Optimization-Inspired Compact Deep Compressive Sensing

In order to improve CS performance of natural images, in this paper, we propose a novel framework to design an OPtimization-INspired Explicable deep Network, dubbed OPINE-Net, for adaptive sampling and recovery. Both orthogonal and binary constraints of sampling matrix are incorporated into OPINE-Ne...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in signal processing Vol. 14; no. 4; pp. 765 - 774
Main Authors Zhang, Jian, Zhao, Chen, Gao, Wen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to improve CS performance of natural images, in this paper, we propose a novel framework to design an OPtimization-INspired Explicable deep Network, dubbed OPINE-Net, for adaptive sampling and recovery. Both orthogonal and binary constraints of sampling matrix are incorporated into OPINE-Net simultaneously. In particular, OPINE-Net is composed of three subnets: sampling subnet, initialization subnet and recovery subnet, and all the parameters in OPINE-Net (e.g. sampling matrix, nonlinear transforms, shrinkage threshold) are learned end-to-end, rather than hand-crafted. Moreover, considering the relationship among neighboring blocks, an enhanced version OPINE-Net<inline-formula><tex-math notation="LaTeX">^+</tex-math></inline-formula> is developed, which allows image blocks to be sampled independently but reconstructed jointly to further enhance the performance. In addition, some interesting findings of learned sampling matrix are presented. Compared with existing state-of-the-art network-based CS methods, the proposed hardware-friendly OPINE-Nets not only achieve better performance but also require much fewer parameters and much less storage space, while maintaining a real-time running speed.
AbstractList In order to improve CS performance of natural images, in this paper, we propose a novel framework to design an OPtimization-INspired Explicable deep Network, dubbed OPINE-Net, for adaptive sampling and recovery. Both orthogonal and binary constraints of sampling matrix are incorporated into OPINE-Net simultaneously. In particular, OPINE-Net is composed of three subnets: sampling subnet, initialization subnet and recovery subnet, and all the parameters in OPINE-Net (e.g. sampling matrix, nonlinear transforms, shrinkage threshold) are learned end-to-end, rather than hand-crafted. Moreover, considering the relationship among neighboring blocks, an enhanced version OPINE-Net<inline-formula><tex-math notation="LaTeX">^+</tex-math></inline-formula> is developed, which allows image blocks to be sampled independently but reconstructed jointly to further enhance the performance. In addition, some interesting findings of learned sampling matrix are presented. Compared with existing state-of-the-art network-based CS methods, the proposed hardware-friendly OPINE-Nets not only achieve better performance but also require much fewer parameters and much less storage space, while maintaining a real-time running speed.
In order to improve CS performance of natural images, in this paper, we propose a novel framework to design an OPtimization-INspired Explicable deep Network, dubbed OPINE-Net, for adaptive sampling and recovery. Both orthogonal and binary constraints of sampling matrix are incorporated into OPINE-Net simultaneously. In particular, OPINE-Net is composed of three subnets: sampling subnet, initialization subnet and recovery subnet, and all the parameters in OPINE-Net (e.g. sampling matrix, nonlinear transforms, shrinkage threshold) are learned end-to-end, rather than hand-crafted. Moreover, considering the relationship among neighboring blocks, an enhanced version OPINE-Net[Formula Omitted] is developed, which allows image blocks to be sampled independently but reconstructed jointly to further enhance the performance. In addition, some interesting findings of learned sampling matrix are presented. Compared with existing state-of-the-art network-based CS methods, the proposed hardware-friendly OPINE-Nets not only achieve better performance but also require much fewer parameters and much less storage space, while maintaining a real-time running speed.
Author Zhang, Jian
Zhao, Chen
Gao, Wen
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0001-5486-3125
  surname: Zhang
  fullname: Zhang, Jian
  email: zhangjian@pkusz.edu.cn
  organization: School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen, China
– sequence: 2
  givenname: Chen
  surname: Zhao
  fullname: Zhao, Chen
  email: chen.zhao@kaust.edu.sa
  organization: Visual Computing Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
– sequence: 3
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
  email: wgao@pku.edu.cn
  organization: School of Electronics Engineering and Computer Science, Peking University, Beijing, China
BookMark eNp9kE1LAzEQhoNUsK3-Ab0UPG_Nd7JHqVYrhQqt55BmJ5LSZtdkK-ivt1948OBpZuB9ZpinhzqxjoDQNcFDQnB59zJfzF-HFFM8pKVSAqsz1CUlJwXmmnf2PaMFF4JdoF7OK4yFkoR3kZw1bdiEb9uGOhaTmJuQoBqM6k1jXTt4AGgOQ4KcwycM5hBziO-X6NzbdYarU-2jt_HjYvRcTGdPk9H9tHBMkrawgknuQUFFGVAmwFfCUucJKGcp1Vp76yUwKbivvK-WmhBFHV5a5wi2Feuj2-PeJtUfW8itWdXbFHcnDeWMEyqlUruUPqZcqnNO4I0L7eGjNtmwNgSbvSVzsGT2lszJ0g6lf9AmhY1NX_9DN0coAMAvUGJSaqHYD_GKdjo
CODEN IJSTGY
CitedBy_id crossref_primary_10_1016_j_neucom_2024_129071
crossref_primary_10_1109_TNNLS_2022_3202724
crossref_primary_10_3390_rs16234601
crossref_primary_10_1109_TCI_2025_3527880
crossref_primary_10_1109_TCI_2023_3244396
crossref_primary_10_1109_TIP_2024_3371351
crossref_primary_10_1007_s11760_023_02686_w
crossref_primary_10_1007_s11263_023_01814_w
crossref_primary_10_1007_s00530_024_01380_2
crossref_primary_10_1109_TGRS_2023_3281543
crossref_primary_10_1016_j_sigpro_2022_108737
crossref_primary_10_1109_TIP_2021_3088611
crossref_primary_10_1145_3701732
crossref_primary_10_1145_3701731
crossref_primary_10_3390_s23041886
crossref_primary_10_1109_TPAMI_2024_3357704
crossref_primary_10_1016_j_sigpro_2021_108239
crossref_primary_10_1364_JOSAA_523092
crossref_primary_10_1016_j_jvcir_2024_104092
crossref_primary_10_1016_j_neunet_2024_106541
crossref_primary_10_1109_TETCI_2023_3271322
crossref_primary_10_1109_TMM_2023_3301213
crossref_primary_10_1007_s11760_023_02516_z
crossref_primary_10_1109_TCSVT_2024_3417287
crossref_primary_10_1109_TCI_2023_3315853
crossref_primary_10_1016_j_bspc_2024_107364
crossref_primary_10_1016_j_jrras_2024_100912
crossref_primary_10_1007_s00034_024_02699_x
crossref_primary_10_1109_TIM_2025_3544335
crossref_primary_10_1109_TIP_2022_3195319
crossref_primary_10_1109_TMM_2023_3305828
crossref_primary_10_1109_ACCESS_2024_3482434
crossref_primary_10_3390_rs14174184
crossref_primary_10_1007_s11760_024_03095_3
crossref_primary_10_1109_TPAMI_2024_3504490
crossref_primary_10_1109_TCSVT_2024_3397012
crossref_primary_10_1126_sciadv_adj3608
crossref_primary_10_1137_20M1353368
crossref_primary_10_1016_j_engappai_2024_109099
crossref_primary_10_3390_e25121648
crossref_primary_10_1016_j_neucom_2025_129723
crossref_primary_10_1109_TCI_2023_3304472
crossref_primary_10_1007_s00371_024_03700_z
crossref_primary_10_1109_ACCESS_2021_3130973
crossref_primary_10_1109_TPAMI_2022_3194001
crossref_primary_10_1109_LSP_2022_3205275
crossref_primary_10_1109_TMM_2021_3132489
crossref_primary_10_1109_TII_2022_3202203
crossref_primary_10_1109_JPHOT_2024_3420787
crossref_primary_10_1109_TIP_2021_3091834
crossref_primary_10_1109_TIM_2023_3304676
crossref_primary_10_1109_TCI_2022_3183411
crossref_primary_10_1109_TCI_2022_3181473
crossref_primary_10_1109_JIOT_2024_3505617
crossref_primary_10_1016_j_optcom_2025_131633
crossref_primary_10_1007_s11042_023_14939_4
crossref_primary_10_1109_TIM_2024_3398096
crossref_primary_10_1109_TCI_2022_3224281
crossref_primary_10_1109_TIP_2023_3263100
crossref_primary_10_1007_s11760_023_02879_3
crossref_primary_10_1109_TIP_2025_3533198
crossref_primary_10_1109_TIP_2023_3274988
crossref_primary_10_3390_electronics13173496
crossref_primary_10_3390_info15020075
crossref_primary_10_1109_ACCESS_2024_3522978
crossref_primary_10_1016_j_knosys_2023_110963
crossref_primary_10_1016_j_neucom_2022_08_034
crossref_primary_10_1109_TCSVT_2023_3325340
crossref_primary_10_1109_TSC_2023_3334446
crossref_primary_10_1145_3635308
crossref_primary_10_46387_bjesr_1452937
crossref_primary_10_1016_j_jvcir_2022_103723
crossref_primary_10_3390_s21196551
crossref_primary_10_1109_JPROC_2023_3338272
crossref_primary_10_1016_j_eswa_2024_126027
crossref_primary_10_1109_JSTSP_2022_3170227
crossref_primary_10_1109_TMM_2023_3324490
crossref_primary_10_3390_s23052563
crossref_primary_10_1109_ACCESS_2025_3527756
crossref_primary_10_1007_s11042_020_09907_1
crossref_primary_10_1007_s11042_024_18724_9
crossref_primary_10_1016_j_image_2024_117153
crossref_primary_10_3390_electronics12010030
crossref_primary_10_1109_ACCESS_2021_3091971
crossref_primary_10_1007_s11263_023_01765_2
crossref_primary_10_3390_s20195666
crossref_primary_10_1109_TIP_2023_3274967
crossref_primary_10_1016_j_knosys_2023_110681
crossref_primary_10_1016_j_knosys_2024_111659
crossref_primary_10_3390_s24248085
crossref_primary_10_1038_s41598_024_79466_0
crossref_primary_10_1016_j_dsp_2025_105002
crossref_primary_10_1109_TIP_2023_3318946
crossref_primary_10_1109_TPDS_2024_3453607
crossref_primary_10_3390_e24060775
crossref_primary_10_3390_e25121579
crossref_primary_10_26599_AIR_2022_9150004
crossref_primary_10_1109_JPHOT_2024_3434972
crossref_primary_10_1145_3649441
crossref_primary_10_1016_j_sysarc_2022_102760
crossref_primary_10_3390_info15120773
crossref_primary_10_1109_TMM_2023_3321424
crossref_primary_10_1007_s00371_022_02585_0
crossref_primary_10_1016_j_jvcir_2024_104071
crossref_primary_10_1109_TCI_2024_3354423
Cites_doi 10.1109/TIP.2014.2323127
10.1109/CVPR.2019.01257
10.1016/j.sigpro.2013.09.025
10.1109/CVPR.2016.55
10.1109/MMSP.2017.8122281
10.1109/CVPR.2014.349
10.1109/CVPR.2015.7299156
10.1109/TIP.2009.2022459
10.1109/CVPR.2016.207
10.1109/TBME.2012.2226175
10.1109/ICCV.2001.937655
10.1109/ALLERTON.2015.7447163
10.1109/ICCPhot.2012.6215212
10.1109/COMST.2016.2524443
10.1016/j.acha.2009.04.002
10.1109/CVPR.2018.00196
10.1109/TIP.2003.819861
10.1109/TCI.2016.2637079
10.1002/mrm.21391
10.1109/CVPR.2017.300
10.1109/ICCV.2015.50
10.1016/j.sigpro.2018.05.021
10.1109/DCC.2010.90
10.1109/ICASSP.2017.7952561
10.1109/TCSVT.2016.2580399
10.1109/TCI.2018.2846413
10.1109/ACCESS.2018.2882990
10.1109/ICCV.2017.627
10.1007/s10589-013-9576-1
10.1038/srep05552
10.1109/TSP.2017.2708040
10.1016/j.sigpro.2018.04.020
10.1109/CVPR.2015.7299163
10.1109/TIT.2016.2556683
10.1016/j.dsp.2017.09.010
10.1109/ALLERTON.2017.8262812
10.1109/LSP.2016.2548245
10.1109/TIP.2014.2329449
10.1109/ICIP.2010.5652744
10.1016/j.neucom.2018.04.084
10.1109/ICME.2017.8019428
10.1109/TSP.2009.2022003
10.1109/JETCAS.2012.2220391
10.1109/TCSVT.2016.2527181
10.1109/TIP.2006.881969
10.1109/MSP.2007.914730
10.1109/TIT.2006.885507
10.1109/TSP.2015.2399864
10.1016/j.crma.2008.03.014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2020.2977507
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 774
ExternalDocumentID 10_1109_JSTSP_2020_2977507
9019857
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61902009
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2017A030310576
  funderid: 10.13039/501100003453
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SP
8FD
H8D
L7M
ID FETCH-LOGICAL-c361t-a5364fe7ed23e235efd5a2cf1e7ca22888faf6e3654fdffdb81172c0bacc10ad3
IEDL.DBID RIE
ISSN 1932-4553
IngestDate Mon Jun 30 10:16:00 EDT 2025
Tue Jul 01 02:54:56 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Wed Aug 27 02:32:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a5364fe7ed23e235efd5a2cf1e7ca22888faf6e3654fdffdb81172c0bacc10ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5486-3125
PQID 2434126677
PQPubID 75721
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_JSTSP_2020_2977507
ieee_primary_9019857
crossref_primary_10_1109_JSTSP_2020_2977507
proquest_journals_2434126677
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
he (ref24) 2009; 57
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref41
ref44
ref49
ref8
kingma (ref48) 0
ref7
ref9
ref3
ref6
ref5
ref40
ref35
ref34
yang (ref42) 0
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
metzler (ref43) 0
ref23
ref26
ref25
ref20
ref22
ref21
liutkus (ref4) 2014; 4
ref28
ref27
ref29
References_xml – ident: ref27
  doi: 10.1109/TIP.2014.2323127
– start-page: 10
  year: 0
  ident: ref42
  article-title: Deep ADMM-net for compressive sensing MRI
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref46
  doi: 10.1109/CVPR.2019.01257
– ident: ref10
  doi: 10.1016/j.sigpro.2013.09.025
– ident: ref35
  doi: 10.1109/CVPR.2016.55
– ident: ref17
  doi: 10.1109/MMSP.2017.8122281
– ident: ref38
  doi: 10.1109/CVPR.2014.349
– ident: ref50
  doi: 10.1109/CVPR.2015.7299156
– ident: ref13
  doi: 10.1109/TIP.2009.2022459
– ident: ref47
  doi: 10.1109/CVPR.2016.207
– start-page: 1772
  year: 0
  ident: ref43
  article-title: Learned D-AMP: Principled neural network based compressive image recovery
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref7
  doi: 10.1109/TBME.2012.2226175
– ident: ref49
  doi: 10.1109/ICCV.2001.937655
– ident: ref33
  doi: 10.1109/ALLERTON.2015.7447163
– ident: ref3
  doi: 10.1109/ICCPhot.2012.6215212
– ident: ref8
  doi: 10.1109/COMST.2016.2524443
– ident: ref28
  doi: 10.1016/j.acha.2009.04.002
– ident: ref44
  doi: 10.1109/CVPR.2018.00196
– ident: ref51
  doi: 10.1109/TIP.2003.819861
– ident: ref5
  doi: 10.1109/TCI.2016.2637079
– ident: ref6
  doi: 10.1002/mrm.21391
– ident: ref30
  doi: 10.1109/CVPR.2017.300
– start-page: 1
  year: 0
  ident: ref48
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
– ident: ref41
  doi: 10.1109/ICCV.2015.50
– ident: ref16
  doi: 10.1016/j.sigpro.2018.05.021
– ident: ref21
  doi: 10.1109/DCC.2010.90
– ident: ref36
  doi: 10.1109/ICASSP.2017.7952561
– ident: ref12
  doi: 10.1109/TCSVT.2016.2580399
– ident: ref20
  doi: 10.1109/TCI.2018.2846413
– ident: ref32
  doi: 10.1109/ACCESS.2018.2882990
– ident: ref31
  doi: 10.1109/ICCV.2017.627
– ident: ref22
  doi: 10.1007/s10589-013-9576-1
– volume: 4
  year: 2014
  ident: ref4
  article-title: Imaging with nature: Compressive imaging using a multiply scattering medium
  publication-title: Scientific Reports
  doi: 10.1038/srep05552
– ident: ref37
  doi: 10.1109/TSP.2017.2708040
– ident: ref15
  doi: 10.1016/j.sigpro.2018.04.020
– ident: ref39
  doi: 10.1109/CVPR.2015.7299163
– ident: ref29
  doi: 10.1109/TIT.2016.2556683
– ident: ref34
  doi: 10.1016/j.dsp.2017.09.010
– ident: ref45
  doi: 10.1109/ALLERTON.2017.8262812
– ident: ref40
  doi: 10.1109/LSP.2016.2548245
– ident: ref26
  doi: 10.1109/TIP.2014.2329449
– ident: ref23
  doi: 10.1109/ICIP.2010.5652744
– ident: ref18
  doi: 10.1016/j.neucom.2018.04.084
– ident: ref19
  doi: 10.1109/ICME.2017.8019428
– volume: 57
  start-page: 3488
  year: 2009
  ident: ref24
  article-title: Exploiting structure in wavelet-based bayesian compressive sensing
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2009.2022003
– ident: ref25
  doi: 10.1109/JETCAS.2012.2220391
– ident: ref11
  doi: 10.1109/TCSVT.2016.2527181
– ident: ref9
  doi: 10.1109/TIP.2006.881969
– ident: ref2
  doi: 10.1109/MSP.2007.914730
– ident: ref1
  doi: 10.1109/TIT.2006.885507
– ident: ref14
  doi: 10.1109/TSP.2015.2399864
– ident: ref52
  doi: 10.1016/j.crma.2008.03.014
SSID ssj0057614
Score 2.6032667
Snippet In order to improve CS performance of natural images, in this paper, we propose a novel framework to design an OPtimization-INspired Explicable deep Network,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 765
SubjectTerms Adaptive sampling
Adaptive systems
compressive sensing
Convolution
Design optimization
Dictionaries
Image enhancement
Image reconstruction
interpretable networks
neural networks
Optimization
Parameters
Recovery
Training
Transforms
Title Optimization-Inspired Compact Deep Compressive Sensing
URI https://ieeexplore.ieee.org/document/9019857
https://www.proquest.com/docview/2434126677
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB52PenBt7i-6MGbZm3z6vYoPliFVUEFbyVNJh7U7qJdD_56k7RdREW8tZCUMDOZR-fxAexnzKJFkRKpFRJuqCKDQmREcyNiY5ROAkrE6EoO7_nlg3jowOGsFwYRQ_EZ9v1jyOWbsZ76X2VHznZlA5F2oesCt7pXq9W6zm1OmgwyJVwI1jbIxNmRE_HbGxcK0rhPnbsjPHTsFyMUUFV-qOJgX86XYNSerC4reepPq6KvP74Nbfzv0ZdhsXE0o-NaMlagg-UqLHwZP7gG8trpi5emEZNclD7pjiYKKkJX0SniJLyEUtl3jG59sXv5uA7352d3J0PS4CgQzWRSESWY5BZTNJQhZQKtEYpqm2CqFaUuBrbKSmRScGusNYVvPqU6LpTWSawM24C5clziJkS-odsFeFRQm3KtPFjMAJUteKykjjnrQdISNtfNkHGPdfGch2AjzvLAjNwzI2-Y0YOD2Z5JPWLjz9VrnrqzlQ1he7DT8i9vbuFbTrmz0c4DSdOt33dtw7z_dl3AuANz1esUd52TURV7Qbo-AX61zk8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6JQIAMbuCR-JM2IeKgFCkiAxBY59pkBSBGkDPx6bCepECDElii2Yt1d7pF7fAC7KTNoUCQkVhIJ11SSbi5SorgWodZSRR4lYnAZ9-742b24n4D9cS8MIvriM-y4S5_L10M1cr_KDqztSrsimYRpa_dFVHVrNXrXOs5RnUOmxD5mTYtMmB5YIb-5tsEgDTvUOjzCgcd-MUMeV-WHMvYW5nQBBs3ZqsKSx86ozDvq49vYxv8efhHma1czOKxkYwkmsFiGuS8DCFcgvrIa47luxST9wqXdUQdeSagyOEZ88Te-WPYdgxtX7l48rMLd6cntUY_USApEsTgqiRQs5gYT1JQhZQKNFpIqE2GiJKU2CjbSxMhiwY02Rueu_ZSqMJdKRaHUbA2mimGB6xC4lm4b4lFBTcKVdHAxXZQm56GMVchZC6KGsJmqx4w7tIunzIcbYZp5ZmSOGVnNjBbsjfe8VEM2_ly94qg7XlkTtgXthn9Z_R2-ZZRbK219kCTZ-H3XDsz0bgcX2UX_8nwTZt17qnLGNkyVryPcsi5HmW97SfsEbw7RmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization-Inspired+Compact+Deep+Compressive+Sensing&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Zhang%2C+Jian&rft.au=Zhao%2C+Chen&rft.au=Gao%2C+Wen&rft.date=2020-05-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=14&rft.issue=4&rft.spage=765&rft.epage=774&rft_id=info:doi/10.1109%2FJSTSP.2020.2977507&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2020_2977507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon