A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting
While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their inherently poor durability has been a serious bottleneck for applications. Herein, we report a three-dimensional kirigami TENG as a highly effic...
Saved in:
Published in | Energies (Basel) Vol. 14; no. 4; p. 1120 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their inherently poor durability has been a serious bottleneck for applications. Herein, we report a three-dimensional kirigami TENG as a highly efficient and durable rotational energy harvesting device. The kirigami TENG consisted of cube-shaped paper, aluminum (Al) foil electrode and polytetrafluoroethylene (PTFE) polymer film, and converted rotational motion into multiple folding-unfolding vibrations. The rotation-folding (R-F) kirigami TENG generated an open-circuit voltage of 31 V, a short-circuit current of 0.67 μA and an instantaneous power (power density) of 1.2 μW (0.13 μW/cm2) at 200 rpm, which was sufficient to turn on 25 light-emitting diodes and a thermo-hygrometer. The triboelectric outputs of the R-F kirigami TENG were only slightly decreased even after 288,000 continuous rotations, i.e., the output remained at 86% of its initial value. This work demonstrates that an R-F kirigami TENG could be a plausible candidate to efficiently harvest various forms of rotational energy with a long-term durability. |
---|---|
AbstractList | While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their inherently poor durability has been a serious bottleneck for applications. Herein, we report a three-dimensional kirigami TENG as a highly efficient and durable rotational energy harvesting device. The kirigami TENG consisted of cube-shaped paper, aluminum (Al) foil electrode and polytetrafluoroethylene (PTFE) polymer film, and converted rotational motion into multiple folding-unfolding vibrations. The rotation-folding (R-F) kirigami TENG generated an open-circuit voltage of 31 V, a short-circuit current of 0.67 μA and an instantaneous power (power density) of 1.2 μW (0.13 μW/cm2) at 200 rpm, which was sufficient to turn on 25 light-emitting diodes and a thermo-hygrometer. The triboelectric outputs of the R-F kirigami TENG were only slightly decreased even after 288,000 continuous rotations, i.e., the output remained at 86% of its initial value. This work demonstrates that an R-F kirigami TENG could be a plausible candidate to efficiently harvest various forms of rotational energy with a long-term durability. |
Author | Ko, Young Joon Han, Jae Yeon Park, Sang Hyeok Lee, Minbaek Jung, Jong Hoon Kong, Dae Sol |
Author_xml | – sequence: 1 givenname: Dae Sol surname: Kong fullname: Kong, Dae Sol – sequence: 2 givenname: Jae Yeon surname: Han fullname: Han, Jae Yeon – sequence: 3 givenname: Young Joon surname: Ko fullname: Ko, Young Joon – sequence: 4 givenname: Sang Hyeok surname: Park fullname: Park, Sang Hyeok – sequence: 5 givenname: Minbaek surname: Lee fullname: Lee, Minbaek – sequence: 6 givenname: Jong Hoon orcidid: 0000-0003-2631-7578 surname: Jung fullname: Jung, Jong Hoon |
BookMark | eNptUV1rGzEQFCWBpo5f-gsEeSs4Wd2edafHkLq1aUggJM9iTx9XmYuU6OSA_30vcUpL6cKywzI77Ox-YkcxRcfYZwHniAouXBQ11EJU8IGdCKXkQkCDR3_hj2w-jluYAlEg4gmzl3wd-p_Dnq-8Dya4WDhFy7_uMnWD4z9CDj09Bn6fQ5fc4EzJwfAbiql30WUqKXM_5V0qVEKKNPDV1O_3fE35xY0lxP6UHXsaRjd_rzP28G11f7VeXN9-31xdXi8MSlEWhC2gl6SWS4-yQelBSivBCFTKtNbLtqupsrWkRpDsjKuNfUUCVFuBwRnbHHRtoq1-yuGR8l4nCvqtkXKvKZdgBqcRpFpK2zlwyxpUR9RIAm-dMqpRtZy0zg5aTzk97yYfept2ebI36qpWVVuJBtuJBQeWyWkcs_PahMMdSqYwaAH69TX6z2umkS__jPxe9D_kX-Ewj6o |
CitedBy_id | crossref_primary_10_1063_5_0139951 crossref_primary_10_1002_pssr_202200489 crossref_primary_10_1016_j_ijmecsci_2024_109840 crossref_primary_10_1109_JSEN_2022_3193963 crossref_primary_10_1016_j_device_2024_100548 crossref_primary_10_3390_polym16111548 crossref_primary_10_1109_JFLEX_2022_3225128 crossref_primary_10_1021_acsaelm_1c01095 crossref_primary_10_1002_smtd_202300097 crossref_primary_10_1088_1361_665X_ad21b4 crossref_primary_10_1088_1361_6528_ac8aa2 crossref_primary_10_1088_1361_6528_ace724 crossref_primary_10_1002_adfm_202308138 crossref_primary_10_3390_en14164996 crossref_primary_10_1002_pat_5613 crossref_primary_10_1016_j_apenergy_2022_120092 crossref_primary_10_3390_en16020770 crossref_primary_10_1002_admt_202201020 crossref_primary_10_1016_j_enconman_2024_119180 crossref_primary_10_1016_j_carbon_2022_03_037 crossref_primary_10_3390_mi12111350 crossref_primary_10_1016_j_nanoen_2021_106511 crossref_primary_10_1016_j_nanoen_2023_108365 |
Cites_doi | 10.1016/j.nanoen.2020.105177 10.1016/j.nanoen.2012.01.004 10.1021/nl4008985 10.1002/sia.1065 10.1016/j.nanoen.2017.12.052 10.1039/tf9696500561 10.1016/j.nanoen.2020.105066 10.1038/nenergy.2016.138 10.1038/s41928-020-0428-6 10.1021/nn403021m 10.1038/s41377-020-0309-9 10.1021/acsnano.6b00949 10.1126/science.aan3997 10.1016/j.nanoen.2016.01.017 10.1002/aenm.201802906 10.1016/j.nanoen.2017.04.048 10.1002/aenm.202000886 10.1016/0142-9418(84)90012-6 10.1021/nn2039033 10.1016/j.nanoen.2019.104087 10.1021/acsami.5b06675 10.1016/j.joule.2017.09.004 10.1021/acsnano.5b01830 10.1021/nn506673x 10.1002/adma.201302397 10.1016/j.nanoen.2018.11.071 10.1021/nn506631t 10.1002/adma.201305303 10.1126/science.1124005 10.1038/s41528-017-0007-8 10.1016/j.nanoen.2017.11.067 10.1002/anie.201201656 10.1038/s41467-018-06045-z 10.1002/adfm.201304211 10.1039/C7EE01292F 10.1002/adfm.201905816 10.1021/acs.chemrev.9b00821 10.1021/nn404614z 10.1002/aenm.202002920 10.1016/j.nanoen.2021.105845 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en14041120 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Databases ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_306956dbe0e5409baa76a0fde9c97946 10_3390_en14041120 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-a3803f6a955f36736f066d60c1399c8df68b4a2d46a71a6bce4cd71a6109820c3 |
IEDL.DBID | BENPR |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:31:32 EDT 2025 Mon Jun 30 11:09:38 EDT 2025 Tue Jul 01 01:17:52 EDT 2025 Thu Apr 24 22:50:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-a3803f6a955f36736f066d60c1399c8df68b4a2d46a71a6bce4cd71a6109820c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2631-7578 |
OpenAccessLink | https://www.proquest.com/docview/2492821738?pq-origsite=%requestingapplication% |
PQID | 2492821738 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_306956dbe0e5409baa76a0fde9c97946 proquest_journals_2492821738 crossref_citationtrail_10_3390_en14041120 crossref_primary_10_3390_en14041120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_12) 2017; 1 Seol (ref_28) 2018; 44 Wang (ref_3) 2012; 51 Chen (ref_15) 2016; 1 Yang (ref_31) 2015; 9 Wilson (ref_39) 2001; 31 Xia (ref_30) 2019; 56 Kim (ref_29) 2019; 29 Zhou (ref_20) 2020; 3 Chang (ref_14) 2016; 21 Zhou (ref_24) 2020; 10 Chen (ref_25) 2020; 10 Vedder (ref_38) 1969; 65 Fan (ref_2) 2012; 1 Zhu (ref_18) 2013; 13 Yun (ref_10) 2017; 36 Diaz (ref_36) 2020; 9 Wang (ref_21) 2014; 26 Chen (ref_6) 2013; 25 Cheng (ref_13) 2018; 9 Lee (ref_42) 2020; 76 Hinchet (ref_9) 2019; 365 Kang (ref_32) 2015; 7 Zhang (ref_34) 2020; 78 Wu (ref_23) 2019; 9 Lin (ref_27) 2015; 9 Kim (ref_40) 2018; 45 Yang (ref_16) 2014; 24 Choi (ref_11) 2017; 10 Chen (ref_8) 2020; 120 Guo (ref_22) 2015; 9 Chen (ref_7) 2017; 1 Wang (ref_1) 2006; 312 Yang (ref_19) 2013; 7 Wu (ref_33) 2016; 10 Wang (ref_4) 2013; 7 Jung (ref_5) 2011; 5 Zou (ref_17) 2021; 83 Tang (ref_26) 2019; 66 Blythe (ref_41) 1984; 4 Saifaldeen (ref_37) 2004; 62 Chen (ref_35) 2020; 9 |
References_xml | – volume: 78 start-page: 105177 year: 2020 ident: ref_34 article-title: Origami-tessellation-based triboelectric nanogenerator for energy harvesting with application in road pavement publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105177 – volume: 1 start-page: 328 year: 2012 ident: ref_2 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 13 start-page: 2282 year: 2013 ident: ref_18 article-title: Linear-grating triboelectric nanogenerator based on sliding electrification publication-title: Nano Lett. doi: 10.1021/nl4008985 – volume: 31 start-page: 385 year: 2001 ident: ref_39 article-title: Plasma modification of PTFE surfaces. Part I: Surfaces immediately following plasma treatment publication-title: Surf. Interface Anal. doi: 10.1002/sia.1065 – volume: 45 start-page: 247 year: 2018 ident: ref_40 article-title: Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.052 – volume: 65 start-page: 561 year: 1969 ident: ref_38 article-title: A Aluminum + water reaction publication-title: Trans. Faraday Soc. doi: 10.1039/tf9696500561 – volume: 76 start-page: 105066 year: 2020 ident: ref_42 article-title: Polarization-controlled PVDF-based hybrid nanogenerator for an effective vibrational energy harvesting from human foot publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105066 – volume: 1 start-page: 16138 year: 2016 ident: ref_15 article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy publication-title: Nat. Energy doi: 10.1038/nenergy.2016.138 – volume: 62 start-page: 277 year: 2004 ident: ref_37 article-title: Superamphiphobic aluminum alloy surfaces with micro and nanoscale hierarchical roughness produced by a simple and environmentally friendly technique publication-title: J. Mater. Sci. – volume: 3 start-page: 571 year: 2020 ident: ref_20 article-title: Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays publication-title: Nat. Electron. doi: 10.1038/s41928-020-0428-6 – volume: 7 start-page: 7342 year: 2013 ident: ref_19 article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system publication-title: ACS Nano doi: 10.1021/nn403021m – volume: 9 start-page: 75 year: 2020 ident: ref_36 article-title: A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties publication-title: J. Electrostat. – volume: 9 start-page: 75 year: 2020 ident: ref_35 article-title: Kirigami/origami: Unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding” publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-0309-9 – volume: 10 start-page: 4652 year: 2016 ident: ref_33 article-title: Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns publication-title: ACS Nano doi: 10.1021/acsnano.6b00949 – volume: 365 start-page: 491 year: 2019 ident: ref_9 article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology publication-title: Science doi: 10.1126/science.aan3997 – volume: 21 start-page: 238 year: 2016 ident: ref_14 article-title: Protein-based contact electrification and its uses for mechanical energy harvesting and humidity detecting publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.01.017 – volume: 9 start-page: 1802906 year: 2019 ident: ref_23 article-title: Triboelectric nanogenerator: A foundation of the energy for the new era publication-title: Adv. Energy. Mater. doi: 10.1002/aenm.201802906 – volume: 36 start-page: 233 year: 2017 ident: ref_10 article-title: Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.048 – volume: 10 start-page: 2000886 year: 2020 ident: ref_25 article-title: Robust triboelectric nanogenerator achieved by centrifugal force induced automatic working mode transition publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000886 – volume: 4 start-page: 195 year: 1984 ident: ref_41 article-title: Electrical resistivity measurements of polymer materials publication-title: Polym. Test. doi: 10.1016/0142-9418(84)90012-6 – volume: 5 start-page: 10041 year: 2011 ident: ref_5 article-title: Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator publication-title: ACS Nano doi: 10.1021/nn2039033 – volume: 66 start-page: 104087 year: 2019 ident: ref_26 article-title: A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104087 – volume: 7 start-page: 20469 year: 2015 ident: ref_32 article-title: Folded elastic strip-based triboelectric nanogenerator for harvesting human motion energy for multiple applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b06675 – volume: 1 start-page: 480 year: 2017 ident: ref_7 article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator publication-title: Joule doi: 10.1016/j.joule.2017.09.004 – volume: 9 start-page: 5577 year: 2015 ident: ref_22 article-title: An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment publication-title: ACS Nano doi: 10.1021/acsnano.5b01830 – volume: 9 start-page: 922 year: 2015 ident: ref_27 article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55% publication-title: ACS Nano doi: 10.1021/nn506673x – volume: 25 start-page: 6094 year: 2013 ident: ref_6 article-title: Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor publication-title: Adv. Mater. doi: 10.1002/adma.201302397 – volume: 56 start-page: 400 year: 2019 ident: ref_30 article-title: Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.071 – volume: 9 start-page: 901 year: 2015 ident: ref_31 article-title: Paper-based origami triboelectric nanogenerators and self-powered pressure sensors publication-title: ACS Nano doi: 10.1021/nn506631t – volume: 26 start-page: 2818 year: 2014 ident: ref_21 article-title: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes publication-title: Adv. Mater. doi: 10.1002/adma.201305303 – volume: 312 start-page: 242 year: 2006 ident: ref_1 article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays publication-title: Science doi: 10.1126/science.1124005 – volume: 1 start-page: 10 year: 2017 ident: ref_12 article-title: Triboelectric nanogenerators as flexible power sources publication-title: Npj. Flex. Electron. doi: 10.1038/s41528-017-0007-8 – volume: 44 start-page: 82 year: 2018 ident: ref_28 article-title: All-printed triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.067 – volume: 51 start-page: 11700 year: 2012 ident: ref_3 article-title: Nanotechnology-enabled energy harvesting for self−powered micro-/nanosystems publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201201656 – volume: 9 start-page: 3773 year: 2018 ident: ref_13 article-title: A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed publication-title: Nat. Commun. doi: 10.1038/s41467-018-06045-z – volume: 24 start-page: 4090 year: 2014 ident: ref_16 article-title: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201304211 – volume: 10 start-page: 2180 year: 2017 ident: ref_11 article-title: A triboelectric generator based on self-poled Nylon-11 nanowires fabricated by gas-flow assisted template wetting publication-title: Energy. Environ. Sci. doi: 10.1039/C7EE01292F – volume: 29 start-page: 1905816 year: 2019 ident: ref_29 article-title: Ferroelectric-polymer-enabled contactless electric power generation in triboelectric nanogenerators publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905816 – volume: 120 start-page: 3668 year: 2020 ident: ref_8 article-title: Smart textiles for electricity generation publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00821 – volume: 7 start-page: 9533 year: 2013 ident: ref_4 article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors publication-title: ACS Nano doi: 10.1021/nn404614z – volume: 10 start-page: 2002920 year: 2020 ident: ref_24 article-title: Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002920 – volume: 83 start-page: 105845 year: 2021 ident: ref_17 article-title: A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105845 |
SSID | ssj0000331333 |
Score | 2.3907905 |
Snippet | While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1120 |
SubjectTerms | Bond strength Chemical bonds durability efficiency Electrodes Energy kirigami Microscopy Plasma Polymers rotational energy Spectrum analysis triboelectric nanogenerator Vibration |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1itsqAXD6FJd7vdPVZtKYoexEJvYb9SCjWRmh78985s0lpR8OIthIWEmWTee8vsG0KuPHB40Mk2ksaKiAvvIslYJ9IayLG3MTMZbg08PonRmN9PupONUV_YE1bZA1eBawOlBQrvjI89kAtltO4JHWfOK6vQHB2rL2DehpgKNZgxEF-s8iNloOvbPkcjGWAX8TcECkb9P-pwAJfhHtmtWSHtV2-zT7Z8fkB2NrwCD4nrU-zJmH_QQXB9ALCgOnf0brnA00_0YQY6W7_OKHqBFNV0m5mlUD2LabCWBnFNgaHS56KsNwDpIBz8ozgfCM028ukRGQ8HL7ejqB6REFkmkjLSTMYsE1p1uxnDFq0MKIQTsQVip6x0mZCG647jQvcSLYz13Dq8SmIF2G_ZMWnkRe5PCAWY6nCbZJInjic9bxT3zIeIKwtCp0muV2FLbe0fjmMs5inoCAxx-hXiJrlcr32rXDN-XXWD0V-vQKfrcAPyn9b5T__Kf5O0VrlL69_vPUUbRAlii8nT_3jGGdnuYCtLaNZukUa5WPpz4CKluQif3Sex5twy priority: 102 providerName: Directory of Open Access Journals |
Title | A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting |
URI | https://www.proquest.com/docview/2492821738 https://doaj.org/article/306956dbe0e5409baa76a0fde9c97946 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1BT9swFH6CcmEHxMbQCqWytF04RDi16zon1EJbBFo1VUPqLXJsp6rEElbKgX_Pe65bNm3iEkWJD9Gz_d73vTx_D-CbRwyPPNkmurAqkcq7RAvRSYxBcOwtF0VJqYHvE3VzL29n3VlMuD3FssqNTwyO2tWWcuQXpGynET8Lffn4O6GuUfR3NbbQ2IU9dMFaN2BvMJz8mG6zLFwIJGFirUsqkN9f-IoEZRBl8L8iURDs_8cfhyAzOoSDiA5Zfz2dH2HHV5_gwx-agUfg-oxqMx5e2DCoP2DQYKZy7Pp5Saeg2N0CP9r8WjDSBKnXXW4WlqEXredBYhpJNkOkyqb1KiYC2TAcAGTUJ4hEN6r5Z7gfDX9e3SSxVUJihUpXiRGai1KZrNstBZVqlQglnOIWAV5mtSuVLqTpOKlMLzWqsF5aR3cpzxADWHEMjaqu_BdgGK460qallqmTac8XmfTC86wwJrNIeJpwvjFbbqOOOLWzeMiRT5CJ8zcTN-HrduzjWj3jv6MGZP3tCFK8Dg_q5TyPGyhHaoNUzhWeewSZ9DU9ZXjpfGYzEslvQmszd3nchk_526I5ef_1Kex3qFgllGO3oLFaPvszRBurog27ejRux4XVDpwdr-NZ-gpA4de6 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOEAPFa-qW6BYAg4cIpzY600OVUXLLgsLHBBI3FLHdlYr0QSWRRV_qr-xM06yFIG4cYsSK4rG45lvJjPfAOw4xPAYJ5sgzowKpHI2iIWIAq0RHDvDRZZTauDsXPWv5Ml1-3oG_ja9MFRW2dhEb6htaShHvk_MdjHiZxF_v70LaGoU_V1tRmhUajFwj38wZLv_dnyI-7sbRb3u5c9-UE8VCIxQ4STQIuYiVzppt3NBVU05el2ruEEslJjY5irOpI6sVLoTapUZJ42lq5An6C6NwPfOwrwU6MmpM713NM3pcCEw5BMVCyo-5_uuIPoaxDT8md_z4wFeWH_v0npL8LHGouygUp5lmHHFCnz4j6FwFewBo0qQm0fW9VwT6KKYLiw7fBhTzxUbjFBE-veIEQNJWc3UGRmGNrscekJrDOkZ4mJ2UU7qtCPr-nZDRlOJiOKjGK7B1buI8BPMFWXhPgND5xhJE-axDK0MOy5LpBOOJ5nWicHwqgV7jdhSU7OW0_CMmxSjFxJx-iTiFmxP195WXB2vrvpB0p-uIH5tf6McD9P6uKYYSGHgaDPHHUJa-pqO0jy3LjEJUfK3YKPZu7Q-9Pfpk4p-efvxFiz0L89O09Pj88E6LEZUJuMLwTdgbjJ-cJuIcybZV69cDH69tzb_A-q4D4U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1BkCp6qNoCIpS2K1EOPVhZezcb76GqoEkEpI0QAombWe-uo0ipDSEI8df4dZ3xR2jVqjdulr2yrPF45r3x7BuATx4xPPJkG8SpVYFU3gWxEFFgDIJjb7lIMyoN_Birowt5ctm9XIHHZi8MtVU2MbEM1K6wVCPvkLJdjPhZxJ2sbos47Q-_Xt8ENEGK_rQ24zQqFxn5h3ukb7dfjvv4rvejaDg4_3YU1BMGAitUuAiMiLnIlNHdbiaowynDDOwUt4iLtI1dpuJUmshJZXqhUan10jo6CrnG1GkF3ncV1nrEilqwdjgYn54tKzxcCCSAotJEFULzjs9JzAYRDv8jC5bDAv7KBWWCG76GVzUyZQeVK72BFZ-_hZe_6RVugDtg1Bcye2CDUnkCExYzuWP9uzntwGKjKRrJ_Jwy0iMpqgk7U8swgheTUt4aCT5DlMzOikVdhGSDcvMhoxlFJPiRTzbh4lmMuAWtvMj9NjBMlZG0YRbL0Mmw51MtvfBcp8Zoi2SrDZ8bsyW21jCnURqzBLkMmTh5MnEb9pZrryvljn-uOiTrL1eQ2nZ5ophPkvrjTZBWIY10qeceAS49TU8ZnjmvrSaB_jbsNu8uqUPAbfLksDv_v_wRXqAnJ9-Px6N3sB5Rz0zZFb4LrcX8zr9H0LNIP9TexeDquR36F_mFFRc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Highly+Efficient+and+Durable+Kirigami+Triboelectric+Nanogenerator+for+Rotational+Energy+Harvesting&rft.jtitle=Energies+%28Basel%29&rft.date=2021-02-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=4&rft.spage=1120&rft_id=info:doi/10.3390%2Fen14041120&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |