Las2DoD: Change Detection Based on Digital Elevation Models Derived from Dense Point Clouds with Spatially Varied Uncertainty
The advances of remote sensing techniques allow for the generation of dense point clouds to detect detailed surface changes up to centimeter/millimeter levels. However, there is still a need for an easy method to derive such surface changes based on digital elevation models generated from dense poin...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 7; p. 1537 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs14071537 |
Cover
Loading…
Abstract | The advances of remote sensing techniques allow for the generation of dense point clouds to detect detailed surface changes up to centimeter/millimeter levels. However, there is still a need for an easy method to derive such surface changes based on digital elevation models generated from dense point clouds while taking into consideration spatial varied uncertainty. We present a straightforward method, Las2DoD, to quantify surface change directly from point clouds with spatially varied uncertainty. This method uses a cell-based Welch’s t-test to determine whether each cell of a surface experienced a significant elevation change based on the points measured within the cell. Las2DoD is coded in Python with a simple graphic user interface. It was applied in a case study to quantify hillslope erosion on two plots: one dominated by rill erosion, and the other by sheet erosion, in southeastern United States. The results from the rilled plot indicate that Las2DoD can estimate 90% of the total measured sediment, in comparison to 58% and 70% from two other commonly used methods. The Las2DOD-derived result is less accurate (65%) but still outperforms the other two methods (30% and 48%) for the plot dominated by sheet erosion. Las2DoD captures more low-magnitude changes and is particularly useful where surface changes are small but contribute significantly to the total surface change when summed. |
---|---|
AbstractList | The advances of remote sensing techniques allow for the generation of dense point clouds to detect detailed surface changes up to centimeter/millimeter levels. However, there is still a need for an easy method to derive such surface changes based on digital elevation models generated from dense point clouds while taking into consideration spatial varied uncertainty. We present a straightforward method, Las2DoD, to quantify surface change directly from point clouds with spatially varied uncertainty. This method uses a cell-based Welch’s t-test to determine whether each cell of a surface experienced a significant elevation change based on the points measured within the cell. Las2DoD is coded in Python with a simple graphic user interface. It was applied in a case study to quantify hillslope erosion on two plots: one dominated by rill erosion, and the other by sheet erosion, in southeastern United States. The results from the rilled plot indicate that Las2DoD can estimate 90% of the total measured sediment, in comparison to 58% and 70% from two other commonly used methods. The Las2DOD-derived result is less accurate (65%) but still outperforms the other two methods (30% and 48%) for the plot dominated by sheet erosion. Las2DoD captures more low-magnitude changes and is particularly useful where surface changes are small but contribute significantly to the total surface change when summed. |
Author | Washington-Allen, Robert Yoder, Daniel Bailey, Gene Wright, Wesley Li, Yingkui McKinney, Nathan |
Author_xml | – sequence: 1 givenname: Gene surname: Bailey fullname: Bailey, Gene – sequence: 2 givenname: Yingkui orcidid: 0000-0002-3722-8960 surname: Li fullname: Li, Yingkui – sequence: 3 givenname: Nathan orcidid: 0000-0002-7590-2792 surname: McKinney fullname: McKinney, Nathan – sequence: 4 givenname: Daniel surname: Yoder fullname: Yoder, Daniel – sequence: 5 givenname: Wesley surname: Wright fullname: Wright, Wesley – sequence: 6 givenname: Robert orcidid: 0000-0001-6874-5488 surname: Washington-Allen fullname: Washington-Allen, Robert |
BookMark | eNptkU1vEzEQhleoSJTSC7_AEjekUH9ld80NklIqBYEE5WqN7XHqyF0H2ynKgf-O04BACPvgsf28r8czT7uTKU3Ydc8ZfSWEohe5MEkHNhfDo-6U04HPJFf85K_4SXdeyoa2IQRTVJ52P1ZQ-DItX5PFLUxrJEusaGtIE3kLBR1pwTKsQ4VILiPew8PVh-QwlsbmcN8Yn9Nd20wFyacUpkoWMe1cId9DvSWft00DMe7JV8ih0TeTxVyhcftn3WMPseD5r_Wsu3l3-WXxfrb6eHW9eLOaWdGzOgOOAzg5KIWs78GhdKM3dLRGOguGg_RWivbBns_RsDkcpjHO9sMInntx1l0ffV2Cjd7mcAd5rxME_XCQ8lpDrsFG1MpIMwIYtAOTfuDK0faskaMcPXAnmteLo9c2p287LFVv0i5PLX3Ne6koUyNjjaJHyuZUSkavbavhoXg1Q4iaUX3omf7TsyZ5-Y_kd6L_gX8C4xmaNg |
CitedBy_id | crossref_primary_10_1016_j_measurement_2023_113684 crossref_primary_10_3390_rs14143366 crossref_primary_10_3390_rs15215163 crossref_primary_10_1007_s10661_024_13597_9 crossref_primary_10_1109_TGRS_2025_3531495 crossref_primary_10_1002_ldr_4712 crossref_primary_10_30897_ijegeo_1344526 crossref_primary_10_3390_geomatics2040025 crossref_primary_10_1016_j_catena_2023_107534 crossref_primary_10_1029_2022EA002420 crossref_primary_10_3390_rs14194776 |
Cites_doi | 10.1016/j.geomorph.2010.10.039 10.1002/esp.3721 10.1016/j.iswcr.2017.06.002 10.1016/j.geoderma.2020.114477 10.1016/j.still.2012.07.002 10.1002/ldr.2967 10.1002/esp.3344 10.1016/0169-555X(88)90006-2 10.3390/rs5115851 10.1016/j.catena.2014.04.012 10.1061/(ASCE)SU.1943-5428.0000346 10.3389/feart.2020.587999 10.1029/2011JF002289 10.3390/rs11050586 10.1016/j.scitotenv.2018.11.137 10.1002/esp.3767 10.3390/rs14061315 10.1002/esp.483 10.1002/esp.2206 10.1016/S0169-555X(02)00320-3 10.1016/j.isprsjprs.2013.04.009 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 10.1061/(ASCE)HE.1943-5584.0000746 10.1016/j.geomorph.2014.03.008 10.1016/j.geomorph.2016.11.009 10.1016/j.geomorph.2017.01.001 10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y 10.1016/j.scitotenv.2020.138320 10.13031/2013.20101 10.2134/jeq2005.0130 10.1029/2007GL031939 10.1016/j.cageo.2015.06.021 10.1016/j.catena.2019.104363 10.1016/j.geomorph.2012.08.021 10.13031/2013.16489 10.1016/0167-1987(88)90014-1 10.1016/j.geomorph.2012.11.023 10.1016/j.geomorph.2009.02.006 10.1016/j.catena.2014.07.001 10.5194/tc-7-1879-2013 10.1016/j.isprsjprs.2018.05.002 10.1016/j.geomorph.2016.06.027 10.1002/esp.1886 10.1016/j.geomorph.2015.06.008 10.1002/esp.3353 10.1016/j.geomorph.2010.01.009 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs14071537 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_9b4b8aabec714f729d099eb4848fa2d3 10_3390_rs14071537 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-a2e7ad4799e166ade4d8fb08cb4dcab2a4fc43429625eb15a5a5abbdc678af2f3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:28:34 EDT 2025 Fri Jul 25 09:31:55 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Tue Jul 01 01:59:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-a2e7ad4799e166ade4d8fb08cb4dcab2a4fc43429625eb15a5a5abbdc678af2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7590-2792 0000-0002-3722-8960 0000-0001-6874-5488 |
OpenAccessLink | https://doaj.org/article/9b4b8aabec714f729d099eb4848fa2d3 |
PQID | 2649019811 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9b4b8aabec714f729d099eb4848fa2d3 proquest_journals_2649019811 crossref_citationtrail_10_3390_rs14071537 crossref_primary_10_3390_rs14071537 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Goodwin (ref_8) 2017; 282 Govers (ref_51) 1988; 1 Quinton (ref_17) 2020; 375 Densmore (ref_16) 2011; 36 Lefsky (ref_1) 2002; 52 Bonilla (ref_42) 2006; 35 ref_13 Tarolli (ref_3) 2009; 113 James (ref_38) 2012; 137 Lague (ref_31) 2013; 82 Slatton (ref_4) 2007; 34 Barneveld (ref_48) 2013; 38 Seo (ref_44) 2005; 48 Croke (ref_37) 2013; 184 Lane (ref_40) 2003; 28 Tarolli (ref_2) 2014; 216 Neugirg (ref_26) 2016; 269 Rousseva (ref_50) 1988; 12 Li (ref_7) 2020; 8 Kaiser (ref_25) 2018; 29 Griesbaum (ref_6) 2013; 5 Perroy (ref_5) 2010; 118 Eltner (ref_10) 2015; 245 Brasington (ref_34) 2000; 25 Yoder (ref_45) 2005; 60 Blasone (ref_36) 2014; 123 Turunen (ref_20) 2020; 187 ref_35 Day (ref_14) 2013; 38 ref_30 Vericat (ref_15) 2014; 120 Rengers (ref_9) 2015; 40 Pinson (ref_46) 2004; 20 Prosdocimi (ref_23) 2015; 40 Wheaton (ref_33) 2010; 35 Welch (ref_41) 1947; 34 Fan (ref_47) 2015; 83 Meijer (ref_19) 2013; 126 Whitehead (ref_27) 2013; 7 Lu (ref_11) 2017; 5 Lu (ref_12) 2019; 655 Williams (ref_32) 2012; 2 Meinen (ref_24) 2020; 729 Bolkas (ref_18) 2021; 147 Cook (ref_28) 2017; 278 Randrup (ref_49) 2001; 27 Roux (ref_29) 2005; 36 Brasington (ref_39) 2003; 53 Yang (ref_52) 2018; 143 Hoomehr (ref_43) 2013; 18 James (ref_22) 2012; 117 Westoby (ref_21) 2012; 179 |
References_xml | – volume: 137 start-page: 181 year: 2012 ident: ref_38 article-title: Geomorphic Change Detection Using Historic Maps and DEM Differencing: The Temporal Dimension of Geospatial Analysis publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.10.039 – volume: 40 start-page: 1304 year: 2015 ident: ref_9 article-title: The Evolution of Gully Headcut Morphology: A Case Study Using Terrestrial Laser Scanning and Hydrological Monitoring publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3721 – volume: 5 start-page: 241 year: 2017 ident: ref_11 article-title: The Effect of Grid Size on the Quantification of Erosion, Deposition, and Rill Network publication-title: Int. Soil Water Conserv. Res. doi: 10.1016/j.iswcr.2017.06.002 – volume: 27 start-page: 109 year: 2001 ident: ref_49 article-title: Measuring Soil Compaction on Construction Sites: A Review of Surface Nuclear Gauges and Penetrometers publication-title: J. Arboric. – volume: 375 start-page: 114477 year: 2020 ident: ref_17 article-title: High-Resolution Monitoring of Diffuse (Sheet or Interrill) Erosion Using Structure-from-Motion publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114477 – volume: 126 start-page: 1 year: 2013 ident: ref_19 article-title: Measuring Erosion in Long-Term Tillage Plots Using Ground-Based Lidar publication-title: Soil Tillage Res. doi: 10.1016/j.still.2012.07.002 – volume: 29 start-page: 2264 year: 2018 ident: ref_25 article-title: Addressing Uncertainties in Interpreting Soil Surface Changes by Multitemporal High-Resolution Topography Data across Scales publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2967 – volume: 38 start-page: 90 year: 2013 ident: ref_48 article-title: Assessment of Terrestrial Laser Scanning Technology for Obtaining High-Resolution DEMs of Soils: TLS FOR HIGH-RESOLUTION DEMS publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3344 – volume: 1 start-page: 343 year: 1988 ident: ref_51 article-title: Assessment of the Interrill and Rill Contributions to Total Soil Loss from an Upland Field Plot publication-title: Geomorphology doi: 10.1016/0169-555X(88)90006-2 – volume: 2 start-page: 1 year: 2012 ident: ref_32 article-title: DEMs of Difference publication-title: Geomorphol. Tech. – volume: 5 start-page: 5851 year: 2013 ident: ref_6 article-title: GIS-Based Detection of Gullies in Terrestrial LiDAR Data of the Cerro Llamoca Peatland (Peru) publication-title: Remote Sens. doi: 10.3390/rs5115851 – volume: 120 start-page: 164 year: 2014 ident: ref_15 article-title: Patterns of Topographic Change in Sub-Humid Badlands Determined by High Resolution Multi-Temporal Topographic Surveys publication-title: CATENA doi: 10.1016/j.catena.2014.04.012 – ident: ref_35 – volume: 147 start-page: 04021001 year: 2021 ident: ref_18 article-title: Comparison of SUAS Photogrammetry and TLS for Detecting Changes in Soil Surface Elevations Following Deep Tillage publication-title: J. Surv. Eng. doi: 10.1061/(ASCE)SU.1943-5428.0000346 – volume: 8 start-page: 14 year: 2020 ident: ref_7 article-title: Quantifying Short-Term Erosion and Deposition in an Active Gully Using Terrestrial Laser Scanning: A Case Study From West Tennessee, USA publication-title: Front. Earth Sci. doi: 10.3389/feart.2020.587999 – volume: 117 start-page: 03017 year: 2012 ident: ref_22 article-title: Straightforward Reconstruction of 3D Surfaces and Topography with a Camera: Accuracy and Geoscience Application publication-title: J. Geophys. Res. Earth Surf. doi: 10.1029/2011JF002289 – ident: ref_30 doi: 10.3390/rs11050586 – volume: 655 start-page: 1479 year: 2019 ident: ref_12 article-title: Structural and Sedimentological Connectivity on a Rilled Hillslope publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.137 – volume: 40 start-page: 1891 year: 2015 ident: ref_23 article-title: Bank Erosion in Agricultural Drainage Networks: New Challenges from Structure-from-Motion Photogrammetry for Post-Event Analysis publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3767 – ident: ref_13 doi: 10.3390/rs14061315 – volume: 28 start-page: 249 year: 2003 ident: ref_40 article-title: Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.483 – volume: 36 start-page: 1847 year: 2011 ident: ref_16 article-title: Detection of Surface Change in Complex Topography Using Terrestrial Laser Scanning: Application to the Illgraben Debris-Flow Channel publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.2206 – volume: 53 start-page: 299 year: 2003 ident: ref_39 article-title: Methodological Sensitivity of Morphometric Estimates of Coarse Fluvial Sediment Transport publication-title: Geomorphology doi: 10.1016/S0169-555X(02)00320-3 – volume: 82 start-page: 10 year: 2013 ident: ref_31 article-title: Accurate 3D Comparison of Complex Topography with Terrestrial Laser Scanner: Application to the Rangitikei Canyon (N-Z) publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.04.009 – volume: 52 start-page: 19 year: 2002 ident: ref_1 article-title: Lidar Remote Sensing for Ecosystem StudiesLidar, an Emerging Remote Sensing Technology That Directly Measures the Three-Dimensional Distribution of Plant Canopies, Can Accurately Estimate Vegetation Structural Attributes and Should Be of Particular Interest to Forest, Landscape, and Global Ecologists publication-title: BioScience doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 – volume: 18 start-page: 1627 year: 2013 ident: ref_43 article-title: Curve Numbers for Low-Compaction Steep-Sloped Reclaimed Mine Lands in the Southern Appalachians publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000746 – volume: 216 start-page: 295 year: 2014 ident: ref_2 article-title: High-Resolution Topography for Understanding Earth Surface Processes: Opportunities and Challenges publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.03.008 – volume: 278 start-page: 195 year: 2017 ident: ref_28 article-title: An Evaluation of the Effectiveness of Low-Cost UAVs and Structure from Motion for Geomorphic Change Detection publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.11.009 – volume: 282 start-page: 195 year: 2017 ident: ref_8 article-title: Monitoring Gully Change: A Comparison of Airborne and Terrestrial Laser Scanning Using a Case Study from Aratula, Queensland publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.01.001 – volume: 25 start-page: 973 year: 2000 ident: ref_34 article-title: Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey publication-title: Earth Surf. Process. Landf. doi: 10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y – volume: 729 start-page: 138320 year: 2020 ident: ref_24 article-title: Where Did the Soil Go? Quantifying One Year of Soil Erosion on a Steep Tile-Drained Agricultural Field publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138320 – volume: 48 start-page: 2155 year: 2005 ident: ref_44 article-title: SEDIMENT LOSS AND NUTRIENT RUNOFF FROM THREE FERTILIZER APPLICATION METHODS publication-title: Trans. ASAE doi: 10.13031/2013.20101 – volume: 35 start-page: 216 year: 2006 ident: ref_42 article-title: Instrumentation for Measuring Runoff, Sediment, and Chemical Losses from Agricultural Fields publication-title: J. Environ. Qual. doi: 10.2134/jeq2005.0130 – volume: 34 start-page: L23S10 year: 2007 ident: ref_4 article-title: Airborne Laser Swath Mapping: Achieving the Resolution and Accuracy Required for Geosurficial Research publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL031939 – volume: 83 start-page: 54 year: 2015 ident: ref_47 article-title: Error in Target-Based Georeferencing and Registration in Terrestrial Laser Scanning publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.06.021 – volume: 187 start-page: 104363 year: 2020 ident: ref_20 article-title: Terrestrial Laser Scanning Data Combined with 3D Hydrological Modeling Decipher the Role of Tillage in Field Water Balance and Runoff Generation publication-title: CATENA doi: 10.1016/j.catena.2019.104363 – volume: 60 start-page: 68 year: 2005 ident: ref_45 article-title: No-till Transplanting of Vegetables and Tobacco to Reduce Erosion and Nutrient Surface Runoff publication-title: J. Soil Water Conserv. – volume: 179 start-page: 300 year: 2012 ident: ref_21 article-title: ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.08.021 – volume: 20 start-page: 433 year: 2004 ident: ref_46 article-title: Design and evaluation of an improved flow divider for sampling runoff plots publication-title: Appl. Eng. Agric. doi: 10.13031/2013.16489 – volume: 12 start-page: 235 year: 1988 ident: ref_50 article-title: Use of a Surface Gamma-Neutron Gauge for in Situ Measurement of Changes in Bulk Density of the Tilled Zone publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(88)90014-1 – volume: 184 start-page: 111 year: 2013 ident: ref_37 article-title: The Use of Multi Temporal LiDAR to Assess Basin-Scale Erosion and Deposition Following the Catastrophic January 2011 Lockyer Flood, SE Queensland, Australia publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.11.023 – volume: 113 start-page: 47 year: 2009 ident: ref_3 article-title: Hillslope-to-Valley Transition Morphology: New Opportunities from High Resolution DTMs publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.02.006 – volume: 34 start-page: 28 year: 1947 ident: ref_41 article-title: The Generalization of `Student’s’ Problem When Several Different Population Variances Are Involved publication-title: Biometrika – volume: 123 start-page: 23 year: 2014 ident: ref_36 article-title: Monitoring Sediment Source Areas in a Debris-Flow Catchment Using Terrestrial Laser Scanning publication-title: CATENA doi: 10.1016/j.catena.2014.07.001 – volume: 7 start-page: 1879 year: 2013 ident: ref_27 article-title: Brief Communication: Low-Cost, on-Demand Aerial Photogrammetry for Glaciological Measurement publication-title: Cryosphere doi: 10.5194/tc-7-1879-2013 – volume: 36 start-page: W19 year: 2005 ident: ref_29 article-title: Change Detection on Point Cloud Data Acquired with a Ground Laser Scanner publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 143 start-page: 48 year: 2018 ident: ref_52 article-title: An Analytical Approach to Evaluate Point Cloud Registration Error Utilizing Targets publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.05.002 – volume: 269 start-page: 8 year: 2016 ident: ref_26 article-title: Erosion Processes in Calanchi in the Upper Orcia Valley, Southern Tuscany, Italy Based on Multitemporal High-Resolution Terrestrial LiDAR and UAV Surveys publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.06.027 – volume: 35 start-page: 136 year: 2010 ident: ref_33 article-title: Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.1886 – volume: 245 start-page: 243 year: 2015 ident: ref_10 article-title: Accuracy Constraints of Terrestrial Lidar Data for Soil Erosion Measurement: Application to a Mediterranean Field Plot publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.06.008 – volume: 38 start-page: 1055 year: 2013 ident: ref_14 article-title: Measuring Bluff Erosion Part 1: Terrestrial Laser Scanning Methods for Change Detection publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3353 – volume: 118 start-page: 288 year: 2010 ident: ref_5 article-title: Comparison of Gully Erosion Estimates Using Airborne and Ground-Based LiDAR on Santa Cruz Island, California publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.01.009 |
SSID | ssj0000331904 |
Score | 2.3656263 |
Snippet | The advances of remote sensing techniques allow for the generation of dense point clouds to detect detailed surface changes up to centimeter/millimeter levels.... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1537 |
SubjectTerms | Algorithms Change detection Confidence intervals DEM of difference (DoD) Digital Elevation Models digital elevation models (DEM) hillslope erosion Lasers Methods point cloud Remote sensing Rill erosion Sheet erosion Standard deviation terrestrial laser scanning (TLS) Uncertainty Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe4ALggJiaakslQuHqHk4ic0Fsd2tKlSqquqi3iKPH6VSlJRNethD_zsziXdbCYQiRXn45JnM528yno-xT8rlgK4AkTa5jYRLZASZV5ECxGrhIS-Glvk_zovThfh-nV-HhFsXyirXMXEI1LY1lCM_QuBG6FIySb7e_Y5INYr-rgYJjWdsB0OwRPK1M52fX1xusixxhi4Wi7EvaYb8_mjZJcRhchI-f4JEQ8P-v-LxADInr9jLsDrk30ZzvmZbrtllz4NQ-a_VG_Zwprt01s6-8HFbAJ-5fiimavgU8chyvJjd3pASCJ_Xbsy3chI8qzscu8TYZjltKcGbpnP8or1ten5ct_e245ST5aRRjD5Zr_hPotGWL9AthrKBfvWWLU7mV8enUVBQiExWJH2kU1dqK0qlXFIU2jphpYdYGhDWaEi18EZkCEnIgjBo55oOAGsQwrRPffaObTdt494z7soESuRGxskYTZqDT3OrCqVdDIDnCfu8ns3KhPbipHJRV0gzaOarx5mfsMPN2LuxqcY_R03JKJsR1Ah7eNAub6rwXVUKBEit0RPLRHhkChaXvA6EFNLr1GYTtr82aRW-zq569KUP_3-9x16ktN1hqNTZZ9v98t59xEVIDwfB0_4AnSnfRg priority: 102 providerName: ProQuest |
Title | Las2DoD: Change Detection Based on Digital Elevation Models Derived from Dense Point Clouds with Spatially Varied Uncertainty |
URI | https://www.proquest.com/docview/2649019811 https://doaj.org/article/9b4b8aabec714f729d099eb4848fa2d3 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4-DnoRn7i6LgG9eChu27RNve3aXUVURF3xVjJNogulK9t62IP_3UladUHBixT6YiBl8nUeYfINIUexCgChAI7IAukw5XIHfB07MaCvZhqC0FLmX9-EFyN2-RQ8zbX6MjVhNT1wrbiTGBhwIXCoyGUaQ0GJMY0CxhnXwpOW5xN93lwyZW2wj9DqspqP1Me8_mRauiZ3CUzD8zkPZIn6f9hh61yG62StiQppr_6aDbKgik2y0jQof5ltkfcrUXrJJDml9XYAmqjKFlEVtI9-SFK8ScbPpgMIHeSqXmelptFZXqLsFG2apGYrCT4UpaK3k3FR0bN88iZLatZiqelNjFjMZ_TRpM-SjhAOtlygmm2T0XDwcHbhNJ0TnMwP3coRnoqEZBFqyg1DIRWTXEOXZ8BkJsATTGfMR1eE2Q8a60CYA0Bm6LqE9rS_Q5aKSaF2CVWRCxHmRJniXZzKALQXyDiMheoC4LlFjj-1mWYNrbjpbpGnmF4Yzaffmm-Rwy_Z15pM41epvpmULwlDgG1fICzSBhbpX7BokfbnlKbNX1mmGPxh-BNz1937jzH2yapnNkPYOp42Waqmb-oAQ5QKOmSRD887ZLmXXF_d47U_uLm961iMfgBUmetn |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWClgCDhyiJo6T2EgI0abLlm4rDl3UW_CzrRQlZZMK7YG_xG9kJo8tEohbFSnKw8ph_HnGM5mZj5DX0iUaoKADZRIbcBeJQMdeBlKDreZeJ2nXMv_oOJ0t-OfT5HSD_BprYTCtctSJnaK2tcEY-Q4YbjBdUkTRh8vvAbJG4d_VkUKjh8WhW_0Al615f5DD_L5hbLp_sjcLBlaBwMRp1AaKuUxZnknpojRV1nErvA6F0dwapZni3vAY1DR4BqDIEoWH1taAWlee-Ri-e4vc5nEscUWJ6ad1TCeMAdAh77ugwvtwZ9lE6DElSLP-h93r6AH-0v6dSZveI3eHvSj92IPnPtlw1QOyNdCin68ekp9z1bC8zt_RvgiB5q7tUrcqugvWz1K4yC_OkHeE7peuj-5SpFcrGxi7BE1qKRawwE3VOPqlvqhaulfWV7ahGAGmyIgMK6Bc0a_otFu6ABB2SQrt6hFZ3IhkH5PNqq7cE0JdFukMPDHjRAgASrRniZWpVC7UGs4T8naUZmGGZubIqVEW4NSg5ItryU_Iq_XYy76Fxz9H7eKkrEdg2-3uQb08K4ZVXEjNtVAKcJ9F3INfYmGD7TQXXHjFbDwh2-OUFoMuaIpr5D79_-uXZGt2cjQv5gfHh8_IHYaFFl2O0DbZbJdX7jlsf1r9osMcJd9uGuS_AVWLHYU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9RAEC7WWVAv4hNHV21QDx7CJJ3OowURZzPDrrsOgziyt2w_14WQrJMsMgf_mL_O6jxmBcXbEgh5NDlUf13VVamqD-AVN5FEKEhPqEh7zASpJ0PLPS7RVjMro7htmf9pER-s2MeT6GQHfg21MC6tctCJraLWlXIx8gkabjRdPA2Cie3TIpbZ_P3Fd88xSLk_rQOdRgeRI7P5ge5b_e4ww7l-Tel89mX_wOsZBjwVxkHjCWoSoVnCuQniWGjDdGqlnyrJtBKSCmYVC1Flo5eASi0S7pBSK1TxwlIb4ndvwG6CXpE_gt3pbLH8vI3w-CHC22ddT9Qw5P5kXQfOf4oc6fofVrAlC_jLFrQGbn4X7vQ7U_Khg9I92DHlfbjVk6R_2zyAn8eiplmVvSVdSQLJTNMmcpVkirZQE7zIzs8cCwmZFaaL9RJHtlbUOHaNelUTV86CN2VtyLI6LxuyX1SXuiYuHkwcPzKuh2JDvjoXXpMVQrJNWWg2D2F1LbJ9BKOyKs1jICYJZIJ-mTKpj3CKpKWR5jEXxpcSz2N4M0gzV31rc8ewUeTo4jjJ51eSH8PL7diLrqHHP0dN3aRsR7gm3O2Dan2W92s655LJVAhcBUnALHopGrfbRrKUpVZQHY5hb5jSvNcMdX6F4yf_f_0CbiLA8-PDxdFTuE1d1UWbMLQHo2Z9aZ7hXqiRz3vQETi9bpz_BuuRIxc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Las2DoD%3A+Change+Detection+Based+on+Digital+Elevation+Models+Derived+from+Dense+Point+Clouds+with+Spatially+Varied+Uncertainty&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Gene+Bailey&rft.au=Yingkui+Li&rft.au=Nathan+McKinney&rft.au=Daniel+Yoder&rft.date=2022-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=7&rft.spage=1537&rft_id=info:doi/10.3390%2Frs14071537&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9b4b8aabec714f729d099eb4848fa2d3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |