Las2DoD: Change Detection Based on Digital Elevation Models Derived from Dense Point Clouds with Spatially Varied Uncertainty

The advances of remote sensing techniques allow for the generation of dense point clouds to detect detailed surface changes up to centimeter/millimeter levels. However, there is still a need for an easy method to derive such surface changes based on digital elevation models generated from dense poin...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 7; p. 1537
Main Authors Bailey, Gene, Li, Yingkui, McKinney, Nathan, Yoder, Daniel, Wright, Wesley, Washington-Allen, Robert
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2022
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs14071537

Cover

Loading…
Abstract The advances of remote sensing techniques allow for the generation of dense point clouds to detect detailed surface changes up to centimeter/millimeter levels. However, there is still a need for an easy method to derive such surface changes based on digital elevation models generated from dense point clouds while taking into consideration spatial varied uncertainty. We present a straightforward method, Las2DoD, to quantify surface change directly from point clouds with spatially varied uncertainty. This method uses a cell-based Welch’s t-test to determine whether each cell of a surface experienced a significant elevation change based on the points measured within the cell. Las2DoD is coded in Python with a simple graphic user interface. It was applied in a case study to quantify hillslope erosion on two plots: one dominated by rill erosion, and the other by sheet erosion, in southeastern United States. The results from the rilled plot indicate that Las2DoD can estimate 90% of the total measured sediment, in comparison to 58% and 70% from two other commonly used methods. The Las2DOD-derived result is less accurate (65%) but still outperforms the other two methods (30% and 48%) for the plot dominated by sheet erosion. Las2DoD captures more low-magnitude changes and is particularly useful where surface changes are small but contribute significantly to the total surface change when summed.
AbstractList The advances of remote sensing techniques allow for the generation of dense point clouds to detect detailed surface changes up to centimeter/millimeter levels. However, there is still a need for an easy method to derive such surface changes based on digital elevation models generated from dense point clouds while taking into consideration spatial varied uncertainty. We present a straightforward method, Las2DoD, to quantify surface change directly from point clouds with spatially varied uncertainty. This method uses a cell-based Welch’s t-test to determine whether each cell of a surface experienced a significant elevation change based on the points measured within the cell. Las2DoD is coded in Python with a simple graphic user interface. It was applied in a case study to quantify hillslope erosion on two plots: one dominated by rill erosion, and the other by sheet erosion, in southeastern United States. The results from the rilled plot indicate that Las2DoD can estimate 90% of the total measured sediment, in comparison to 58% and 70% from two other commonly used methods. The Las2DOD-derived result is less accurate (65%) but still outperforms the other two methods (30% and 48%) for the plot dominated by sheet erosion. Las2DoD captures more low-magnitude changes and is particularly useful where surface changes are small but contribute significantly to the total surface change when summed.
Author Washington-Allen, Robert
Yoder, Daniel
Bailey, Gene
Wright, Wesley
Li, Yingkui
McKinney, Nathan
Author_xml – sequence: 1
  givenname: Gene
  surname: Bailey
  fullname: Bailey, Gene
– sequence: 2
  givenname: Yingkui
  orcidid: 0000-0002-3722-8960
  surname: Li
  fullname: Li, Yingkui
– sequence: 3
  givenname: Nathan
  orcidid: 0000-0002-7590-2792
  surname: McKinney
  fullname: McKinney, Nathan
– sequence: 4
  givenname: Daniel
  surname: Yoder
  fullname: Yoder, Daniel
– sequence: 5
  givenname: Wesley
  surname: Wright
  fullname: Wright, Wesley
– sequence: 6
  givenname: Robert
  orcidid: 0000-0001-6874-5488
  surname: Washington-Allen
  fullname: Washington-Allen, Robert
BookMark eNptkU1vEzEQhleoSJTSC7_AEjekUH9ld80NklIqBYEE5WqN7XHqyF0H2ynKgf-O04BACPvgsf28r8czT7uTKU3Ydc8ZfSWEohe5MEkHNhfDo-6U04HPJFf85K_4SXdeyoa2IQRTVJ52P1ZQ-DItX5PFLUxrJEusaGtIE3kLBR1pwTKsQ4VILiPew8PVh-QwlsbmcN8Yn9Nd20wFyacUpkoWMe1cId9DvSWft00DMe7JV8ih0TeTxVyhcftn3WMPseD5r_Wsu3l3-WXxfrb6eHW9eLOaWdGzOgOOAzg5KIWs78GhdKM3dLRGOguGg_RWivbBns_RsDkcpjHO9sMInntx1l0ffV2Cjd7mcAd5rxME_XCQ8lpDrsFG1MpIMwIYtAOTfuDK0faskaMcPXAnmteLo9c2p287LFVv0i5PLX3Ne6koUyNjjaJHyuZUSkavbavhoXg1Q4iaUX3omf7TsyZ5-Y_kd6L_gX8C4xmaNg
CitedBy_id crossref_primary_10_1016_j_measurement_2023_113684
crossref_primary_10_3390_rs14143366
crossref_primary_10_3390_rs15215163
crossref_primary_10_1007_s10661_024_13597_9
crossref_primary_10_1109_TGRS_2025_3531495
crossref_primary_10_1002_ldr_4712
crossref_primary_10_30897_ijegeo_1344526
crossref_primary_10_3390_geomatics2040025
crossref_primary_10_1016_j_catena_2023_107534
crossref_primary_10_1029_2022EA002420
crossref_primary_10_3390_rs14194776
Cites_doi 10.1016/j.geomorph.2010.10.039
10.1002/esp.3721
10.1016/j.iswcr.2017.06.002
10.1016/j.geoderma.2020.114477
10.1016/j.still.2012.07.002
10.1002/ldr.2967
10.1002/esp.3344
10.1016/0169-555X(88)90006-2
10.3390/rs5115851
10.1016/j.catena.2014.04.012
10.1061/(ASCE)SU.1943-5428.0000346
10.3389/feart.2020.587999
10.1029/2011JF002289
10.3390/rs11050586
10.1016/j.scitotenv.2018.11.137
10.1002/esp.3767
10.3390/rs14061315
10.1002/esp.483
10.1002/esp.2206
10.1016/S0169-555X(02)00320-3
10.1016/j.isprsjprs.2013.04.009
10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
10.1061/(ASCE)HE.1943-5584.0000746
10.1016/j.geomorph.2014.03.008
10.1016/j.geomorph.2016.11.009
10.1016/j.geomorph.2017.01.001
10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y
10.1016/j.scitotenv.2020.138320
10.13031/2013.20101
10.2134/jeq2005.0130
10.1029/2007GL031939
10.1016/j.cageo.2015.06.021
10.1016/j.catena.2019.104363
10.1016/j.geomorph.2012.08.021
10.13031/2013.16489
10.1016/0167-1987(88)90014-1
10.1016/j.geomorph.2012.11.023
10.1016/j.geomorph.2009.02.006
10.1016/j.catena.2014.07.001
10.5194/tc-7-1879-2013
10.1016/j.isprsjprs.2018.05.002
10.1016/j.geomorph.2016.06.027
10.1002/esp.1886
10.1016/j.geomorph.2015.06.008
10.1002/esp.3353
10.1016/j.geomorph.2010.01.009
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs14071537
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_9b4b8aabec714f729d099eb4848fa2d3
10_3390_rs14071537
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-a2e7ad4799e166ade4d8fb08cb4dcab2a4fc43429625eb15a5a5abbdc678af2f3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:28:34 EDT 2025
Fri Jul 25 09:31:55 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Tue Jul 01 01:59:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a2e7ad4799e166ade4d8fb08cb4dcab2a4fc43429625eb15a5a5abbdc678af2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7590-2792
0000-0002-3722-8960
0000-0001-6874-5488
OpenAccessLink https://doaj.org/article/9b4b8aabec714f729d099eb4848fa2d3
PQID 2649019811
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_9b4b8aabec714f729d099eb4848fa2d3
proquest_journals_2649019811
crossref_citationtrail_10_3390_rs14071537
crossref_primary_10_3390_rs14071537
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Goodwin (ref_8) 2017; 282
Govers (ref_51) 1988; 1
Quinton (ref_17) 2020; 375
Densmore (ref_16) 2011; 36
Lefsky (ref_1) 2002; 52
Bonilla (ref_42) 2006; 35
ref_13
Tarolli (ref_3) 2009; 113
James (ref_38) 2012; 137
Lague (ref_31) 2013; 82
Slatton (ref_4) 2007; 34
Barneveld (ref_48) 2013; 38
Seo (ref_44) 2005; 48
Croke (ref_37) 2013; 184
Lane (ref_40) 2003; 28
Tarolli (ref_2) 2014; 216
Neugirg (ref_26) 2016; 269
Rousseva (ref_50) 1988; 12
Li (ref_7) 2020; 8
Kaiser (ref_25) 2018; 29
Griesbaum (ref_6) 2013; 5
Perroy (ref_5) 2010; 118
Eltner (ref_10) 2015; 245
Brasington (ref_34) 2000; 25
Yoder (ref_45) 2005; 60
Blasone (ref_36) 2014; 123
Turunen (ref_20) 2020; 187
ref_35
Day (ref_14) 2013; 38
ref_30
Vericat (ref_15) 2014; 120
Rengers (ref_9) 2015; 40
Pinson (ref_46) 2004; 20
Prosdocimi (ref_23) 2015; 40
Wheaton (ref_33) 2010; 35
Welch (ref_41) 1947; 34
Fan (ref_47) 2015; 83
Meijer (ref_19) 2013; 126
Whitehead (ref_27) 2013; 7
Lu (ref_11) 2017; 5
Lu (ref_12) 2019; 655
Williams (ref_32) 2012; 2
Meinen (ref_24) 2020; 729
Bolkas (ref_18) 2021; 147
Cook (ref_28) 2017; 278
Randrup (ref_49) 2001; 27
Roux (ref_29) 2005; 36
Brasington (ref_39) 2003; 53
Yang (ref_52) 2018; 143
Hoomehr (ref_43) 2013; 18
James (ref_22) 2012; 117
Westoby (ref_21) 2012; 179
References_xml – volume: 137
  start-page: 181
  year: 2012
  ident: ref_38
  article-title: Geomorphic Change Detection Using Historic Maps and DEM Differencing: The Temporal Dimension of Geospatial Analysis
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.10.039
– volume: 40
  start-page: 1304
  year: 2015
  ident: ref_9
  article-title: The Evolution of Gully Headcut Morphology: A Case Study Using Terrestrial Laser Scanning and Hydrological Monitoring
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.3721
– volume: 5
  start-page: 241
  year: 2017
  ident: ref_11
  article-title: The Effect of Grid Size on the Quantification of Erosion, Deposition, and Rill Network
  publication-title: Int. Soil Water Conserv. Res.
  doi: 10.1016/j.iswcr.2017.06.002
– volume: 27
  start-page: 109
  year: 2001
  ident: ref_49
  article-title: Measuring Soil Compaction on Construction Sites: A Review of Surface Nuclear Gauges and Penetrometers
  publication-title: J. Arboric.
– volume: 375
  start-page: 114477
  year: 2020
  ident: ref_17
  article-title: High-Resolution Monitoring of Diffuse (Sheet or Interrill) Erosion Using Structure-from-Motion
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114477
– volume: 126
  start-page: 1
  year: 2013
  ident: ref_19
  article-title: Measuring Erosion in Long-Term Tillage Plots Using Ground-Based Lidar
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2012.07.002
– volume: 29
  start-page: 2264
  year: 2018
  ident: ref_25
  article-title: Addressing Uncertainties in Interpreting Soil Surface Changes by Multitemporal High-Resolution Topography Data across Scales
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2967
– volume: 38
  start-page: 90
  year: 2013
  ident: ref_48
  article-title: Assessment of Terrestrial Laser Scanning Technology for Obtaining High-Resolution DEMs of Soils: TLS FOR HIGH-RESOLUTION DEMS
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.3344
– volume: 1
  start-page: 343
  year: 1988
  ident: ref_51
  article-title: Assessment of the Interrill and Rill Contributions to Total Soil Loss from an Upland Field Plot
  publication-title: Geomorphology
  doi: 10.1016/0169-555X(88)90006-2
– volume: 2
  start-page: 1
  year: 2012
  ident: ref_32
  article-title: DEMs of Difference
  publication-title: Geomorphol. Tech.
– volume: 5
  start-page: 5851
  year: 2013
  ident: ref_6
  article-title: GIS-Based Detection of Gullies in Terrestrial LiDAR Data of the Cerro Llamoca Peatland (Peru)
  publication-title: Remote Sens.
  doi: 10.3390/rs5115851
– volume: 120
  start-page: 164
  year: 2014
  ident: ref_15
  article-title: Patterns of Topographic Change in Sub-Humid Badlands Determined by High Resolution Multi-Temporal Topographic Surveys
  publication-title: CATENA
  doi: 10.1016/j.catena.2014.04.012
– ident: ref_35
– volume: 147
  start-page: 04021001
  year: 2021
  ident: ref_18
  article-title: Comparison of SUAS Photogrammetry and TLS for Detecting Changes in Soil Surface Elevations Following Deep Tillage
  publication-title: J. Surv. Eng.
  doi: 10.1061/(ASCE)SU.1943-5428.0000346
– volume: 8
  start-page: 14
  year: 2020
  ident: ref_7
  article-title: Quantifying Short-Term Erosion and Deposition in an Active Gully Using Terrestrial Laser Scanning: A Case Study From West Tennessee, USA
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2020.587999
– volume: 117
  start-page: 03017
  year: 2012
  ident: ref_22
  article-title: Straightforward Reconstruction of 3D Surfaces and Topography with a Camera: Accuracy and Geoscience Application
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1029/2011JF002289
– ident: ref_30
  doi: 10.3390/rs11050586
– volume: 655
  start-page: 1479
  year: 2019
  ident: ref_12
  article-title: Structural and Sedimentological Connectivity on a Rilled Hillslope
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.137
– volume: 40
  start-page: 1891
  year: 2015
  ident: ref_23
  article-title: Bank Erosion in Agricultural Drainage Networks: New Challenges from Structure-from-Motion Photogrammetry for Post-Event Analysis
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.3767
– ident: ref_13
  doi: 10.3390/rs14061315
– volume: 28
  start-page: 249
  year: 2003
  ident: ref_40
  article-title: Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.483
– volume: 36
  start-page: 1847
  year: 2011
  ident: ref_16
  article-title: Detection of Surface Change in Complex Topography Using Terrestrial Laser Scanning: Application to the Illgraben Debris-Flow Channel
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.2206
– volume: 53
  start-page: 299
  year: 2003
  ident: ref_39
  article-title: Methodological Sensitivity of Morphometric Estimates of Coarse Fluvial Sediment Transport
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(02)00320-3
– volume: 82
  start-page: 10
  year: 2013
  ident: ref_31
  article-title: Accurate 3D Comparison of Complex Topography with Terrestrial Laser Scanner: Application to the Rangitikei Canyon (N-Z)
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.04.009
– volume: 52
  start-page: 19
  year: 2002
  ident: ref_1
  article-title: Lidar Remote Sensing for Ecosystem StudiesLidar, an Emerging Remote Sensing Technology That Directly Measures the Three-Dimensional Distribution of Plant Canopies, Can Accurately Estimate Vegetation Structural Attributes and Should Be of Particular Interest to Forest, Landscape, and Global Ecologists
  publication-title: BioScience
  doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
– volume: 18
  start-page: 1627
  year: 2013
  ident: ref_43
  article-title: Curve Numbers for Low-Compaction Steep-Sloped Reclaimed Mine Lands in the Southern Appalachians
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000746
– volume: 216
  start-page: 295
  year: 2014
  ident: ref_2
  article-title: High-Resolution Topography for Understanding Earth Surface Processes: Opportunities and Challenges
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.03.008
– volume: 278
  start-page: 195
  year: 2017
  ident: ref_28
  article-title: An Evaluation of the Effectiveness of Low-Cost UAVs and Structure from Motion for Geomorphic Change Detection
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.11.009
– volume: 282
  start-page: 195
  year: 2017
  ident: ref_8
  article-title: Monitoring Gully Change: A Comparison of Airborne and Terrestrial Laser Scanning Using a Case Study from Aratula, Queensland
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.01.001
– volume: 25
  start-page: 973
  year: 2000
  ident: ref_34
  article-title: Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y
– volume: 729
  start-page: 138320
  year: 2020
  ident: ref_24
  article-title: Where Did the Soil Go? Quantifying One Year of Soil Erosion on a Steep Tile-Drained Agricultural Field
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138320
– volume: 48
  start-page: 2155
  year: 2005
  ident: ref_44
  article-title: SEDIMENT LOSS AND NUTRIENT RUNOFF FROM THREE FERTILIZER APPLICATION METHODS
  publication-title: Trans. ASAE
  doi: 10.13031/2013.20101
– volume: 35
  start-page: 216
  year: 2006
  ident: ref_42
  article-title: Instrumentation for Measuring Runoff, Sediment, and Chemical Losses from Agricultural Fields
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2005.0130
– volume: 34
  start-page: L23S10
  year: 2007
  ident: ref_4
  article-title: Airborne Laser Swath Mapping: Achieving the Resolution and Accuracy Required for Geosurficial Research
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL031939
– volume: 83
  start-page: 54
  year: 2015
  ident: ref_47
  article-title: Error in Target-Based Georeferencing and Registration in Terrestrial Laser Scanning
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.06.021
– volume: 187
  start-page: 104363
  year: 2020
  ident: ref_20
  article-title: Terrestrial Laser Scanning Data Combined with 3D Hydrological Modeling Decipher the Role of Tillage in Field Water Balance and Runoff Generation
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104363
– volume: 60
  start-page: 68
  year: 2005
  ident: ref_45
  article-title: No-till Transplanting of Vegetables and Tobacco to Reduce Erosion and Nutrient Surface Runoff
  publication-title: J. Soil Water Conserv.
– volume: 179
  start-page: 300
  year: 2012
  ident: ref_21
  article-title: ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.08.021
– volume: 20
  start-page: 433
  year: 2004
  ident: ref_46
  article-title: Design and evaluation of an improved flow divider for sampling runoff plots
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.16489
– volume: 12
  start-page: 235
  year: 1988
  ident: ref_50
  article-title: Use of a Surface Gamma-Neutron Gauge for in Situ Measurement of Changes in Bulk Density of the Tilled Zone
  publication-title: Soil Tillage Res.
  doi: 10.1016/0167-1987(88)90014-1
– volume: 184
  start-page: 111
  year: 2013
  ident: ref_37
  article-title: The Use of Multi Temporal LiDAR to Assess Basin-Scale Erosion and Deposition Following the Catastrophic January 2011 Lockyer Flood, SE Queensland, Australia
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.11.023
– volume: 113
  start-page: 47
  year: 2009
  ident: ref_3
  article-title: Hillslope-to-Valley Transition Morphology: New Opportunities from High Resolution DTMs
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.02.006
– volume: 34
  start-page: 28
  year: 1947
  ident: ref_41
  article-title: The Generalization of `Student’s’ Problem When Several Different Population Variances Are Involved
  publication-title: Biometrika
– volume: 123
  start-page: 23
  year: 2014
  ident: ref_36
  article-title: Monitoring Sediment Source Areas in a Debris-Flow Catchment Using Terrestrial Laser Scanning
  publication-title: CATENA
  doi: 10.1016/j.catena.2014.07.001
– volume: 7
  start-page: 1879
  year: 2013
  ident: ref_27
  article-title: Brief Communication: Low-Cost, on-Demand Aerial Photogrammetry for Glaciological Measurement
  publication-title: Cryosphere
  doi: 10.5194/tc-7-1879-2013
– volume: 36
  start-page: W19
  year: 2005
  ident: ref_29
  article-title: Change Detection on Point Cloud Data Acquired with a Ground Laser Scanner
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 143
  start-page: 48
  year: 2018
  ident: ref_52
  article-title: An Analytical Approach to Evaluate Point Cloud Registration Error Utilizing Targets
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.05.002
– volume: 269
  start-page: 8
  year: 2016
  ident: ref_26
  article-title: Erosion Processes in Calanchi in the Upper Orcia Valley, Southern Tuscany, Italy Based on Multitemporal High-Resolution Terrestrial LiDAR and UAV Surveys
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.06.027
– volume: 35
  start-page: 136
  year: 2010
  ident: ref_33
  article-title: Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.1886
– volume: 245
  start-page: 243
  year: 2015
  ident: ref_10
  article-title: Accuracy Constraints of Terrestrial Lidar Data for Soil Erosion Measurement: Application to a Mediterranean Field Plot
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.06.008
– volume: 38
  start-page: 1055
  year: 2013
  ident: ref_14
  article-title: Measuring Bluff Erosion Part 1: Terrestrial Laser Scanning Methods for Change Detection
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.3353
– volume: 118
  start-page: 288
  year: 2010
  ident: ref_5
  article-title: Comparison of Gully Erosion Estimates Using Airborne and Ground-Based LiDAR on Santa Cruz Island, California
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.01.009
SSID ssj0000331904
Score 2.3656263
Snippet The advances of remote sensing techniques allow for the generation of dense point clouds to detect detailed surface changes up to centimeter/millimeter levels....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1537
SubjectTerms Algorithms
Change detection
Confidence intervals
DEM of difference (DoD)
Digital Elevation Models
digital elevation models (DEM)
hillslope erosion
Lasers
Methods
point cloud
Remote sensing
Rill erosion
Sheet erosion
Standard deviation
terrestrial laser scanning (TLS)
Uncertainty
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe4ALggJiaakslQuHqHk4ic0Fsd2tKlSqquqi3iKPH6VSlJRNethD_zsziXdbCYQiRXn45JnM528yno-xT8rlgK4AkTa5jYRLZASZV5ECxGrhIS-Glvk_zovThfh-nV-HhFsXyirXMXEI1LY1lCM_QuBG6FIySb7e_Y5INYr-rgYJjWdsB0OwRPK1M52fX1xusixxhi4Wi7EvaYb8_mjZJcRhchI-f4JEQ8P-v-LxADInr9jLsDrk30ZzvmZbrtllz4NQ-a_VG_Zwprt01s6-8HFbAJ-5fiimavgU8chyvJjd3pASCJ_Xbsy3chI8qzscu8TYZjltKcGbpnP8or1ten5ct_e245ST5aRRjD5Zr_hPotGWL9AthrKBfvWWLU7mV8enUVBQiExWJH2kU1dqK0qlXFIU2jphpYdYGhDWaEi18EZkCEnIgjBo55oOAGsQwrRPffaObTdt494z7soESuRGxskYTZqDT3OrCqVdDIDnCfu8ns3KhPbipHJRV0gzaOarx5mfsMPN2LuxqcY_R03JKJsR1Ah7eNAub6rwXVUKBEit0RPLRHhkChaXvA6EFNLr1GYTtr82aRW-zq569KUP_3-9x16ktN1hqNTZZ9v98t59xEVIDwfB0_4AnSnfRg
  priority: 102
  providerName: ProQuest
Title Las2DoD: Change Detection Based on Digital Elevation Models Derived from Dense Point Clouds with Spatially Varied Uncertainty
URI https://www.proquest.com/docview/2649019811
https://doaj.org/article/9b4b8aabec714f729d099eb4848fa2d3
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4-DnoRn7i6LgG9eChu27RNve3aXUVURF3xVjJNogulK9t62IP_3UladUHBixT6YiBl8nUeYfINIUexCgChAI7IAukw5XIHfB07MaCvZhqC0FLmX9-EFyN2-RQ8zbX6MjVhNT1wrbiTGBhwIXCoyGUaQ0GJMY0CxhnXwpOW5xN93lwyZW2wj9DqspqP1Me8_mRauiZ3CUzD8zkPZIn6f9hh61yG62StiQppr_6aDbKgik2y0jQof5ltkfcrUXrJJDml9XYAmqjKFlEVtI9-SFK8ScbPpgMIHeSqXmelptFZXqLsFG2apGYrCT4UpaK3k3FR0bN88iZLatZiqelNjFjMZ_TRpM-SjhAOtlygmm2T0XDwcHbhNJ0TnMwP3coRnoqEZBFqyg1DIRWTXEOXZ8BkJsATTGfMR1eE2Q8a60CYA0Bm6LqE9rS_Q5aKSaF2CVWRCxHmRJniXZzKALQXyDiMheoC4LlFjj-1mWYNrbjpbpGnmF4Yzaffmm-Rwy_Z15pM41epvpmULwlDgG1fICzSBhbpX7BokfbnlKbNX1mmGPxh-BNz1937jzH2yapnNkPYOp42Waqmb-oAQ5QKOmSRD887ZLmXXF_d47U_uLm961iMfgBUmetn
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWClgCDhyiJo6T2EgI0abLlm4rDl3UW_CzrRQlZZMK7YG_xG9kJo8tEohbFSnKw8ph_HnGM5mZj5DX0iUaoKADZRIbcBeJQMdeBlKDreZeJ2nXMv_oOJ0t-OfT5HSD_BprYTCtctSJnaK2tcEY-Q4YbjBdUkTRh8vvAbJG4d_VkUKjh8WhW_0Al615f5DD_L5hbLp_sjcLBlaBwMRp1AaKuUxZnknpojRV1nErvA6F0dwapZni3vAY1DR4BqDIEoWH1taAWlee-Ri-e4vc5nEscUWJ6ad1TCeMAdAh77ugwvtwZ9lE6DElSLP-h93r6AH-0v6dSZveI3eHvSj92IPnPtlw1QOyNdCin68ekp9z1bC8zt_RvgiB5q7tUrcqugvWz1K4yC_OkHeE7peuj-5SpFcrGxi7BE1qKRawwE3VOPqlvqhaulfWV7ahGAGmyIgMK6Bc0a_otFu6ABB2SQrt6hFZ3IhkH5PNqq7cE0JdFukMPDHjRAgASrRniZWpVC7UGs4T8naUZmGGZubIqVEW4NSg5ItryU_Iq_XYy76Fxz9H7eKkrEdg2-3uQb08K4ZVXEjNtVAKcJ9F3INfYmGD7TQXXHjFbDwh2-OUFoMuaIpr5D79_-uXZGt2cjQv5gfHh8_IHYaFFl2O0DbZbJdX7jlsf1r9osMcJd9uGuS_AVWLHYU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9RAEC7WWVAv4hNHV21QDx7CJJ3OowURZzPDrrsOgziyt2w_14WQrJMsMgf_mL_O6jxmBcXbEgh5NDlUf13VVamqD-AVN5FEKEhPqEh7zASpJ0PLPS7RVjMro7htmf9pER-s2MeT6GQHfg21MC6tctCJraLWlXIx8gkabjRdPA2Cie3TIpbZ_P3Fd88xSLk_rQOdRgeRI7P5ge5b_e4ww7l-Tel89mX_wOsZBjwVxkHjCWoSoVnCuQniWGjDdGqlnyrJtBKSCmYVC1Flo5eASi0S7pBSK1TxwlIb4ndvwG6CXpE_gt3pbLH8vI3w-CHC22ddT9Qw5P5kXQfOf4oc6fofVrAlC_jLFrQGbn4X7vQ7U_Khg9I92DHlfbjVk6R_2zyAn8eiplmVvSVdSQLJTNMmcpVkirZQE7zIzs8cCwmZFaaL9RJHtlbUOHaNelUTV86CN2VtyLI6LxuyX1SXuiYuHkwcPzKuh2JDvjoXXpMVQrJNWWg2D2F1LbJ9BKOyKs1jICYJZIJ-mTKpj3CKpKWR5jEXxpcSz2N4M0gzV31rc8ewUeTo4jjJ51eSH8PL7diLrqHHP0dN3aRsR7gm3O2Dan2W92s655LJVAhcBUnALHopGrfbRrKUpVZQHY5hb5jSvNcMdX6F4yf_f_0CbiLA8-PDxdFTuE1d1UWbMLQHo2Z9aZ7hXqiRz3vQETi9bpz_BuuRIxc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Las2DoD%3A+Change+Detection+Based+on+Digital+Elevation+Models+Derived+from+Dense+Point+Clouds+with+Spatially+Varied+Uncertainty&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Gene+Bailey&rft.au=Yingkui+Li&rft.au=Nathan+McKinney&rft.au=Daniel+Yoder&rft.date=2022-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=7&rft.spage=1537&rft_id=info:doi/10.3390%2Frs14071537&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9b4b8aabec714f729d099eb4848fa2d3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon