UAV as a Bridge: Mapping Key Rice Growth Stage with Sentinel-2 Imagery and Novel Vegetation Indices
Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster early warning, and ensuring food security. The effective collection of ground reference data is a critical step for monitoring rice growth stages...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 17; no. 13; p. 2180 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster early warning, and ensuring food security. The effective collection of ground reference data is a critical step for monitoring rice growth stages using satellite imagery, traditionally achieved through labor-intensive field surveys. Here, we propose utilizing UAVs as an alternative means to collect spatially continuous ground reference data across larger areas, thereby enhancing the efficiency and scalability of training and validation processes for rice growth stage mapping products. The UAV data collection involved the Nanchuan, Yongchuan, Tongnan, and Kaizhou districts of Chongqing City, encompassing a total area of 377.5 hectares. After visual interpretation, centimeter-level high-resolution labels of the key rice growth stages were constructed. These labels were then mapped to Sentinel-2 imagery through spatiotemporal matching and scale conversion, resulting in a reference dataset of Sentinel 2 data that covered growth stages such as jointing and heading. Furthermore, we employed 30 vegetation index calculation methods to explore 48,600 spectral band combinations derived from 10 Sentinel-2 spectral bands, thereby constructing a series of novel vegetation indices. Based on the maximum relevance minimum redundancy (mRMR) algorithm, we identified an optimal subset of features that were both highly correlated with rice growth stages and mutually complementary. The results demonstrate that multi-feature modeling significantly enhanced classification performance. The optimal model, incorporating 300 features, achieved an F1 score of 0.864, representing a 2.5% improvement over models based on original spectral bands and a 38.8% improvement over models using a single feature. Notably, a model utilizing only 12 features maintained a high classification accuracy (F1 = 0.855) while substantially reducing computational costs. Compared with existing methods, this study constructed a large-scale ground-truth reference dataset for satellite imagery based on UAV observations, demonstrating its potential as an effective technical framework and providing an effective technical framework for the large-scale mapping of rice growth stages using satellite data. |
---|---|
AbstractList | Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster early warning, and ensuring food security. The effective collection of ground reference data is a critical step for monitoring rice growth stages using satellite imagery, traditionally achieved through labor-intensive field surveys. Here, we propose utilizing UAVs as an alternative means to collect spatially continuous ground reference data across larger areas, thereby enhancing the efficiency and scalability of training and validation processes for rice growth stage mapping products. The UAV data collection involved the Nanchuan, Yongchuan, Tongnan, and Kaizhou districts of Chongqing City, encompassing a total area of 377.5 hectares. After visual interpretation, centimeter-level high-resolution labels of the key rice growth stages were constructed. These labels were then mapped to Sentinel-2 imagery through spatiotemporal matching and scale conversion, resulting in a reference dataset of Sentinel 2 data that covered growth stages such as jointing and heading. Furthermore, we employed 30 vegetation index calculation methods to explore 48,600 spectral band combinations derived from 10 Sentinel-2 spectral bands, thereby constructing a series of novel vegetation indices. Based on the maximum relevance minimum redundancy (mRMR) algorithm, we identified an optimal subset of features that were both highly correlated with rice growth stages and mutually complementary. The results demonstrate that multi-feature modeling significantly enhanced classification performance. The optimal model, incorporating 300 features, achieved an F1 score of 0.864, representing a 2.5% improvement over models based on original spectral bands and a 38.8% improvement over models using a single feature. Notably, a model utilizing only 12 features maintained a high classification accuracy (F1 = 0.855) while substantially reducing computational costs. Compared with existing methods, this study constructed a large-scale ground-truth reference dataset for satellite imagery based on UAV observations, demonstrating its potential as an effective technical framework and providing an effective technical framework for the large-scale mapping of rice growth stages using satellite data. |
Audience | Academic |
Author | Zhang, Jianping Deng, Jie Meng, Qi Chen, Yanying Chen, Bingtai Zhang, Rundong |
Author_xml | – sequence: 1 givenname: Jianping surname: Zhang fullname: Zhang, Jianping – sequence: 2 givenname: Rundong surname: Zhang fullname: Zhang, Rundong – sequence: 3 givenname: Qi surname: Meng fullname: Meng, Qi – sequence: 4 givenname: Yanying surname: Chen fullname: Chen, Yanying – sequence: 5 givenname: Jie orcidid: 0000-0002-2391-0782 surname: Deng fullname: Deng, Jie – sequence: 6 givenname: Bingtai orcidid: 0009-0007-4432-9624 surname: Chen fullname: Chen, Bingtai |
BookMark | eNpNkV9PVDEQxRuDiYC8-Ama8EZysf_uvS1vC1HciJoo8tr0ttNrN7vt0hbJfnuLS8SZh5mczPxyknOEDmKKgNA7Ss45V-R9LnSknFFJXqFDRkbWCabYwX_7G3RSyoq04pwqIg6R_bm4w6Zggy9zcDNc4C9muw1xxp9hh78HC_g6p8f6C_-oZgb8GJ5WiDVEWHcMLzdNzTtsosNf029Y4zuYoZoaUsTL6BqgvEWvvVkXOHmex-j244fbq0_dzbfr5dXiprN8oLVTkxOO9GyYHOHOS-dH7qkHTydCLLeE29HB0IuJMclAyaEfvDPS0olRwfkxWu6xLpmV3uawMXmnkwn6r5DyrE2uwa5BUzX2gvDBNIDwHibLRjkaz5jgVjraWKd71jan-wcoVa_SQ47NveaMKdoPSsl2db6_mk2DhuhTzca2drAJtoXjQ9MXUow9k_1A2sPZ_sHmVEoG_88mJfopQ_2SIf8DcDmNqA |
Cites_doi | 10.1016/j.isprsjprs.2022.12.025 10.1016/S0065-2113(04)92004-4 10.1109/5254.708428 10.3390/rs15041090 10.1109/TGRS.2023.3292130 10.3390/agriculture15030353 10.1109/JSTARS.2019.2906684 10.1145/2939672.2939785 10.1515/geo-2022-0369 10.1088/1755-1315/1051/1/012021 10.1109/DSAA.2019.00059 10.1023/A:1010933404324 10.3390/s23052814 10.3390/rs13010086 10.3390/drones8110665 10.3389/fpls.2019.00204 10.7717/peerj.12107 10.1016/j.ifacol.2016.10.002 10.1016/j.fcr.2022.108582 10.3390/drones7020083 10.1002/ps.8336 10.1007/s11431-010-0131-3 10.21660/2019.62.8782 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs17132180 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_19754036a6fd4ffebc2787af2243c8d1 A847528560 10_3390_rs17132180 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-9bd4d0526bd03df8df73f1fef1b00c3c03c7de654b2282e98656fda8c1b21433 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:13:26 EDT 2025 Sat Jul 12 03:39:28 EDT 2025 Tue Jul 15 03:51:40 EDT 2025 Sun Aug 03 02:30:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-9bd4d0526bd03df8df73f1fef1b00c3c03c7de654b2282e98656fda8c1b21433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2391-0782 0009-0007-4432-9624 |
OpenAccessLink | https://www.proquest.com/docview/3229156998?pq-origsite=%requestingapplication% |
PQID | 3229156998 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19754036a6fd4ffebc2787af2243c8d1 proquest_journals_3229156998 gale_infotracacademiconefile_A847528560 crossref_primary_10_3390_rs17132180 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhang (ref_39) 2010; 53 Singh (ref_8) 2006; 91 ref_14 ref_35 Xie (ref_10) 2023; 38 ref_34 Xu (ref_4) 2024; 40 ref_31 ref_18 ref_16 ref_15 ref_37 Wang (ref_27) 2022; 14 Hearst (ref_33) 1998; 13 Liao (ref_12) 2023; 196 Supriatna (ref_28) 2019; 17 Bendig (ref_13) 2015; 39 Arthi (ref_1) 2013; 6 Liu (ref_38) 2000; 4 ref_25 Du (ref_19) 2016; 49 ref_23 Breiman (ref_36) 2001; 45 Hou (ref_3) 2021; 9 Hashim (ref_29) 2022; 1051 Zhu (ref_17) 2022; 284 Sparks (ref_2) 2007; Volume 92 Xu (ref_24) 2015; 19 Sharma (ref_5) 2023; 85 Cunningham (ref_32) 2022; 54 ref_26 ref_9 Kiang (ref_20) 1999; Volume 3722 Deng (ref_30) 2023; 61 Ma (ref_21) 2024; 80 Li (ref_7) 2014; 7 Huang (ref_22) 2019; 35 ref_6 Ashourloo (ref_11) 2019; 12 |
References_xml | – volume: 196 start-page: 105 year: 2023 ident: ref_12 article-title: Near Real-Time Detection and Forecasting of Within-Field Phenology of Winter Wheat and Corn Using Sentinel-2 Time-Series Data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.12.025 – volume: 19 start-page: 703 year: 2015 ident: ref_24 article-title: Review of methods for evaluating representativeness of ground station observations publication-title: J. Remote Sens. – volume: 39 start-page: 79 year: 2015 ident: ref_13 article-title: Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: Volume 92 start-page: 187 year: 2007 ident: ref_2 article-title: Rice and Water publication-title: Advances in Agronomy doi: 10.1016/S0065-2113(04)92004-4 – volume: 13 start-page: 18 year: 1998 ident: ref_33 article-title: Support Vector Machines publication-title: IEEE Intell. Syst. Their Appl. doi: 10.1109/5254.708428 – ident: ref_25 doi: 10.3390/rs15041090 – volume: 38 start-page: 1 year: 2023 ident: ref_10 article-title: Reviews of methods for vegetation phenology monitoring from remote sensing data publication-title: Remote Sens. Technol. Appl. – ident: ref_26 – volume: 61 start-page: 4406111 year: 2023 ident: ref_30 article-title: Quantitative Estimation of Wheat Stripe Rust Disease Index Using Unmanned Aerial Vehicle Hyperspectral Imagery and Innovative Vegetation Indices publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3292130 – ident: ref_34 – ident: ref_18 doi: 10.3390/agriculture15030353 – volume: 12 start-page: 1471 year: 2019 ident: ref_11 article-title: Developing an Automatic Phenology-Based Algorithm for Rice Detection Using Sentinel-2 Time-Series Data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2906684 – ident: ref_35 doi: 10.1145/2939672.2939785 – volume: 40 start-page: 97 year: 2024 ident: ref_4 article-title: Spatiotemporal variation characteristics and forecast model construction of high temperature heat damage intensity in rice publication-title: Trans. Chin. Soc. Agric. Eng. Trans. CSAE – volume: 14 start-page: 414 year: 2022 ident: ref_27 article-title: Mapping Paddy Rice and Rice Phenology with Sentinel-1 SAR Time Series Using a Unified Dynamic Programming Framework publication-title: Open Geosci. doi: 10.1515/geo-2022-0369 – volume: 1051 start-page: 012021 year: 2022 ident: ref_29 article-title: Monitoring of Rice Growth Phases Using Multi-Temporal Sentinel-2 Satellite Image publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/1051/1/012021 – volume: 4 start-page: 279 year: 2000 ident: ref_38 article-title: Relationships between Rice LAl, CH.D and Hyperspectra Data publication-title: J. Remote Sens. – volume: 54 start-page: 128 year: 2022 ident: ref_32 article-title: K-Nearest Neighbour Classifiers: 2nd Edition (with Python Examples) publication-title: ACM Comput. Surv. – ident: ref_37 – ident: ref_14 – volume: 7 start-page: 28 year: 2014 ident: ref_7 article-title: Monitoring Paddy Rice Phenology Using Time Series MODIS Data over Jiangxi Province, China publication-title: Int. J. Agric. Biol. Eng. – volume: 35 start-page: 178 year: 2019 ident: ref_22 article-title: Wheat yellow rust monitoring method based on Sentinel-2 image and BPNN model publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 6 start-page: 5095 year: 2013 ident: ref_1 article-title: Effect of Elevated Temperature on Rice Phenology and Yield publication-title: Indian J. Sci. Technol. – volume: 91 start-page: 1217 year: 2006 ident: ref_8 article-title: Observing Long-Term Changes in Rice Phenology Using NOAA–AVHRR and DMSP–SSM/I Satellite Sensor Measurements in Punjab, India publication-title: Curr. Sci. – ident: ref_31 doi: 10.1109/DSAA.2019.00059 – volume: 45 start-page: 5 year: 2001 ident: ref_36 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 85 start-page: 701 year: 2023 ident: ref_5 article-title: Effect of Crop Growth Stages on the Field Population of Rice Hoppers publication-title: Indian J. Entomol. – ident: ref_23 doi: 10.3390/s23052814 – ident: ref_9 doi: 10.3390/rs13010086 – ident: ref_15 doi: 10.3390/drones8110665 – ident: ref_6 doi: 10.3389/fpls.2019.00204 – volume: 9 start-page: e12107 year: 2021 ident: ref_3 article-title: Recommended Nitrogen Rates and the Verification of Effects Based on Leaf SPAD Readings of Rice publication-title: PeerJ doi: 10.7717/peerj.12107 – volume: 49 start-page: 5 year: 2016 ident: ref_19 article-title: Multi-Temporal Monitoring of Wheat Growth through Correlation Analysis of Satellite Images, Unmanned Aerial Vehicle Images with Ground Variable publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.10.002 – volume: 284 start-page: 108582 year: 2022 ident: ref_17 article-title: UAV-Based Indicators of Crop Growth Are Robust for Distinct Water and Nutrient Management but Vary between Crop Development Phases publication-title: Field Crops Res. doi: 10.1016/j.fcr.2022.108582 – volume: Volume 3722 start-page: 243 year: 1999 ident: ref_20 article-title: Textural-Contextual Labeling and Metadata Generation for Remote Sensing Applications publication-title: Applications and Science of Computational Intelligence II – ident: ref_16 doi: 10.3390/drones7020083 – volume: 80 start-page: 6082 year: 2024 ident: ref_21 article-title: Monitoring Yellow Rust Progression during Spring Critical Wheat Growth Periods Using Multi-Temporal Sentinel-2 Imagery publication-title: Pest. Manag. Sci. doi: 10.1002/ps.8336 – volume: 53 start-page: 1159 year: 2010 ident: ref_39 article-title: Advances in estimation methods of vegetation water content based on optical remote sensing techniques publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-010-0131-3 – volume: 17 start-page: 101 year: 2019 ident: ref_28 article-title: Spatio-temporal analysis of rice field phenology using Sentinel-1 image in Karawang Regency West Java, Indonesia publication-title: Int. J. GEOMATE doi: 10.21660/2019.62.8782 |
SSID | ssj0000331904 |
Score | 2.400478 |
Snippet | Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 2180 |
SubjectTerms | Accuracy Aerial surveys Agricultural management Agricultural production Algorithms Band spectra Classification Corn Data collection Data processing Datasets Fertilizers Food security Food supply Ground truth Growth Growth stage Labels machine learning Mapping Methods Monitoring Phenology Redundancy Remote sensing remote sensing collaboration Rice rice growth monitoring Satellite imagery Satellites Security management Sentinel-2 Spectral bands Surveys UAV Unmanned aerial vehicles Vegetation Vegetation index |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hXuCCWqAiJaCRQOJkxd611za3BBFSUHKANspttZ_poXVQ4iLl3zOzdiAcKi5cLR9GMzsz79mzbxh7V_Ca5qZMEgqHBIXu5RibuSQzdZXXnHsZf7TPF3J2nX9ZFaujVV80E9bJA3eOG2V1iaBCSC2Dy0PwxnI8Yzpg6xG2cpH4YM87IlOxBgs8Wmne6ZEK5PWj7S5DPoYNLf2rA0Wh_ofKcewx01P2tAeHMO6MOmOPfPOMPe73lN_snzN7PV6C3oGGSbxo9QHmmgQW1vDV7-EbJj18Rl7d3gCCyLUH-soK32kgqPG3CYfLO5Ks2INuHCw2P_0tLP26HziEy8ZR1XjBrqafrj7Okn5NQmKFzNqkNi53JNtiXCpcqFwoRciCDxmmlBU2FbZ0Xha54civfF0hhAtOVzYzHNGSOGcnzabxLxmIEsmLN6Wttc0R2RkraVZKWiMR1sp8wN4ePKd-dGIYCkkE-Vf98e-ATcipv98gAev4AMOq-rCqf4V1wN5TSBSlWbvVVve3BdBQEqxSY-yqBa8Qrw3Y8BA11effTmGZqpGZIpe8-B_WvGJPOO39jWO6Q3bSbu_9awQjrXkTz90vQr_a4g priority: 102 providerName: Directory of Open Access Journals |
Title | UAV as a Bridge: Mapping Key Rice Growth Stage with Sentinel-2 Imagery and Novel Vegetation Indices |
URI | https://www.proquest.com/docview/3229156998 https://doaj.org/article/19754036a6fd4ffebc2787af2243c8d1 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB7R5gAXRHmIQIksgcRp1bW9Ty4ooU1bIBHqS71ZfqaHdlOSBSn_npmN06qHct1daa3xPL5vPJ4B-JSLmuqmTBJyhwSF7uUYy13CTV1ltRC-6A7aJ9Pi6Dz7fplfxoTbMpZVbnxi56jd3FKOfA8Vr0augezg6-3vhKZG0elqHKGxBT10wRWSr97oYPrr5C7LkkpUsTRb9yWVyO_3FkuOvAwDW_ogEnUN-x9zy12sGb-A5xEksuF6V3fgiW9ewtM4r_xq9Qrs-fCC6SXTbNRduPrCJpoaLczYD79iJ2j87BD5dXvFEEzOPKNsKzulwqDGXyeCHd9Q64oV041j0_lff80u_CwWHrLjxpH3eA1n44Ozb0dJHJeQWFnwNqmNyxy1bzEulS5ULpQy8OADR9Oy0qbSls4XeWYE8ixfVwjlgtOV5UYgapJvYLuZN_4tMFkiifGmtLW2GSI8YwuqmSqsKRDeFlkfPm4kp27XTTEUkgmSr7qXbx9GJNS7L6iRdfdgvpipaBeK1yViRlloXEoWAv5GoAvRAZGFtJXjffhMW6LI3NqFtjreGsCFUuMqNcTomosKcVsfdje7pqIdLtW91rz7_-v38EzQZN-uEHcXttvFH_8B4UZrBrBVjQ8H0BvuT36eDqKGDTry_g_B0Ncq |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigXVF4ipYWVAHGyau_aaxsJoRRIE9rkAGnV22qf6aE4JXFB-VH9j8w4disOcOvN8lq2NTuP79udnQF4k_GS8qZMFDKHBIXO5RibuCgxZZGWnHvZbLSPJ3J4kn49y8424Lo7C0NplZ1PbBy1m1taI99HxSuRayA7-Hj5M6KuUbS72rXQWKvFkV_9Rsq2_DD6jPP7lvPBl-mnYdR2FYiskEkdlcaljqqcGBcLFwoXchGS4EOCGmiFjYXNnZdZajjSEV8WiHiC04VNDEdwIfC19-A-XpRkUMXg8GZJJxaoz3G6LoKK4_H-YpkgCcQoGv8V9pruAP-KAU1gG2zDwxaRsv5ahR7Bhq8ew1bbHP189QTsSf-U6SXT7KA53fWejTVVdZgxlAT7hp6GHSKZr88ZIteZZ7S0y75TFlLlLyLORj-oTsaK6cqxyfyXv2CnftZmObJR5chVPYXpXUjxGWxW88o_ByZyZEze5LbUNkU4aaykBC1pjUQsLdMevO4kpy7XFTgUMheSr7qVbw8OSKg3T1DV7ObGfDFTrRGqpMwRoAqp8VfSEPAzHP2VDghjhC1c0oN3NCWKbLteaKvbIwr4o1QlS_UxlGe8QJDYg91u1lRr9Et1q6I7_x9-BVvD6fhYHY8mRy_gAaeWwk0G8C5s1osrv4c4pzYvG-1ioO5Ym_8Aij0PTA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcaKLASIE5WvLt-IiGU0IaG0qgqbdXbap_poTglMaD8NP4dM47digPcerUt25r9dub7dmdnAF6noqS8KROF1KFAoXM5xnIXcVMWSSmEz5qN9oNptneSfD5Lzzbgd3cWhtIqO5_YOGo3t7RGPkDglag1UB0MQpsWcbgz_nD5PaIOUrTT2rXTWENk369-oXxbvp_s4Fi_EWK8e_xxL2o7DERWZryOSuMSRxVPjIulC4ULuQw8-MARjVbaWNrc-SxNjEBp4ssC2U9wurDcCCQaEl97CzZzFEVxDzZHu9PDo6sFnlgiuuNkXRJVyjIeLJYcJSHG1PivINj0CvhXRGjC3Pg-3Gv5KRuuAfUANnz1EO60rdLPV4_AngxPmV4yzUbNWa937EBTjYcZQ1uwI_Q77BNK-_qcIY-deUYLvewr5SRV_iISbPKNqmasmK4cm85_-gt26mdtziObVI4c12M4vgk7PoFeNa_8FjCZo37yJreltgmSS2MzStfKrMmQWWdJH151llOX63ocCnUM2Vdd27cPIzLq1RNUQ7u5MF_MVDslFS9zpKsy0_grSQj4GYHeSwckNdIWjvfhLQ2JopleL7TV7YEF_FGqmaWGGNhTUSBl7MN2N2qqdQFLdQ3Yp_-__RJuI5LVl8l0_xncFdRfuEkH3oZevfjhnyPpqc2LFl4M1A0D-g-J8hTe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UAV+as+a+Bridge%3A+Mapping+Key+Rice+Growth+Stage+with+Sentinel-2+Imagery+and+Novel+Vegetation+Indices&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Jianping&rft.au=Zhang+Rundong&rft.au=Meng+Qi&rft.au=Chen+Yanying&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=13&rft.spage=2180&rft_id=info:doi/10.3390%2Frs17132180&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |