.1109/IJCNN.2016.7727422 – ident: ref_5 doi: 10.24963/ijcai.2020/189 – volume: 40 start-page: 2038 year: 2007 ident: ref_26 article-title: ML-KNN: A lazy learning approach to multi-label learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.12.019 contributor: fullname: Zhang – ident: ref_4 doi: 10.1145/3269206.3271774 – ident: ref_48 doi: 10.1109/ACSSC.2006.356622 – volume: 64 start-page: 4217 year: 2019 ident: ref_50 article-title: A distributed algorithm for least squares solutions publication-title: IEEE Trans. Autom. Control. doi: 10.1109/TAC.2019.2894588 contributor: fullname: Wang – ident: ref_31 doi: 10.1109/HIS.2006.264925 – volume: 29 start-page: 145 year: 2004 ident: ref_47 article-title: Parallel MCGLS and ICGLS methods for least squares problems on distributed memory architectures publication-title: J. Supercomput. doi: 10.1023/B:SUPE.0000026847.75355.69 contributor: fullname: Yang – ident: ref_15 – volume: 15 start-page: 12 year: 1991 ident: ref_16 article-title: Significance level based multiple tree classification publication-title: Informatica contributor: fullname: Karalic – volume: 110 start-page: 205 year: 1999 ident: ref_45 article-title: A unified approach to parallel space decomposition methods publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(99)00235-6 contributor: fullname: Frommer – volume: 106 start-page: 745 year: 2017 ident: ref_42 article-title: Multi-label classification via multi-target regression on data streams publication-title: Mach. Learn. doi: 10.1007/s10994-016-5613-5 contributor: fullname: Osojnik – volume: Volume 2168 start-page: 42 year: 2001 ident: ref_29 article-title: Knowledge discovery in multi-label phenotype data publication-title: Principles of Data Mining and Knowledge Discovery doi: 10.1007/3-540-44794-6_4 contributor: fullname: Siebes – volume: 18 start-page: 1338 year: 2006 ident: ref_34 article-title: Multilabel neural networks with applications to functional genomics and text categorization publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2006.162 contributor: fullname: Zhang – ident: ref_43 – volume: Volume 1741 start-page: 143 year: 1999 ident: ref_18 article-title: Efficient approximation algorithms for multi-label map labeling publication-title: Algorithms and Computation doi: 10.1007/3-540-46632-0_15 contributor: fullname: Zhu |
SSID | ssj0000913810 |
Score | 2.2851036 |
Snippet | With the widespread use of end devices, online multi-label learning has become popular as the data generated by users using the Internet of Things devices have... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2713 |
SubjectTerms | Algorithms Analysis Big Data Classification Data mining Distance learning distributed learning Distributed processing Geographical distribution Graph representations Internet Internet of Things Iterative methods Machine learning multi-label classification Nodes online learning Privacy Privacy, Right of |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEC7i5qKHYKLixhj6EFAPjdvbr5mT5EmQGIK4kFvTzxCQ3bg7Cv57q2Z6YzzE00B3H4aqrsdX3f0VwIEyysaSNDeNylwhIOBeG8WpqbnQxYjYc-l9uTTnM_X5Wl_XgtuqXqtc-8TeUadFpBr5x6m1rcZYJNpPdz84dY2i09XaQuMJbE4RKUxGsHl0enn19b7KQqyXjZgMD_Mk4ns6FxYE4a2Q_4SinrH_Mb_cB5uz57BVs0R2OKh1GzbyfAeePeAO3IHtapUr9r5SR394AbMT4sGlFlY5sYFFlPVPbPmFD_k7q2yqN4zKr-xqefvLx9_47bkaUEPsds6GGmHu2KKwoavnS5idnX47Pue1cQKP0oiOezMJCZFQKQh2YhsjYjjhMUYlEUrQxgY0dEylRPEyhoyzqkkBM7vcJKWzla9gNF_M82tg3mR0iZjGKFtUkaqV0sYckp_ggFZyDAdrGbq7gR_DIa4gUbsHoh7DEcn3fgmRWvcDi-WNqzbi9DSIoGJS1k-VtqHBQBpSNjm1quQixvCOtOPI9Lqlj76-IMA_JRIrd2gxHW3oZHgMe2sFumqTK_d3B-3-f_oNPKWm8sPd7D0Ydcuf-S2mHl3Yr_vrD_UO19Q priority: 102 providerName: ProQuest |
Title | Distributed Online Multi-Label Learning with Privacy Protection in Internet of Things |
URI | https://www.proquest.com/docview/2779524419 https://doaj.org/article/52b1b4cd47a2457b8678bde6ed94fef1 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25SgRBEC08Eg3EE9dj6UBQg8Ht7Wsm9FpFVERcMGv6FEFWWUfBv7d6epQ1EBOjgZ4Jmqqpqvf6eAWwwyVXLnpRyJKHgiMhKIyQvEhNzamIkrpGS-_qWp4P-cW9uJ9o9ZXOhGV54Gy4A9G31HLnuTJ9LpQtMbtaH2TwFY8hZuLTqybIVJODK5qkq_KFPIa8Pu0H00TdFWU_SlCj1P9bPm6KzGARFlp0SA7zrJZgKoyWYX5CM3AZltpofCV7rWT0_goMT5L-bWpdFTzJ6qGkuVpbXBobnkirovpA0rIruRk_vhv3gc9GowE9Qx5HJK8Nhpo8R5K7ea7CcHB6d3xetA0TCsckrQsje9YjA4oRSY6rnEPuRg3WJk9ttEIqiwGOEIpGw5wN-JaX3iKiC6XnIii2BjOj51FYB2JkwFSI8IWryCPjFWPKBetNDwcEZx3Y-bKhfsm6GBr5RDK1njB1B46Sfb8_SWLWzQC6WLcu1n-5uAO7yTs6hVw9Ns60Nwdwpkm8Sh8qhKFl2hHuwNaXA3Ubi6-6r1QlEMXQauM_ZrMJc6nlfD65vQUz9fgtbCMwqW0XpsvBWRdmj06vb267zR_5CQo54lo |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BOQAHRAuogQI-VAIOFnH82j2h8ggB0opDI_Vm-VlVQklJFiT-PTO7TikHOK3k3cNqxvO05_sADpVRNpakuWlU5goLAu61UZxIzYUuRsQeS-_4xMwW6vOZPqsNt029Vrn1ib2jTqtIPfLXE2tbjbFItG8uv3NijaLT1UqhcRNuKYmxmibFpx-veiyEedmI8TCWJ7G6p1NhQQW8FfKvQNTj9f_LK_ehZnof7tUckR0NSt2FG3m5B3evIQfuwW61yQ17WYGjXz2AxXtCwSUCq5zYgCHK-gFbPvchf2MVS_WcUfOVfV1f_PTxFz57pAbUD7tYsqFDmDu2Kmzg9HwIi-mH03czXmkTeEQZdNybcUhYB5WCpU5sY8QKTniMUEmEErSxAc0cEylRvIwh41vVpIB5XW6S0tnKR7CzXC3zPjBvMjpETGKULapI1UppYw7Jj3FBKzmCw60M3eWAjuGwqiBRu2uiHsFbku_VJwRp3S-s1ueuWojTkyCCiklZP1HahgbDaEjZ5NSqkosYwQvSjiPD69Y--jo_gH9KEFbuyGIy2tC58AgOtgp01SI37s_-efz_18_h9uz0eO7mn06-PIE7RC8_3NI-gJ1u_SM_xSSkC8_6nfYbmDHZXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEC40guhBTFRcTWIfAuqhyfb2a-YkiXGNGkMOLuTW9DMEZDfujoL_3qqZ3hgP8TTQ3Yeh3lVd_RXAnjLKxpI0N43KXGFCwL02itNQc6GLEbHH0vt6ao5n6vO5Pq_9T6vaVrm2ib2hTotINfL9ibWtRl8k2v1S2yLOjqbvrn5wmiBFN611nMZduIde0ZCEN9OP1_UWwr9sxHh4oicx06cbYkHJvBXyH6fUY_ffZqF7tzN9DI9qvMgOBgZvwp0834KHN1AEt2Cz6ueKvakg0m-fwOyIEHFpmFVObMATZf1jW37iQ_7OKq7qBaNCLDtbXv7y8Td-e9QG5BW7nLOhWpg7tihsmO_5FGbTD9_eH_M6QoFHaUTHvRmHhDlRKZj2xDZGzOaER2-VRChBGxtQ5TGoEsXLGDLuqiYFjPFyk5TOVj6Djflinp8D8yajccSARtmiilStlDbmkPwYF7SSI9hb09BdDUgZDjMMIrW7QeoRHBJ9r48QvHW_sFheuKotTk-CCComZf1EaRsadKkhZZNTq0ouYgSviTuOlLBb-ujrWwL8U4KzcgcWA9OG7ohHsL1moKvauXJ_ZenF_7dfwX0UMnfy6fTLS3hAk-aHhu1t2OiWP_MOxiNd2O0F7Q_GHt2d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Online+Multi-Label+Learning+with+Privacy+Protection+in+Internet+of+Things&rft.jtitle=Applied+sciences&rft.au=Fan+Huang%C2%A0&rft.au=Nan+Yang&rft.au=Huaming+Chen%C2%A0&rft.au=Wei+Bao&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=4&rft.spage=2713&rft_id=info:doi/10.3390%2Fapp13042713&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_52b1b4cd47a2457b8678bde6ed94fef1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |