Spectrum Inference in Cognitive Radio Networks: Algorithms and Applications
Spectrum inference, also known as spectrum prediction in the literature, is a promising technique of inferring the occupied/free state of radio spectrum from already known/measured spectrum occupancy statistics by effectively exploiting the inherent correlations among them. In the past few years, sp...
Saved in:
Published in | IEEE Communications surveys and tutorials Vol. 20; no. 1; pp. 150 - 182 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spectrum inference, also known as spectrum prediction in the literature, is a promising technique of inferring the occupied/free state of radio spectrum from already known/measured spectrum occupancy statistics by effectively exploiting the inherent correlations among them. In the past few years, spectrum inference has gained increasing attention owing to its wide applications in cognitive radio networks (CRNs), ranging from adaptive spectrum sensing, and predictive spectrum mobility, to dynamic spectrum access and smart topology control, to name just a few. In this paper, we provide a comprehensive survey and tutorial on the recent advances in spectrum inference. Specifically, we first present the preliminaries of spectrum inference, including the sources of spectrum occupancy statistics, the models of spectrum usage, and characterize the predictability of spectrum state evolution. By introducing the taxonomy of spectrum inference from a time-frequency-space perspective, we offer an in-depth tutorial on the existing algorithms. Furthermore, we provide a comparative analysis of various spectrum inference algorithms and discuss the metrics of evaluating the efficiency of spectrum inference. We also portray the various potential applications of spectrum inference in CRNs and beyond, with an outlook to the fifth-generation mobile communications and next generation high frequency communications systems. Last but not least, we highlight the critical research challenges and open issues ahead. |
---|---|
AbstractList | Spectrum inference, also known as spectrum prediction in the literature, is a promising technique of inferring the occupied/free state of radio spectrum from already known/measured spectrum occupancy statistics by effectively exploiting the inherent correlations among them. In the past few years, spectrum inference has gained increasing attention owing to its wide applications in cognitive radio networks (CRNs), ranging from adaptive spectrum sensing, and predictive spectrum mobility, to dynamic spectrum access and smart topology control, to name just a few. In this paper, we provide a comprehensive survey and tutorial on the recent advances in spectrum inference. Specifically, we first present the preliminaries of spectrum inference, including the sources of spectrum occupancy statistics, the models of spectrum usage, and characterize the predictability of spectrum state evolution. By introducing the taxonomy of spectrum inference from a time-frequency-space perspective, we offer an in-depth tutorial on the existing algorithms. Furthermore, we provide a comparative analysis of various spectrum inference algorithms and discuss the metrics of evaluating the efficiency of spectrum inference. We also portray the various potential applications of spectrum inference in CRNs and beyond, with an outlook to the fifth-generation mobile communications and next generation high frequency communications systems. Last but not least, we highlight the critical research challenges and open issues ahead. |
Author | Guoru Ding Yu-Dong Yao Yutao Jiao Yulong Zou Jinlong Wang Qihui Wu Hanzo, Lajos |
Author_xml | – sequence: 1 surname: Guoru Ding fullname: Guoru Ding email: dr.guoru.ding@ieee.org organization: Nat. Mobile Commun. Res. Lab., Southeast Univ., Nanjing, China – sequence: 2 surname: Yutao Jiao fullname: Yutao Jiao email: yjiao001@ntu.edu.sg organization: Sch. of Comput. Sci. & Eng., Nanyang Technol. Univ., Singapore, Singapore – sequence: 3 surname: Jinlong Wang fullname: Jinlong Wang email: wjl543@sina.com organization: Coll. of Commun. Eng., PLA Univ. of Sci. & Technol., Nanjing, China – sequence: 4 surname: Yulong Zou fullname: Yulong Zou email: yulong.zou@njupt.edu.cn organization: Sch. of Telecommun. & Inf. Eng., Nanjing Univ. of Posts & Telecommun., Nanjing, China – sequence: 5 surname: Qihui Wu fullname: Qihui Wu email: wuqihui2014@sina.com organization: Coll. of Electron. & Inf. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China – sequence: 6 surname: Yu-Dong Yao fullname: Yu-Dong Yao email: yyao@stevens.edu organization: Dept. of Electr. & Comput. Eng., Stevens Inst. of Technol., Hoboken, NJ, USA – sequence: 7 givenname: Lajos surname: Hanzo fullname: Hanzo, Lajos email: lh@ecs.soton.ac.uk organization: Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton, UK |
BookMark | eNotzE1PwyAYAGBiNHGb_gG98Ac6Xz4Krbem8WNxusTNxNtCKUy0hQZQ47_3oKfn9szRsQ_eIHRBYEkI1Fft5nG7W1IgckllSaCsjtCMMskKycvXUzRP6R2AU17DDD1sJ6Nz_BzxylsTjdcGO4_bcPAuuy-Dn1XvAn4y-TvEj3SNm-EQostvY8LK97iZpsFplV3w6QydWDUkc_7vAr3c3uza-2K9uVu1zbrQTJBcKFqXhAvKSgChBSgFpLOSGqm7vra6U1z0kvaCglWc6E5roqxmHdeqIqVlC3T59zpjzH6KblTxZ18BI4xR9gsi7U3N |
CitedBy_id | crossref_primary_10_1109_ACCESS_2018_2864222 crossref_primary_10_1109_ACCESS_2021_3125725 crossref_primary_10_3390_su15010508 crossref_primary_10_1109_TCCN_2023_3254524 crossref_primary_10_3390_s21020534 crossref_primary_10_1109_TCCN_2018_2874456 crossref_primary_10_1109_TCCN_2019_2958639 crossref_primary_10_1109_JSEN_2024_3403032 crossref_primary_10_1109_TVT_2020_2979047 crossref_primary_10_1109_TCOMM_2020_2965944 crossref_primary_10_1109_LWC_2023_3254048 crossref_primary_10_1109_TCCN_2022_3222792 crossref_primary_10_1007_s11276_020_02433_w crossref_primary_10_1007_s11277_021_09402_2 crossref_primary_10_1038_s41598_024_56311_y crossref_primary_10_1016_j_cja_2024_01_024 crossref_primary_10_1109_ACCESS_2018_2861798 crossref_primary_10_1109_OJCOMS_2020_3009241 crossref_primary_10_1002_ett_3442 crossref_primary_10_1109_ACCESS_2024_3358280 crossref_primary_10_1109_LCOMM_2020_3045205 crossref_primary_10_1109_TVT_2024_3497582 crossref_primary_10_1109_TVT_2020_3043837 crossref_primary_10_1155_2018_3217315 crossref_primary_10_1109_TCCN_2023_3313591 crossref_primary_10_1007_s11276_018_01927_y crossref_primary_10_11648_j_jeee_20251301_15 crossref_primary_10_1109_COMST_2020_3035427 crossref_primary_10_1109_ACCESS_2019_2956958 crossref_primary_10_1186_s13638_018_1269_0 crossref_primary_10_1109_COMST_2023_3296160 crossref_primary_10_1109_JIOT_2024_3468717 crossref_primary_10_1109_MNET_116_2200013 crossref_primary_10_1109_TCCN_2021_3066566 crossref_primary_10_1080_03772063_2021_1944336 crossref_primary_10_1109_LCOMM_2024_3451536 crossref_primary_10_1007_s41650_018_0013_6 crossref_primary_10_1016_j_icte_2022_07_002 crossref_primary_10_1080_1206212X_2024_2414042 crossref_primary_10_1109_TCCN_2021_3118456 crossref_primary_10_1109_ACCESS_2018_2885732 crossref_primary_10_1007_s11432_022_3566_4 crossref_primary_10_1186_s13638_022_02124_4 crossref_primary_10_1109_JIOT_2020_2970791 crossref_primary_10_1109_ACCESS_2020_2978005 crossref_primary_10_1109_ACCESS_2022_3229739 crossref_primary_10_2299_jsp_23_257 crossref_primary_10_1109_LCOMM_2024_3352571 crossref_primary_10_1109_MWC_001_1900398 crossref_primary_10_1109_TVT_2019_2946834 crossref_primary_10_1016_j_comnet_2018_10_002 crossref_primary_10_1109_TMC_2024_3442151 crossref_primary_10_1109_MVT_2021_3114138 crossref_primary_10_1155_2022_2857510 crossref_primary_10_1016_j_sigpro_2023_109131 crossref_primary_10_1109_ACCESS_2019_2957335 crossref_primary_10_1109_MWC_001_2000032 crossref_primary_10_1109_TVT_2020_2966637 crossref_primary_10_1007_s11042_019_7661_x crossref_primary_10_1109_TMC_2021_3081715 crossref_primary_10_1109_TVT_2022_3221054 crossref_primary_10_1109_TWC_2024_3495812 crossref_primary_10_1109_MIE_2020_3007568 crossref_primary_10_3390_info10110331 crossref_primary_10_1109_ACCESS_2017_2766076 crossref_primary_10_1109_TCCN_2023_3242360 crossref_primary_10_1109_JIOT_2024_3360726 crossref_primary_10_4018_JCIT_295252 crossref_primary_10_1016_j_phycom_2023_102052 crossref_primary_10_1016_j_jnca_2024_104051 crossref_primary_10_1109_TCCN_2020_3046330 crossref_primary_10_1109_ACCESS_2018_2836940 crossref_primary_10_1109_ACCESS_2021_3088423 crossref_primary_10_1109_TWC_2020_2968295 crossref_primary_10_3390_electronics11111770 crossref_primary_10_1155_2021_7125482 crossref_primary_10_1007_s11277_020_07869_z crossref_primary_10_1109_JSAC_2018_2864375 crossref_primary_10_1109_TNSE_2024_3350127 crossref_primary_10_1145_3524106 crossref_primary_10_3390_s21165261 crossref_primary_10_1109_TVT_2023_3244560 crossref_primary_10_1016_j_icte_2024_02_009 crossref_primary_10_3390_s24051498 crossref_primary_10_1016_j_aeue_2021_153642 crossref_primary_10_3390_s21010135 crossref_primary_10_1109_TVT_2021_3062462 crossref_primary_10_3390_s20236820 crossref_primary_10_3390_s21237902 crossref_primary_10_1007_s12559_021_09969_9 crossref_primary_10_34133_space_0109 crossref_primary_10_1109_ACCESS_2018_2843792 crossref_primary_10_3390_s20041146 crossref_primary_10_1002_ett_4004 |
ContentType | Journal Article |
DBID | 97E RIA RIE |
DOI | 10.1109/COMST.2017.2751058 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2373-745X |
EndPage | 182 |
ExternalDocumentID | 8031332 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20150717 funderid: 10.13039/501100004608 – fundername: China Post-Doctoral Science Funded Project – fundername: Jiangsu Planned Projects for Post-Doctoral Research Funds – fundername: National Natural Science Foundation of China grantid: 61401223; 61522109 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61501510; 61631020 funderid: 10.13039/501100001809 – fundername: Royal Society’s Wolfson Research Merit Award funderid: 10.13039/501100000288 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20140887; BK20150040 funderid: 10.13039/501100004608 – fundername: European Research Council’s Advance Fellow Grant Beam-Me-Up |
GroupedDBID | 0R~ 29I 2WC 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ IES IFIPE IFJZH IPLJI JAVBF LAI O9- OCL P2P RIA RIE RNS |
ID | FETCH-LOGICAL-c361t-a295146235006c60aa01bf72e7cbd9fcba46d72d620fa41cbcc1afc3b4ca815f3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:48:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-a295146235006c60aa01bf72e7cbd9fcba46d72d620fa41cbcc1afc3b4ca815f3 |
PageCount | 33 |
ParticipantIDs | ieee_primary_8031332 |
PublicationCentury | 2000 |
PublicationDate | 2018-Firstquarter |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-Firstquarter |
PublicationDecade | 2010 |
PublicationTitle | IEEE Communications surveys and tutorials |
PublicationTitleAbbrev | COMST |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0042490 |
Score | 2.5886557 |
Snippet | Spectrum inference, also known as spectrum prediction in the literature, is a promising technique of inferring the occupied/free state of radio spectrum from... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 150 |
SubjectTerms | Cognitive radio HF communications Inference algorithms Prediction algorithms Resource management Sensors Spectrum inference spectrum prediction Tutorials |
Title | Spectrum Inference in Cognitive Radio Networks: Algorithms and Applications |
URI | https://ieeexplore.ieee.org/document/8031332 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FcRbHhhJ6thxErNVFRUPtUjQSt0qvwIVNEFtuvDrOScNKoiBLfKS6M65u8--7zuELq3VobIcNq9IAKBEVHrCGO6xRFouHLlYl2qfg-h2FN6P-biBrr65MNbasvnM-u6xvMs3uV66o7J24oQGGQTcDQBuFVerjrohwAhSk2KIaHcf-89D17kV-zR2RUTyY3xKmT16O6hfv7dqGnnzl4Xy9ecvScb_ftgu2l6VkbhT-X0PNWy2j7bWxAVb6MGNli_myxm-q0l9eJrhbt0vhJ-kmeZ4UPWBL65x5_0ln0-L19kCy8zgztrV9gEa9W6G3VtvNTrB0ywKCk9SqJzA8ozDX6UjIiUJVBpTG2tlRKqVDCMTUxNRksow0ErrQKaaqVDLJOApO0TNLM_sEcI8kBHVnBoBAFYAWjEQ3ilkNUZCQwJzjFrOIJOPSh1jsrLFyd_Lp2gTnJJUhxhnqAlmsOeQ1gt1UfrzC7JIoqA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFH4helAPbmjcnYNHC-2008UbIRKQxUQh4UZmqxKlNVAu_nrftNSg8eCtmUub96Zvmfm-7wHcaC09oRlu3ijEBsWn3IqUYpYbcs0iQy6WudrnwG-PvIcxG1fg9psLo7XOwWe6Zh7zu3yVyqU5KquHRmjQxYC7iXmf0YKtVcZdDxsJu6TF2FG9-dh_HhrsVlCjgSkjwh8DVPL80dqDfvnmAjbyVltmoiY_f4ky_vfT9mF3VUiSRuH5A6jo5BB21uQFq9A1w-Wz-XJGOiWtj0wT0iwRQ-SJq2lKBgUSfHFHGu8v6Xyavc4WhCeKNNYut49g1LofNtvWaniCJV3fySxOsXZC27sM_yvp25zbjogDqgMpVBRLwT1fBVT51I6550ghpcNj6QpP8tBhsXsMG0ma6BMgzOE-lYyqCFvYCPsVhQGeYl5zbU_ZjjqFqjHI5KPQx5isbHH29_I1bLWH_d6k1xl0z2EbHRQWRxoXsIEm0ZeY5DNxlfv2C2F4peo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectrum+Inference+in+Cognitive+Radio+Networks%3A+Algorithms+and+Applications&rft.jtitle=IEEE+Communications+surveys+and+tutorials&rft.au=Guoru+Ding&rft.au=Yutao+Jiao&rft.au=Jinlong+Wang&rft.au=Yulong+Zou&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2373-745X&rft.volume=20&rft.issue=1&rft.spage=150&rft.epage=182&rft_id=info:doi/10.1109%2FCOMST.2017.2751058&rft.externalDocID=8031332 |