UAV as a Bridge: Mapping Key Rice Growth Stage with Sentinel-2 Imagery and Novel Vegetation Indices

Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster early warning, and ensuring food security. The effective collection of ground reference data is a critical step for monitoring rice growth stages...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 17; no. 13; p. 2180
Main Authors Zhang, Jianping, Zhang, Rundong, Meng, Qi, Chen, Yanying, Deng, Jie, Chen, Bingtai
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster early warning, and ensuring food security. The effective collection of ground reference data is a critical step for monitoring rice growth stages using satellite imagery, traditionally achieved through labor-intensive field surveys. Here, we propose utilizing UAVs as an alternative means to collect spatially continuous ground reference data across larger areas, thereby enhancing the efficiency and scalability of training and validation processes for rice growth stage mapping products. The UAV data collection involved the Nanchuan, Yongchuan, Tongnan, and Kaizhou districts of Chongqing City, encompassing a total area of 377.5 hectares. After visual interpretation, centimeter-level high-resolution labels of the key rice growth stages were constructed. These labels were then mapped to Sentinel-2 imagery through spatiotemporal matching and scale conversion, resulting in a reference dataset of Sentinel 2 data that covered growth stages such as jointing and heading. Furthermore, we employed 30 vegetation index calculation methods to explore 48,600 spectral band combinations derived from 10 Sentinel-2 spectral bands, thereby constructing a series of novel vegetation indices. Based on the maximum relevance minimum redundancy (mRMR) algorithm, we identified an optimal subset of features that were both highly correlated with rice growth stages and mutually complementary. The results demonstrate that multi-feature modeling significantly enhanced classification performance. The optimal model, incorporating 300 features, achieved an F1 score of 0.864, representing a 2.5% improvement over models based on original spectral bands and a 38.8% improvement over models using a single feature. Notably, a model utilizing only 12 features maintained a high classification accuracy (F1 = 0.855) while substantially reducing computational costs. Compared with existing methods, this study constructed a large-scale ground-truth reference dataset for satellite imagery based on UAV observations, demonstrating its potential as an effective technical framework and providing an effective technical framework for the large-scale mapping of rice growth stages using satellite data.
AbstractList Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster early warning, and ensuring food security. The effective collection of ground reference data is a critical step for monitoring rice growth stages using satellite imagery, traditionally achieved through labor-intensive field surveys. Here, we propose utilizing UAVs as an alternative means to collect spatially continuous ground reference data across larger areas, thereby enhancing the efficiency and scalability of training and validation processes for rice growth stage mapping products. The UAV data collection involved the Nanchuan, Yongchuan, Tongnan, and Kaizhou districts of Chongqing City, encompassing a total area of 377.5 hectares. After visual interpretation, centimeter-level high-resolution labels of the key rice growth stages were constructed. These labels were then mapped to Sentinel-2 imagery through spatiotemporal matching and scale conversion, resulting in a reference dataset of Sentinel 2 data that covered growth stages such as jointing and heading. Furthermore, we employed 30 vegetation index calculation methods to explore 48,600 spectral band combinations derived from 10 Sentinel-2 spectral bands, thereby constructing a series of novel vegetation indices. Based on the maximum relevance minimum redundancy (mRMR) algorithm, we identified an optimal subset of features that were both highly correlated with rice growth stages and mutually complementary. The results demonstrate that multi-feature modeling significantly enhanced classification performance. The optimal model, incorporating 300 features, achieved an F1 score of 0.864, representing a 2.5% improvement over models based on original spectral bands and a 38.8% improvement over models using a single feature. Notably, a model utilizing only 12 features maintained a high classification accuracy (F1 = 0.855) while substantially reducing computational costs. Compared with existing methods, this study constructed a large-scale ground-truth reference dataset for satellite imagery based on UAV observations, demonstrating its potential as an effective technical framework and providing an effective technical framework for the large-scale mapping of rice growth stages using satellite data.
Audience Academic
Author Zhang, Jianping
Deng, Jie
Meng, Qi
Chen, Yanying
Chen, Bingtai
Zhang, Rundong
Author_xml – sequence: 1
  givenname: Jianping
  surname: Zhang
  fullname: Zhang, Jianping
– sequence: 2
  givenname: Rundong
  surname: Zhang
  fullname: Zhang, Rundong
– sequence: 3
  givenname: Qi
  surname: Meng
  fullname: Meng, Qi
– sequence: 4
  givenname: Yanying
  surname: Chen
  fullname: Chen, Yanying
– sequence: 5
  givenname: Jie
  orcidid: 0000-0002-2391-0782
  surname: Deng
  fullname: Deng, Jie
– sequence: 6
  givenname: Bingtai
  orcidid: 0009-0007-4432-9624
  surname: Chen
  fullname: Chen, Bingtai
BookMark eNpNkV9PVDEQxRuDiYC8-Ama8EZysf_uvS1vC1HciJoo8tr0ttNrN7vt0hbJfnuLS8SZh5mczPxyknOEDmKKgNA7Ss45V-R9LnSknFFJXqFDRkbWCabYwX_7G3RSyoq04pwqIg6R_bm4w6Zggy9zcDNc4C9muw1xxp9hh78HC_g6p8f6C_-oZgb8GJ5WiDVEWHcMLzdNzTtsosNf029Y4zuYoZoaUsTL6BqgvEWvvVkXOHmex-j244fbq0_dzbfr5dXiprN8oLVTkxOO9GyYHOHOS-dH7qkHTydCLLeE29HB0IuJMclAyaEfvDPS0olRwfkxWu6xLpmV3uawMXmnkwn6r5DyrE2uwa5BUzX2gvDBNIDwHibLRjkaz5jgVjraWKd71jan-wcoVa_SQ47NveaMKdoPSsl2db6_mk2DhuhTzca2drAJtoXjQ9MXUow9k_1A2sPZ_sHmVEoG_88mJfopQ_2SIf8DcDmNqA
Cites_doi 10.1016/j.isprsjprs.2022.12.025
10.1016/S0065-2113(04)92004-4
10.1109/5254.708428
10.3390/rs15041090
10.1109/TGRS.2023.3292130
10.3390/agriculture15030353
10.1109/JSTARS.2019.2906684
10.1145/2939672.2939785
10.1515/geo-2022-0369
10.1088/1755-1315/1051/1/012021
10.1109/DSAA.2019.00059
10.1023/A:1010933404324
10.3390/s23052814
10.3390/rs13010086
10.3390/drones8110665
10.3389/fpls.2019.00204
10.7717/peerj.12107
10.1016/j.ifacol.2016.10.002
10.1016/j.fcr.2022.108582
10.3390/drones7020083
10.1002/ps.8336
10.1007/s11431-010-0131-3
10.21660/2019.62.8782
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs17132180
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_19754036a6fd4ffebc2787af2243c8d1
A847528560
10_3390_rs17132180
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-9bd4d0526bd03df8df73f1fef1b00c3c03c7de654b2282e98656fda8c1b21433
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:13:26 EDT 2025
Sat Jul 12 03:39:28 EDT 2025
Tue Jul 15 03:51:40 EDT 2025
Sun Aug 03 02:30:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-9bd4d0526bd03df8df73f1fef1b00c3c03c7de654b2282e98656fda8c1b21433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2391-0782
0009-0007-4432-9624
OpenAccessLink https://www.proquest.com/docview/3229156998?pq-origsite=%requestingapplication%
PQID 3229156998
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_19754036a6fd4ffebc2787af2243c8d1
proquest_journals_3229156998
gale_infotracacademiconefile_A847528560
crossref_primary_10_3390_rs17132180
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_39) 2010; 53
Singh (ref_8) 2006; 91
ref_14
ref_35
Xie (ref_10) 2023; 38
ref_34
Xu (ref_4) 2024; 40
ref_31
ref_18
ref_16
ref_15
ref_37
Wang (ref_27) 2022; 14
Hearst (ref_33) 1998; 13
Liao (ref_12) 2023; 196
Supriatna (ref_28) 2019; 17
Bendig (ref_13) 2015; 39
Arthi (ref_1) 2013; 6
Liu (ref_38) 2000; 4
ref_25
Du (ref_19) 2016; 49
ref_23
Breiman (ref_36) 2001; 45
Hou (ref_3) 2021; 9
Hashim (ref_29) 2022; 1051
Zhu (ref_17) 2022; 284
Sparks (ref_2) 2007; Volume 92
Xu (ref_24) 2015; 19
Sharma (ref_5) 2023; 85
Cunningham (ref_32) 2022; 54
ref_26
ref_9
Kiang (ref_20) 1999; Volume 3722
Deng (ref_30) 2023; 61
Ma (ref_21) 2024; 80
Li (ref_7) 2014; 7
Huang (ref_22) 2019; 35
ref_6
Ashourloo (ref_11) 2019; 12
References_xml – volume: 196
  start-page: 105
  year: 2023
  ident: ref_12
  article-title: Near Real-Time Detection and Forecasting of Within-Field Phenology of Winter Wheat and Corn Using Sentinel-2 Time-Series Data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.12.025
– volume: 19
  start-page: 703
  year: 2015
  ident: ref_24
  article-title: Review of methods for evaluating representativeness of ground station observations
  publication-title: J. Remote Sens.
– volume: 39
  start-page: 79
  year: 2015
  ident: ref_13
  article-title: Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: Volume 92
  start-page: 187
  year: 2007
  ident: ref_2
  article-title: Rice and Water
  publication-title: Advances in Agronomy
  doi: 10.1016/S0065-2113(04)92004-4
– volume: 13
  start-page: 18
  year: 1998
  ident: ref_33
  article-title: Support Vector Machines
  publication-title: IEEE Intell. Syst. Their Appl.
  doi: 10.1109/5254.708428
– ident: ref_25
  doi: 10.3390/rs15041090
– volume: 38
  start-page: 1
  year: 2023
  ident: ref_10
  article-title: Reviews of methods for vegetation phenology monitoring from remote sensing data
  publication-title: Remote Sens. Technol. Appl.
– ident: ref_26
– volume: 61
  start-page: 4406111
  year: 2023
  ident: ref_30
  article-title: Quantitative Estimation of Wheat Stripe Rust Disease Index Using Unmanned Aerial Vehicle Hyperspectral Imagery and Innovative Vegetation Indices
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3292130
– ident: ref_34
– ident: ref_18
  doi: 10.3390/agriculture15030353
– volume: 12
  start-page: 1471
  year: 2019
  ident: ref_11
  article-title: Developing an Automatic Phenology-Based Algorithm for Rice Detection Using Sentinel-2 Time-Series Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2906684
– ident: ref_35
  doi: 10.1145/2939672.2939785
– volume: 40
  start-page: 97
  year: 2024
  ident: ref_4
  article-title: Spatiotemporal variation characteristics and forecast model construction of high temperature heat damage intensity in rice
  publication-title: Trans. Chin. Soc. Agric. Eng. Trans. CSAE
– volume: 14
  start-page: 414
  year: 2022
  ident: ref_27
  article-title: Mapping Paddy Rice and Rice Phenology with Sentinel-1 SAR Time Series Using a Unified Dynamic Programming Framework
  publication-title: Open Geosci.
  doi: 10.1515/geo-2022-0369
– volume: 1051
  start-page: 012021
  year: 2022
  ident: ref_29
  article-title: Monitoring of Rice Growth Phases Using Multi-Temporal Sentinel-2 Satellite Image
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/1051/1/012021
– volume: 4
  start-page: 279
  year: 2000
  ident: ref_38
  article-title: Relationships between Rice LAl, CH.D and Hyperspectra Data
  publication-title: J. Remote Sens.
– volume: 54
  start-page: 128
  year: 2022
  ident: ref_32
  article-title: K-Nearest Neighbour Classifiers: 2nd Edition (with Python Examples)
  publication-title: ACM Comput. Surv.
– ident: ref_37
– ident: ref_14
– volume: 7
  start-page: 28
  year: 2014
  ident: ref_7
  article-title: Monitoring Paddy Rice Phenology Using Time Series MODIS Data over Jiangxi Province, China
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 35
  start-page: 178
  year: 2019
  ident: ref_22
  article-title: Wheat yellow rust monitoring method based on Sentinel-2 image and BPNN model
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 6
  start-page: 5095
  year: 2013
  ident: ref_1
  article-title: Effect of Elevated Temperature on Rice Phenology and Yield
  publication-title: Indian J. Sci. Technol.
– volume: 91
  start-page: 1217
  year: 2006
  ident: ref_8
  article-title: Observing Long-Term Changes in Rice Phenology Using NOAA–AVHRR and DMSP–SSM/I Satellite Sensor Measurements in Punjab, India
  publication-title: Curr. Sci.
– ident: ref_31
  doi: 10.1109/DSAA.2019.00059
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_36
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 85
  start-page: 701
  year: 2023
  ident: ref_5
  article-title: Effect of Crop Growth Stages on the Field Population of Rice Hoppers
  publication-title: Indian J. Entomol.
– ident: ref_23
  doi: 10.3390/s23052814
– ident: ref_9
  doi: 10.3390/rs13010086
– ident: ref_15
  doi: 10.3390/drones8110665
– ident: ref_6
  doi: 10.3389/fpls.2019.00204
– volume: 9
  start-page: e12107
  year: 2021
  ident: ref_3
  article-title: Recommended Nitrogen Rates and the Verification of Effects Based on Leaf SPAD Readings of Rice
  publication-title: PeerJ
  doi: 10.7717/peerj.12107
– volume: 49
  start-page: 5
  year: 2016
  ident: ref_19
  article-title: Multi-Temporal Monitoring of Wheat Growth through Correlation Analysis of Satellite Images, Unmanned Aerial Vehicle Images with Ground Variable
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.10.002
– volume: 284
  start-page: 108582
  year: 2022
  ident: ref_17
  article-title: UAV-Based Indicators of Crop Growth Are Robust for Distinct Water and Nutrient Management but Vary between Crop Development Phases
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2022.108582
– volume: Volume 3722
  start-page: 243
  year: 1999
  ident: ref_20
  article-title: Textural-Contextual Labeling and Metadata Generation for Remote Sensing Applications
  publication-title: Applications and Science of Computational Intelligence II
– ident: ref_16
  doi: 10.3390/drones7020083
– volume: 80
  start-page: 6082
  year: 2024
  ident: ref_21
  article-title: Monitoring Yellow Rust Progression during Spring Critical Wheat Growth Periods Using Multi-Temporal Sentinel-2 Imagery
  publication-title: Pest. Manag. Sci.
  doi: 10.1002/ps.8336
– volume: 53
  start-page: 1159
  year: 2010
  ident: ref_39
  article-title: Advances in estimation methods of vegetation water content based on optical remote sensing techniques
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-010-0131-3
– volume: 17
  start-page: 101
  year: 2019
  ident: ref_28
  article-title: Spatio-temporal analysis of rice field phenology using Sentinel-1 image in Karawang Regency West Java, Indonesia
  publication-title: Int. J. GEOMATE
  doi: 10.21660/2019.62.8782
SSID ssj0000331904
Score 2.400478
Snippet Rice is one of the three primary staple crops worldwide. The accurate monitoring of its key growth stages is crucial for agricultural management, disaster...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2180
SubjectTerms Accuracy
Aerial surveys
Agricultural management
Agricultural production
Algorithms
Band spectra
Classification
Corn
Data collection
Data processing
Datasets
Fertilizers
Food security
Food supply
Ground truth
Growth
Growth stage
Labels
machine learning
Mapping
Methods
Monitoring
Phenology
Redundancy
Remote sensing
remote sensing collaboration
Rice
rice growth monitoring
Satellite imagery
Satellites
Security management
Sentinel-2
Spectral bands
Surveys
UAV
Unmanned aerial vehicles
Vegetation
Vegetation index
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hXuCCWqAiJaCRQOJkxd611za3BBFSUHKANspttZ_poXVQ4iLl3zOzdiAcKi5cLR9GMzsz79mzbxh7V_Ca5qZMEgqHBIXu5RibuSQzdZXXnHsZf7TPF3J2nX9ZFaujVV80E9bJA3eOG2V1iaBCSC2Dy0PwxnI8Yzpg6xG2cpH4YM87IlOxBgs8Wmne6ZEK5PWj7S5DPoYNLf2rA0Wh_ofKcewx01P2tAeHMO6MOmOPfPOMPe73lN_snzN7PV6C3oGGSbxo9QHmmgQW1vDV7-EbJj18Rl7d3gCCyLUH-soK32kgqPG3CYfLO5Ks2INuHCw2P_0tLP26HziEy8ZR1XjBrqafrj7Okn5NQmKFzNqkNi53JNtiXCpcqFwoRciCDxmmlBU2FbZ0Xha54civfF0hhAtOVzYzHNGSOGcnzabxLxmIEsmLN6Wttc0R2RkraVZKWiMR1sp8wN4ePKd-dGIYCkkE-Vf98e-ATcipv98gAev4AMOq-rCqf4V1wN5TSBSlWbvVVve3BdBQEqxSY-yqBa8Qrw3Y8BA11effTmGZqpGZIpe8-B_WvGJPOO39jWO6Q3bSbu_9awQjrXkTz90vQr_a4g
  priority: 102
  providerName: Directory of Open Access Journals
Title UAV as a Bridge: Mapping Key Rice Growth Stage with Sentinel-2 Imagery and Novel Vegetation Indices
URI https://www.proquest.com/docview/3229156998
https://doaj.org/article/19754036a6fd4ffebc2787af2243c8d1
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB7R5gAXRHmIQIksgcRp1bW9Ty4ooU1bIBHqS71ZfqaHdlOSBSn_npmN06qHct1daa3xPL5vPJ4B-JSLmuqmTBJyhwSF7uUYy13CTV1ltRC-6A7aJ9Pi6Dz7fplfxoTbMpZVbnxi56jd3FKOfA8Vr0augezg6-3vhKZG0elqHKGxBT10wRWSr97oYPrr5C7LkkpUsTRb9yWVyO_3FkuOvAwDW_ogEnUN-x9zy12sGb-A5xEksuF6V3fgiW9ewtM4r_xq9Qrs-fCC6SXTbNRduPrCJpoaLczYD79iJ2j87BD5dXvFEEzOPKNsKzulwqDGXyeCHd9Q64oV041j0_lff80u_CwWHrLjxpH3eA1n44Ozb0dJHJeQWFnwNqmNyxy1bzEulS5ULpQy8OADR9Oy0qbSls4XeWYE8ixfVwjlgtOV5UYgapJvYLuZN_4tMFkiifGmtLW2GSI8YwuqmSqsKRDeFlkfPm4kp27XTTEUkgmSr7qXbx9GJNS7L6iRdfdgvpipaBeK1yViRlloXEoWAv5GoAvRAZGFtJXjffhMW6LI3NqFtjreGsCFUuMqNcTomosKcVsfdje7pqIdLtW91rz7_-v38EzQZN-uEHcXttvFH_8B4UZrBrBVjQ8H0BvuT36eDqKGDTry_g_B0Ncq
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigXVF4ipYWVAHGyau_aaxsJoRRIE9rkAGnV22qf6aE4JXFB-VH9j8w4disOcOvN8lq2NTuP79udnQF4k_GS8qZMFDKHBIXO5RibuCgxZZGWnHvZbLSPJ3J4kn49y8424Lo7C0NplZ1PbBy1m1taI99HxSuRayA7-Hj5M6KuUbS72rXQWKvFkV_9Rsq2_DD6jPP7lvPBl-mnYdR2FYiskEkdlcaljqqcGBcLFwoXchGS4EOCGmiFjYXNnZdZajjSEV8WiHiC04VNDEdwIfC19-A-XpRkUMXg8GZJJxaoz3G6LoKK4_H-YpkgCcQoGv8V9pruAP-KAU1gG2zDwxaRsv5ahR7Bhq8ew1bbHP189QTsSf-U6SXT7KA53fWejTVVdZgxlAT7hp6GHSKZr88ZIteZZ7S0y75TFlLlLyLORj-oTsaK6cqxyfyXv2CnftZmObJR5chVPYXpXUjxGWxW88o_ByZyZEze5LbUNkU4aaykBC1pjUQsLdMevO4kpy7XFTgUMheSr7qVbw8OSKg3T1DV7ObGfDFTrRGqpMwRoAqp8VfSEPAzHP2VDghjhC1c0oN3NCWKbLteaKvbIwr4o1QlS_UxlGe8QJDYg91u1lRr9Et1q6I7_x9-BVvD6fhYHY8mRy_gAaeWwk0G8C5s1osrv4c4pzYvG-1ioO5Ym_8Aij0PTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcaKLASIE5WvLt-IiGU0IaG0qgqbdXbap_poTglMaD8NP4dM47digPcerUt25r9dub7dmdnAF6noqS8KROF1KFAoXM5xnIXcVMWSSmEz5qN9oNptneSfD5Lzzbgd3cWhtIqO5_YOGo3t7RGPkDglag1UB0MQpsWcbgz_nD5PaIOUrTT2rXTWENk369-oXxbvp_s4Fi_EWK8e_xxL2o7DERWZryOSuMSRxVPjIulC4ULuQw8-MARjVbaWNrc-SxNjEBp4ssC2U9wurDcCCQaEl97CzZzFEVxDzZHu9PDo6sFnlgiuuNkXRJVyjIeLJYcJSHG1PivINj0CvhXRGjC3Pg-3Gv5KRuuAfUANnz1EO60rdLPV4_AngxPmV4yzUbNWa937EBTjYcZQ1uwI_Q77BNK-_qcIY-deUYLvewr5SRV_iISbPKNqmasmK4cm85_-gt26mdtziObVI4c12M4vgk7PoFeNa_8FjCZo37yJreltgmSS2MzStfKrMmQWWdJH151llOX63ocCnUM2Vdd27cPIzLq1RNUQ7u5MF_MVDslFS9zpKsy0_grSQj4GYHeSwckNdIWjvfhLQ2JopleL7TV7YEF_FGqmaWGGNhTUSBl7MN2N2qqdQFLdQ3Yp_-__RJuI5LVl8l0_xncFdRfuEkH3oZevfjhnyPpqc2LFl4M1A0D-g-J8hTe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UAV+as+a+Bridge%3A+Mapping+Key+Rice+Growth+Stage+with+Sentinel-2+Imagery+and+Novel+Vegetation+Indices&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Jianping&rft.au=Zhang+Rundong&rft.au=Meng+Qi&rft.au=Chen+Yanying&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=13&rft.spage=2180&rft_id=info:doi/10.3390%2Frs17132180&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon