A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting

While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their inherently poor durability has been a serious bottleneck for applications. Herein, we report a three-dimensional kirigami TENG as a highly effic...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 14; no. 4; p. 1120
Main Authors Kong, Dae Sol, Han, Jae Yeon, Ko, Young Joon, Park, Sang Hyeok, Lee, Minbaek, Jung, Jong Hoon
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their inherently poor durability has been a serious bottleneck for applications. Herein, we report a three-dimensional kirigami TENG as a highly efficient and durable rotational energy harvesting device. The kirigami TENG consisted of cube-shaped paper, aluminum (Al) foil electrode and polytetrafluoroethylene (PTFE) polymer film, and converted rotational motion into multiple folding-unfolding vibrations. The rotation-folding (R-F) kirigami TENG generated an open-circuit voltage of 31 V, a short-circuit current of 0.67 μA and an instantaneous power (power density) of 1.2 μW (0.13 μW/cm2) at 200 rpm, which was sufficient to turn on 25 light-emitting diodes and a thermo-hygrometer. The triboelectric outputs of the R-F kirigami TENG were only slightly decreased even after 288,000 continuous rotations, i.e., the output remained at 86% of its initial value. This work demonstrates that an R-F kirigami TENG could be a plausible candidate to efficiently harvest various forms of rotational energy with a long-term durability.
AbstractList While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their inherently poor durability has been a serious bottleneck for applications. Herein, we report a three-dimensional kirigami TENG as a highly efficient and durable rotational energy harvesting device. The kirigami TENG consisted of cube-shaped paper, aluminum (Al) foil electrode and polytetrafluoroethylene (PTFE) polymer film, and converted rotational motion into multiple folding-unfolding vibrations. The rotation-folding (R-F) kirigami TENG generated an open-circuit voltage of 31 V, a short-circuit current of 0.67 μA and an instantaneous power (power density) of 1.2 μW (0.13 μW/cm2) at 200 rpm, which was sufficient to turn on 25 light-emitting diodes and a thermo-hygrometer. The triboelectric outputs of the R-F kirigami TENG were only slightly decreased even after 288,000 continuous rotations, i.e., the output remained at 86% of its initial value. This work demonstrates that an R-F kirigami TENG could be a plausible candidate to efficiently harvest various forms of rotational energy with a long-term durability.
Author Ko, Young Joon
Han, Jae Yeon
Park, Sang Hyeok
Lee, Minbaek
Jung, Jong Hoon
Kong, Dae Sol
Author_xml – sequence: 1
  givenname: Dae Sol
  surname: Kong
  fullname: Kong, Dae Sol
– sequence: 2
  givenname: Jae Yeon
  surname: Han
  fullname: Han, Jae Yeon
– sequence: 3
  givenname: Young Joon
  surname: Ko
  fullname: Ko, Young Joon
– sequence: 4
  givenname: Sang Hyeok
  surname: Park
  fullname: Park, Sang Hyeok
– sequence: 5
  givenname: Minbaek
  surname: Lee
  fullname: Lee, Minbaek
– sequence: 6
  givenname: Jong Hoon
  orcidid: 0000-0003-2631-7578
  surname: Jung
  fullname: Jung, Jong Hoon
BookMark eNptUV1rGzEQFCWBpo5f-gsEeSs4Wd2edafHkLq1aUggJM9iTx9XmYuU6OSA_30vcUpL6cKywzI77Ox-YkcxRcfYZwHniAouXBQ11EJU8IGdCKXkQkCDR3_hj2w-jluYAlEg4gmzl3wd-p_Dnq-8Dya4WDhFy7_uMnWD4z9CDj09Bn6fQ5fc4EzJwfAbiql30WUqKXM_5V0qVEKKNPDV1O_3fE35xY0lxP6UHXsaRjd_rzP28G11f7VeXN9-31xdXi8MSlEWhC2gl6SWS4-yQelBSivBCFTKtNbLtqupsrWkRpDsjKuNfUUCVFuBwRnbHHRtoq1-yuGR8l4nCvqtkXKvKZdgBqcRpFpK2zlwyxpUR9RIAm-dMqpRtZy0zg5aTzk97yYfept2ebI36qpWVVuJBtuJBQeWyWkcs_PahMMdSqYwaAH69TX6z2umkS__jPxe9D_kX-Ewj6o
CitedBy_id crossref_primary_10_1063_5_0139951
crossref_primary_10_1002_pssr_202200489
crossref_primary_10_1016_j_ijmecsci_2024_109840
crossref_primary_10_1109_JSEN_2022_3193963
crossref_primary_10_1016_j_device_2024_100548
crossref_primary_10_3390_polym16111548
crossref_primary_10_1109_JFLEX_2022_3225128
crossref_primary_10_1021_acsaelm_1c01095
crossref_primary_10_1002_smtd_202300097
crossref_primary_10_1088_1361_665X_ad21b4
crossref_primary_10_1088_1361_6528_ac8aa2
crossref_primary_10_1088_1361_6528_ace724
crossref_primary_10_1002_adfm_202308138
crossref_primary_10_3390_en14164996
crossref_primary_10_1002_pat_5613
crossref_primary_10_1016_j_apenergy_2022_120092
crossref_primary_10_3390_en16020770
crossref_primary_10_1002_admt_202201020
crossref_primary_10_1016_j_enconman_2024_119180
crossref_primary_10_1016_j_carbon_2022_03_037
crossref_primary_10_3390_mi12111350
crossref_primary_10_1016_j_nanoen_2021_106511
crossref_primary_10_1016_j_nanoen_2023_108365
Cites_doi 10.1016/j.nanoen.2020.105177
10.1016/j.nanoen.2012.01.004
10.1021/nl4008985
10.1002/sia.1065
10.1016/j.nanoen.2017.12.052
10.1039/tf9696500561
10.1016/j.nanoen.2020.105066
10.1038/nenergy.2016.138
10.1038/s41928-020-0428-6
10.1021/nn403021m
10.1038/s41377-020-0309-9
10.1021/acsnano.6b00949
10.1126/science.aan3997
10.1016/j.nanoen.2016.01.017
10.1002/aenm.201802906
10.1016/j.nanoen.2017.04.048
10.1002/aenm.202000886
10.1016/0142-9418(84)90012-6
10.1021/nn2039033
10.1016/j.nanoen.2019.104087
10.1021/acsami.5b06675
10.1016/j.joule.2017.09.004
10.1021/acsnano.5b01830
10.1021/nn506673x
10.1002/adma.201302397
10.1016/j.nanoen.2018.11.071
10.1021/nn506631t
10.1002/adma.201305303
10.1126/science.1124005
10.1038/s41528-017-0007-8
10.1016/j.nanoen.2017.11.067
10.1002/anie.201201656
10.1038/s41467-018-06045-z
10.1002/adfm.201304211
10.1039/C7EE01292F
10.1002/adfm.201905816
10.1021/acs.chemrev.9b00821
10.1021/nn404614z
10.1002/aenm.202002920
10.1016/j.nanoen.2021.105845
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en14041120
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Databases
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_306956dbe0e5409baa76a0fde9c97946
10_3390_en14041120
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-a3803f6a955f36736f066d60c1399c8df68b4a2d46a71a6bce4cd71a6109820c3
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Wed Aug 27 01:31:32 EDT 2025
Mon Jun 30 11:09:38 EDT 2025
Tue Jul 01 01:17:52 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a3803f6a955f36736f066d60c1399c8df68b4a2d46a71a6bce4cd71a6109820c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2631-7578
OpenAccessLink https://www.proquest.com/docview/2492821738?pq-origsite=%requestingapplication%
PQID 2492821738
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_306956dbe0e5409baa76a0fde9c97946
proquest_journals_2492821738
crossref_citationtrail_10_3390_en14041120
crossref_primary_10_3390_en14041120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_12) 2017; 1
Seol (ref_28) 2018; 44
Wang (ref_3) 2012; 51
Chen (ref_15) 2016; 1
Yang (ref_31) 2015; 9
Wilson (ref_39) 2001; 31
Xia (ref_30) 2019; 56
Kim (ref_29) 2019; 29
Zhou (ref_20) 2020; 3
Chang (ref_14) 2016; 21
Zhou (ref_24) 2020; 10
Chen (ref_25) 2020; 10
Vedder (ref_38) 1969; 65
Fan (ref_2) 2012; 1
Zhu (ref_18) 2013; 13
Yun (ref_10) 2017; 36
Diaz (ref_36) 2020; 9
Wang (ref_21) 2014; 26
Chen (ref_6) 2013; 25
Cheng (ref_13) 2018; 9
Lee (ref_42) 2020; 76
Hinchet (ref_9) 2019; 365
Kang (ref_32) 2015; 7
Zhang (ref_34) 2020; 78
Wu (ref_23) 2019; 9
Lin (ref_27) 2015; 9
Kim (ref_40) 2018; 45
Yang (ref_16) 2014; 24
Choi (ref_11) 2017; 10
Chen (ref_8) 2020; 120
Guo (ref_22) 2015; 9
Chen (ref_7) 2017; 1
Wang (ref_1) 2006; 312
Yang (ref_19) 2013; 7
Wu (ref_33) 2016; 10
Wang (ref_4) 2013; 7
Jung (ref_5) 2011; 5
Zou (ref_17) 2021; 83
Tang (ref_26) 2019; 66
Blythe (ref_41) 1984; 4
Saifaldeen (ref_37) 2004; 62
Chen (ref_35) 2020; 9
References_xml – volume: 78
  start-page: 105177
  year: 2020
  ident: ref_34
  article-title: Origami-tessellation-based triboelectric nanogenerator for energy harvesting with application in road pavement
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105177
– volume: 1
  start-page: 328
  year: 2012
  ident: ref_2
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 13
  start-page: 2282
  year: 2013
  ident: ref_18
  article-title: Linear-grating triboelectric nanogenerator based on sliding electrification
  publication-title: Nano Lett.
  doi: 10.1021/nl4008985
– volume: 31
  start-page: 385
  year: 2001
  ident: ref_39
  article-title: Plasma modification of PTFE surfaces. Part I: Surfaces immediately following plasma treatment
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1065
– volume: 45
  start-page: 247
  year: 2018
  ident: ref_40
  article-title: Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.052
– volume: 65
  start-page: 561
  year: 1969
  ident: ref_38
  article-title: A Aluminum + water reaction
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9696500561
– volume: 76
  start-page: 105066
  year: 2020
  ident: ref_42
  article-title: Polarization-controlled PVDF-based hybrid nanogenerator for an effective vibrational energy harvesting from human foot
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105066
– volume: 1
  start-page: 16138
  year: 2016
  ident: ref_15
  article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.138
– volume: 62
  start-page: 277
  year: 2004
  ident: ref_37
  article-title: Superamphiphobic aluminum alloy surfaces with micro and nanoscale hierarchical roughness produced by a simple and environmentally friendly technique
  publication-title: J. Mater. Sci.
– volume: 3
  start-page: 571
  year: 2020
  ident: ref_20
  article-title: Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0428-6
– volume: 7
  start-page: 7342
  year: 2013
  ident: ref_19
  article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn403021m
– volume: 9
  start-page: 75
  year: 2020
  ident: ref_36
  article-title: A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties
  publication-title: J. Electrostat.
– volume: 9
  start-page: 75
  year: 2020
  ident: ref_35
  article-title: Kirigami/origami: Unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding”
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-020-0309-9
– volume: 10
  start-page: 4652
  year: 2016
  ident: ref_33
  article-title: Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00949
– volume: 365
  start-page: 491
  year: 2019
  ident: ref_9
  article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology
  publication-title: Science
  doi: 10.1126/science.aan3997
– volume: 21
  start-page: 238
  year: 2016
  ident: ref_14
  article-title: Protein-based contact electrification and its uses for mechanical energy harvesting and humidity detecting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.01.017
– volume: 9
  start-page: 1802906
  year: 2019
  ident: ref_23
  article-title: Triboelectric nanogenerator: A foundation of the energy for the new era
  publication-title: Adv. Energy. Mater.
  doi: 10.1002/aenm.201802906
– volume: 36
  start-page: 233
  year: 2017
  ident: ref_10
  article-title: Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.048
– volume: 10
  start-page: 2000886
  year: 2020
  ident: ref_25
  article-title: Robust triboelectric nanogenerator achieved by centrifugal force induced automatic working mode transition
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000886
– volume: 4
  start-page: 195
  year: 1984
  ident: ref_41
  article-title: Electrical resistivity measurements of polymer materials
  publication-title: Polym. Test.
  doi: 10.1016/0142-9418(84)90012-6
– volume: 5
  start-page: 10041
  year: 2011
  ident: ref_5
  article-title: Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/nn2039033
– volume: 66
  start-page: 104087
  year: 2019
  ident: ref_26
  article-title: A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104087
– volume: 7
  start-page: 20469
  year: 2015
  ident: ref_32
  article-title: Folded elastic strip-based triboelectric nanogenerator for harvesting human motion energy for multiple applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b06675
– volume: 1
  start-page: 480
  year: 2017
  ident: ref_7
  article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.004
– volume: 9
  start-page: 5577
  year: 2015
  ident: ref_22
  article-title: An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01830
– volume: 9
  start-page: 922
  year: 2015
  ident: ref_27
  article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55%
  publication-title: ACS Nano
  doi: 10.1021/nn506673x
– volume: 25
  start-page: 6094
  year: 2013
  ident: ref_6
  article-title: Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302397
– volume: 56
  start-page: 400
  year: 2019
  ident: ref_30
  article-title: Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.071
– volume: 9
  start-page: 901
  year: 2015
  ident: ref_31
  article-title: Paper-based origami triboelectric nanogenerators and self-powered pressure sensors
  publication-title: ACS Nano
  doi: 10.1021/nn506631t
– volume: 26
  start-page: 2818
  year: 2014
  ident: ref_21
  article-title: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305303
– volume: 312
  start-page: 242
  year: 2006
  ident: ref_1
  article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays
  publication-title: Science
  doi: 10.1126/science.1124005
– volume: 1
  start-page: 10
  year: 2017
  ident: ref_12
  article-title: Triboelectric nanogenerators as flexible power sources
  publication-title: Npj. Flex. Electron.
  doi: 10.1038/s41528-017-0007-8
– volume: 44
  start-page: 82
  year: 2018
  ident: ref_28
  article-title: All-printed triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.067
– volume: 51
  start-page: 11700
  year: 2012
  ident: ref_3
  article-title: Nanotechnology-enabled energy harvesting for self−powered micro-/nanosystems
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201201656
– volume: 9
  start-page: 3773
  year: 2018
  ident: ref_13
  article-title: A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06045-z
– volume: 24
  start-page: 4090
  year: 2014
  ident: ref_16
  article-title: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201304211
– volume: 10
  start-page: 2180
  year: 2017
  ident: ref_11
  article-title: A triboelectric generator based on self-poled Nylon-11 nanowires fabricated by gas-flow assisted template wetting
  publication-title: Energy. Environ. Sci.
  doi: 10.1039/C7EE01292F
– volume: 29
  start-page: 1905816
  year: 2019
  ident: ref_29
  article-title: Ferroelectric-polymer-enabled contactless electric power generation in triboelectric nanogenerators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905816
– volume: 120
  start-page: 3668
  year: 2020
  ident: ref_8
  article-title: Smart textiles for electricity generation
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00821
– volume: 7
  start-page: 9533
  year: 2013
  ident: ref_4
  article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
  publication-title: ACS Nano
  doi: 10.1021/nn404614z
– volume: 10
  start-page: 2002920
  year: 2020
  ident: ref_24
  article-title: Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002920
– volume: 83
  start-page: 105845
  year: 2021
  ident: ref_17
  article-title: A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105845
SSID ssj0000331333
Score 2.3907905
Snippet While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1120
SubjectTerms Bond strength
Chemical bonds
durability
efficiency
Electrodes
Energy
kirigami
Microscopy
Plasma
Polymers
rotational energy
Spectrum analysis
triboelectric nanogenerator
Vibration
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1itsqAXD6FJd7vdPVZtKYoexEJvYb9SCjWRmh78985s0lpR8OIthIWEmWTee8vsG0KuPHB40Mk2ksaKiAvvIslYJ9IayLG3MTMZbg08PonRmN9PupONUV_YE1bZA1eBawOlBQrvjI89kAtltO4JHWfOK6vQHB2rL2DehpgKNZgxEF-s8iNloOvbPkcjGWAX8TcECkb9P-pwAJfhHtmtWSHtV2-zT7Z8fkB2NrwCD4nrU-zJmH_QQXB9ALCgOnf0brnA00_0YQY6W7_OKHqBFNV0m5mlUD2LabCWBnFNgaHS56KsNwDpIBz8ozgfCM028ukRGQ8HL7ejqB6REFkmkjLSTMYsE1p1uxnDFq0MKIQTsQVip6x0mZCG647jQvcSLYz13Dq8SmIF2G_ZMWnkRe5PCAWY6nCbZJInjic9bxT3zIeIKwtCp0muV2FLbe0fjmMs5inoCAxx-hXiJrlcr32rXDN-XXWD0V-vQKfrcAPyn9b5T__Kf5O0VrlL69_vPUUbRAlii8nT_3jGGdnuYCtLaNZukUa5WPpz4CKluQif3Sex5twy
  priority: 102
  providerName: Directory of Open Access Journals
Title A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting
URI https://www.proquest.com/docview/2492821738
https://doaj.org/article/306956dbe0e5409baa76a0fde9c97946
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1BT9swFH6CcmEHxMbQCqWytF04RDi16zon1EJbBFo1VUPqLXJsp6rEElbKgX_Pe65bNm3iEkWJD9Gz_d73vTx_D-CbRwyPPNkmurAqkcq7RAvRSYxBcOwtF0VJqYHvE3VzL29n3VlMuD3FssqNTwyO2tWWcuQXpGynET8Lffn4O6GuUfR3NbbQ2IU9dMFaN2BvMJz8mG6zLFwIJGFirUsqkN9f-IoEZRBl8L8iURDs_8cfhyAzOoSDiA5Zfz2dH2HHV5_gwx-agUfg-oxqMx5e2DCoP2DQYKZy7Pp5Saeg2N0CP9r8WjDSBKnXXW4WlqEXredBYhpJNkOkyqb1KiYC2TAcAGTUJ4hEN6r5Z7gfDX9e3SSxVUJihUpXiRGai1KZrNstBZVqlQglnOIWAV5mtSuVLqTpOKlMLzWqsF5aR3cpzxADWHEMjaqu_BdgGK460qallqmTac8XmfTC86wwJrNIeJpwvjFbbqOOOLWzeMiRT5CJ8zcTN-HrduzjWj3jv6MGZP3tCFK8Dg_q5TyPGyhHaoNUzhWeewSZ9DU9ZXjpfGYzEslvQmszd3nchk_526I5ef_1Kex3qFgllGO3oLFaPvszRBurog27ejRux4XVDpwdr-NZ-gpA4de6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOEAPFa-qW6BYAg4cIpzY600OVUXLLgsLHBBI3FLHdlYr0QSWRRV_qr-xM06yFIG4cYsSK4rG45lvJjPfAOw4xPAYJ5sgzowKpHI2iIWIAq0RHDvDRZZTauDsXPWv5Ml1-3oG_ja9MFRW2dhEb6htaShHvk_MdjHiZxF_v70LaGoU_V1tRmhUajFwj38wZLv_dnyI-7sbRb3u5c9-UE8VCIxQ4STQIuYiVzppt3NBVU05el2ruEEslJjY5irOpI6sVLoTapUZJ42lq5An6C6NwPfOwrwU6MmpM713NM3pcCEw5BMVCyo-5_uuIPoaxDT8md_z4wFeWH_v0npL8LHGouygUp5lmHHFCnz4j6FwFewBo0qQm0fW9VwT6KKYLiw7fBhTzxUbjFBE-veIEQNJWc3UGRmGNrscekJrDOkZ4mJ2UU7qtCPr-nZDRlOJiOKjGK7B1buI8BPMFWXhPgND5xhJE-axDK0MOy5LpBOOJ5nWicHwqgV7jdhSU7OW0_CMmxSjFxJx-iTiFmxP195WXB2vrvpB0p-uIH5tf6McD9P6uKYYSGHgaDPHHUJa-pqO0jy3LjEJUfK3YKPZu7Q-9Pfpk4p-efvxFiz0L89O09Pj88E6LEZUJuMLwTdgbjJ-cJuIcybZV69cDH69tzb_A-q4D4U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1BkCp6qNoCIpS2K1EOPVhZezcb76GqoEkEpI0QAombWe-uo0ipDSEI8df4dZ3xR2jVqjdulr2yrPF45r3x7BuATx4xPPJkG8SpVYFU3gWxEFFgDIJjb7lIMyoN_Birowt5ctm9XIHHZi8MtVU2MbEM1K6wVCPvkLJdjPhZxJ2sbos47Q-_Xt8ENEGK_rQ24zQqFxn5h3ukb7dfjvv4rvejaDg4_3YU1BMGAitUuAiMiLnIlNHdbiaowynDDOwUt4iLtI1dpuJUmshJZXqhUan10jo6CrnG1GkF3ncV1nrEilqwdjgYn54tKzxcCCSAotJEFULzjs9JzAYRDv8jC5bDAv7KBWWCG76GVzUyZQeVK72BFZ-_hZe_6RVugDtg1Bcye2CDUnkCExYzuWP9uzntwGKjKRrJ_Jwy0iMpqgk7U8swgheTUt4aCT5DlMzOikVdhGSDcvMhoxlFJPiRTzbh4lmMuAWtvMj9NjBMlZG0YRbL0Mmw51MtvfBcp8Zoi2SrDZ8bsyW21jCnURqzBLkMmTh5MnEb9pZrryvljn-uOiTrL1eQ2nZ5ophPkvrjTZBWIY10qeceAS49TU8ZnjmvrSaB_jbsNu8uqUPAbfLksDv_v_wRXqAnJ9-Px6N3sB5Rz0zZFb4LrcX8zr9H0LNIP9TexeDquR36F_mFFRc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Highly+Efficient+and+Durable+Kirigami+Triboelectric+Nanogenerator+for+Rotational+Energy+Harvesting&rft.jtitle=Energies+%28Basel%29&rft.date=2021-02-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=4&rft.spage=1120&rft_id=info:doi/10.3390%2Fen14041120&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon