Spectrum Inference in Cognitive Radio Networks: Algorithms and Applications

Spectrum inference, also known as spectrum prediction in the literature, is a promising technique of inferring the occupied/free state of radio spectrum from already known/measured spectrum occupancy statistics by effectively exploiting the inherent correlations among them. In the past few years, sp...

Full description

Saved in:
Bibliographic Details
Published inIEEE Communications surveys and tutorials Vol. 20; no. 1; pp. 150 - 182
Main Authors Guoru Ding, Yutao Jiao, Jinlong Wang, Yulong Zou, Qihui Wu, Yu-Dong Yao, Hanzo, Lajos
Format Journal Article
LanguageEnglish
Published IEEE 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spectrum inference, also known as spectrum prediction in the literature, is a promising technique of inferring the occupied/free state of radio spectrum from already known/measured spectrum occupancy statistics by effectively exploiting the inherent correlations among them. In the past few years, spectrum inference has gained increasing attention owing to its wide applications in cognitive radio networks (CRNs), ranging from adaptive spectrum sensing, and predictive spectrum mobility, to dynamic spectrum access and smart topology control, to name just a few. In this paper, we provide a comprehensive survey and tutorial on the recent advances in spectrum inference. Specifically, we first present the preliminaries of spectrum inference, including the sources of spectrum occupancy statistics, the models of spectrum usage, and characterize the predictability of spectrum state evolution. By introducing the taxonomy of spectrum inference from a time-frequency-space perspective, we offer an in-depth tutorial on the existing algorithms. Furthermore, we provide a comparative analysis of various spectrum inference algorithms and discuss the metrics of evaluating the efficiency of spectrum inference. We also portray the various potential applications of spectrum inference in CRNs and beyond, with an outlook to the fifth-generation mobile communications and next generation high frequency communications systems. Last but not least, we highlight the critical research challenges and open issues ahead.
AbstractList Spectrum inference, also known as spectrum prediction in the literature, is a promising technique of inferring the occupied/free state of radio spectrum from already known/measured spectrum occupancy statistics by effectively exploiting the inherent correlations among them. In the past few years, spectrum inference has gained increasing attention owing to its wide applications in cognitive radio networks (CRNs), ranging from adaptive spectrum sensing, and predictive spectrum mobility, to dynamic spectrum access and smart topology control, to name just a few. In this paper, we provide a comprehensive survey and tutorial on the recent advances in spectrum inference. Specifically, we first present the preliminaries of spectrum inference, including the sources of spectrum occupancy statistics, the models of spectrum usage, and characterize the predictability of spectrum state evolution. By introducing the taxonomy of spectrum inference from a time-frequency-space perspective, we offer an in-depth tutorial on the existing algorithms. Furthermore, we provide a comparative analysis of various spectrum inference algorithms and discuss the metrics of evaluating the efficiency of spectrum inference. We also portray the various potential applications of spectrum inference in CRNs and beyond, with an outlook to the fifth-generation mobile communications and next generation high frequency communications systems. Last but not least, we highlight the critical research challenges and open issues ahead.
Author Guoru Ding
Yu-Dong Yao
Yutao Jiao
Yulong Zou
Jinlong Wang
Qihui Wu
Hanzo, Lajos
Author_xml – sequence: 1
  surname: Guoru Ding
  fullname: Guoru Ding
  email: dr.guoru.ding@ieee.org
  organization: Nat. Mobile Commun. Res. Lab., Southeast Univ., Nanjing, China
– sequence: 2
  surname: Yutao Jiao
  fullname: Yutao Jiao
  email: yjiao001@ntu.edu.sg
  organization: Sch. of Comput. Sci. & Eng., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 3
  surname: Jinlong Wang
  fullname: Jinlong Wang
  email: wjl543@sina.com
  organization: Coll. of Commun. Eng., PLA Univ. of Sci. & Technol., Nanjing, China
– sequence: 4
  surname: Yulong Zou
  fullname: Yulong Zou
  email: yulong.zou@njupt.edu.cn
  organization: Sch. of Telecommun. & Inf. Eng., Nanjing Univ. of Posts & Telecommun., Nanjing, China
– sequence: 5
  surname: Qihui Wu
  fullname: Qihui Wu
  email: wuqihui2014@sina.com
  organization: Coll. of Electron. & Inf. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China
– sequence: 6
  surname: Yu-Dong Yao
  fullname: Yu-Dong Yao
  email: yyao@stevens.edu
  organization: Dept. of Electr. & Comput. Eng., Stevens Inst. of Technol., Hoboken, NJ, USA
– sequence: 7
  givenname: Lajos
  surname: Hanzo
  fullname: Hanzo, Lajos
  email: lh@ecs.soton.ac.uk
  organization: Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton, UK
BookMark eNotzE1PwyAYAGBiNHGb_gG98Ac6Xz4Krbem8WNxusTNxNtCKUy0hQZQ47_3oKfn9szRsQ_eIHRBYEkI1Fft5nG7W1IgckllSaCsjtCMMskKycvXUzRP6R2AU17DDD1sJ6Nz_BzxylsTjdcGO4_bcPAuuy-Dn1XvAn4y-TvEj3SNm-EQostvY8LK97iZpsFplV3w6QydWDUkc_7vAr3c3uza-2K9uVu1zbrQTJBcKFqXhAvKSgChBSgFpLOSGqm7vra6U1z0kvaCglWc6E5roqxmHdeqIqVlC3T59zpjzH6KblTxZ18BI4xR9gsi7U3N
CitedBy_id crossref_primary_10_1109_ACCESS_2018_2864222
crossref_primary_10_1109_ACCESS_2021_3125725
crossref_primary_10_3390_su15010508
crossref_primary_10_1109_TCCN_2023_3254524
crossref_primary_10_3390_s21020534
crossref_primary_10_1109_TCCN_2018_2874456
crossref_primary_10_1109_TCCN_2019_2958639
crossref_primary_10_1109_JSEN_2024_3403032
crossref_primary_10_1109_TVT_2020_2979047
crossref_primary_10_1109_TCOMM_2020_2965944
crossref_primary_10_1109_LWC_2023_3254048
crossref_primary_10_1109_TCCN_2022_3222792
crossref_primary_10_1007_s11276_020_02433_w
crossref_primary_10_1007_s11277_021_09402_2
crossref_primary_10_1038_s41598_024_56311_y
crossref_primary_10_1016_j_cja_2024_01_024
crossref_primary_10_1109_ACCESS_2018_2861798
crossref_primary_10_1109_OJCOMS_2020_3009241
crossref_primary_10_1002_ett_3442
crossref_primary_10_1109_ACCESS_2024_3358280
crossref_primary_10_1109_LCOMM_2020_3045205
crossref_primary_10_1109_TVT_2024_3497582
crossref_primary_10_1109_TVT_2020_3043837
crossref_primary_10_1155_2018_3217315
crossref_primary_10_1109_TCCN_2023_3313591
crossref_primary_10_1007_s11276_018_01927_y
crossref_primary_10_11648_j_jeee_20251301_15
crossref_primary_10_1109_COMST_2020_3035427
crossref_primary_10_1109_ACCESS_2019_2956958
crossref_primary_10_1186_s13638_018_1269_0
crossref_primary_10_1109_COMST_2023_3296160
crossref_primary_10_1109_JIOT_2024_3468717
crossref_primary_10_1109_MNET_116_2200013
crossref_primary_10_1109_TCCN_2021_3066566
crossref_primary_10_1080_03772063_2021_1944336
crossref_primary_10_1109_LCOMM_2024_3451536
crossref_primary_10_1007_s41650_018_0013_6
crossref_primary_10_1016_j_icte_2022_07_002
crossref_primary_10_1080_1206212X_2024_2414042
crossref_primary_10_1109_TCCN_2021_3118456
crossref_primary_10_1109_ACCESS_2018_2885732
crossref_primary_10_1007_s11432_022_3566_4
crossref_primary_10_1186_s13638_022_02124_4
crossref_primary_10_1109_JIOT_2020_2970791
crossref_primary_10_1109_ACCESS_2020_2978005
crossref_primary_10_1109_ACCESS_2022_3229739
crossref_primary_10_2299_jsp_23_257
crossref_primary_10_1109_LCOMM_2024_3352571
crossref_primary_10_1109_MWC_001_1900398
crossref_primary_10_1109_TVT_2019_2946834
crossref_primary_10_1016_j_comnet_2018_10_002
crossref_primary_10_1109_TMC_2024_3442151
crossref_primary_10_1109_MVT_2021_3114138
crossref_primary_10_1155_2022_2857510
crossref_primary_10_1016_j_sigpro_2023_109131
crossref_primary_10_1109_ACCESS_2019_2957335
crossref_primary_10_1109_MWC_001_2000032
crossref_primary_10_1109_TVT_2020_2966637
crossref_primary_10_1007_s11042_019_7661_x
crossref_primary_10_1109_TMC_2021_3081715
crossref_primary_10_1109_TVT_2022_3221054
crossref_primary_10_1109_TWC_2024_3495812
crossref_primary_10_1109_MIE_2020_3007568
crossref_primary_10_3390_info10110331
crossref_primary_10_1109_ACCESS_2017_2766076
crossref_primary_10_1109_TCCN_2023_3242360
crossref_primary_10_1109_JIOT_2024_3360726
crossref_primary_10_4018_JCIT_295252
crossref_primary_10_1016_j_phycom_2023_102052
crossref_primary_10_1016_j_jnca_2024_104051
crossref_primary_10_1109_TCCN_2020_3046330
crossref_primary_10_1109_ACCESS_2018_2836940
crossref_primary_10_1109_ACCESS_2021_3088423
crossref_primary_10_1109_TWC_2020_2968295
crossref_primary_10_3390_electronics11111770
crossref_primary_10_1155_2021_7125482
crossref_primary_10_1007_s11277_020_07869_z
crossref_primary_10_1109_JSAC_2018_2864375
crossref_primary_10_1109_TNSE_2024_3350127
crossref_primary_10_1145_3524106
crossref_primary_10_3390_s21165261
crossref_primary_10_1109_TVT_2023_3244560
crossref_primary_10_1016_j_icte_2024_02_009
crossref_primary_10_3390_s24051498
crossref_primary_10_1016_j_aeue_2021_153642
crossref_primary_10_3390_s21010135
crossref_primary_10_1109_TVT_2021_3062462
crossref_primary_10_3390_s20236820
crossref_primary_10_3390_s21237902
crossref_primary_10_1007_s12559_021_09969_9
crossref_primary_10_34133_space_0109
crossref_primary_10_1109_ACCESS_2018_2843792
crossref_primary_10_3390_s20041146
crossref_primary_10_1002_ett_4004
ContentType Journal Article
DBID 97E
RIA
RIE
DOI 10.1109/COMST.2017.2751058
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-745X
EndPage 182
ExternalDocumentID 8031332
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20150717
  funderid: 10.13039/501100004608
– fundername: China Post-Doctoral Science Funded Project
– fundername: Jiangsu Planned Projects for Post-Doctoral Research Funds
– fundername: National Natural Science Foundation of China
  grantid: 61401223; 61522109
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61501510; 61631020
  funderid: 10.13039/501100001809
– fundername: Royal Society’s Wolfson Research Merit Award
  funderid: 10.13039/501100000288
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20140887; BK20150040
  funderid: 10.13039/501100004608
– fundername: European Research Council’s Advance Fellow Grant Beam-Me-Up
GroupedDBID 0R~
29I
2WC
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RNS
ID FETCH-LOGICAL-c361t-a295146235006c60aa01bf72e7cbd9fcba46d72d620fa41cbcc1afc3b4ca815f3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:48:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a295146235006c60aa01bf72e7cbd9fcba46d72d620fa41cbcc1afc3b4ca815f3
PageCount 33
ParticipantIDs ieee_primary_8031332
PublicationCentury 2000
PublicationDate 2018-Firstquarter
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-Firstquarter
PublicationDecade 2010
PublicationTitle IEEE Communications surveys and tutorials
PublicationTitleAbbrev COMST
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0042490
Score 2.5886557
Snippet Spectrum inference, also known as spectrum prediction in the literature, is a promising technique of inferring the occupied/free state of radio spectrum from...
SourceID ieee
SourceType Publisher
StartPage 150
SubjectTerms Cognitive radio
HF communications
Inference algorithms
Prediction algorithms
Resource management
Sensors
Spectrum inference
spectrum prediction
Tutorials
Title Spectrum Inference in Cognitive Radio Networks: Algorithms and Applications
URI https://ieeexplore.ieee.org/document/8031332
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FcRbHhhJ6thxErNVFRUPtUjQSt0qvwIVNEFtuvDrOScNKoiBLfKS6M65u8--7zuELq3VobIcNq9IAKBEVHrCGO6xRFouHLlYl2qfg-h2FN6P-biBrr65MNbasvnM-u6xvMs3uV66o7J24oQGGQTcDQBuFVerjrohwAhSk2KIaHcf-89D17kV-zR2RUTyY3xKmT16O6hfv7dqGnnzl4Xy9ecvScb_ftgu2l6VkbhT-X0PNWy2j7bWxAVb6MGNli_myxm-q0l9eJrhbt0vhJ-kmeZ4UPWBL65x5_0ln0-L19kCy8zgztrV9gEa9W6G3VtvNTrB0ywKCk9SqJzA8ozDX6UjIiUJVBpTG2tlRKqVDCMTUxNRksow0ErrQKaaqVDLJOApO0TNLM_sEcI8kBHVnBoBAFYAWjEQ3ilkNUZCQwJzjFrOIJOPSh1jsrLFyd_Lp2gTnJJUhxhnqAlmsOeQ1gt1UfrzC7JIoqA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFH4helAPbmjcnYNHC-2008UbIRKQxUQh4UZmqxKlNVAu_nrftNSg8eCtmUub96Zvmfm-7wHcaC09oRlu3ijEBsWn3IqUYpYbcs0iQy6WudrnwG-PvIcxG1fg9psLo7XOwWe6Zh7zu3yVyqU5KquHRmjQxYC7iXmf0YKtVcZdDxsJu6TF2FG9-dh_HhrsVlCjgSkjwh8DVPL80dqDfvnmAjbyVltmoiY_f4ky_vfT9mF3VUiSRuH5A6jo5BB21uQFq9A1w-Wz-XJGOiWtj0wT0iwRQ-SJq2lKBgUSfHFHGu8v6Xyavc4WhCeKNNYut49g1LofNtvWaniCJV3fySxOsXZC27sM_yvp25zbjogDqgMpVBRLwT1fBVT51I6550ghpcNj6QpP8tBhsXsMG0ma6BMgzOE-lYyqCFvYCPsVhQGeYl5zbU_ZjjqFqjHI5KPQx5isbHH29_I1bLWH_d6k1xl0z2EbHRQWRxoXsIEm0ZeY5DNxlfv2C2F4peo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectrum+Inference+in+Cognitive+Radio+Networks%3A+Algorithms+and+Applications&rft.jtitle=IEEE+Communications+surveys+and+tutorials&rft.au=Guoru+Ding&rft.au=Yutao+Jiao&rft.au=Jinlong+Wang&rft.au=Yulong+Zou&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2373-745X&rft.volume=20&rft.issue=1&rft.spage=150&rft.epage=182&rft_id=info:doi/10.1109%2FCOMST.2017.2751058&rft.externalDocID=8031332