Student Network Learning via Evolutionary Knowledge Distillation

Knowledge distillation provides an effective way to transfer knowledge via teacher-student learning, where most existing distillation approaches apply a fixed pre-trained model as teacher to supervise the learning of student network. This manner usually brings in a big capability gap between teacher...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 4; pp. 2251 - 2263
Main Authors Zhang, Kangkai, Zhang, Chunhui, Li, Shikun, Zeng, Dan, Ge, Shiming
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Knowledge distillation provides an effective way to transfer knowledge via teacher-student learning, where most existing distillation approaches apply a fixed pre-trained model as teacher to supervise the learning of student network. This manner usually brings in a big capability gap between teacher and student networks during learning. Recent researches have observed that a small teacher-student capability gap can facilitate knowledge transfer. Inspired by that, we propose an evolutionary knowledge distillation approach to improve the transfer effectiveness of teacher knowledge. Instead of a fixed pre-trained teacher, an evolutionary teacher is learned online and consistently transfers intermediate knowledge to supervise student network learning on-the-fly. To enhance intermediate knowledge representation and mimicking, several simple guided modules are introduced between corresponding teacher-student blocks. In this way, the student can simultaneously obtain rich internal knowledge and capture its growth process, leading to effective student network learning. Extensive experiments clearly demonstrate the effectiveness of our approach as well as good adaptability in the low-resolution and few-sample scenarios.
AbstractList Knowledge distillation provides an effective way to transfer knowledge via teacher-student learning, where most existing distillation approaches apply a fixed pre-trained model as teacher to supervise the learning of student network. This manner usually brings in a big capability gap between teacher and student networks during learning. Recent researches have observed that a small teacher-student capability gap can facilitate knowledge transfer. Inspired by that, we propose an evolutionary knowledge distillation approach to improve the transfer effectiveness of teacher knowledge. Instead of a fixed pre-trained teacher, an evolutionary teacher is learned online and consistently transfers intermediate knowledge to supervise student network learning on-the-fly. To enhance intermediate knowledge representation and mimicking, several simple guided modules are introduced between corresponding teacher-student blocks. In this way, the student can simultaneously obtain rich internal knowledge and capture its growth process, leading to effective student network learning. Extensive experiments clearly demonstrate the effectiveness of our approach as well as good adaptability in the low-resolution and few-sample scenarios.
Author Ge, Shiming
Zeng, Dan
Zhang, Kangkai
Zhang, Chunhui
Li, Shikun
Author_xml – sequence: 1
  givenname: Kangkai
  orcidid: 0000-0003-0818-5268
  surname: Zhang
  fullname: Zhang, Kangkai
  email: zhangkangkai@iie.ac.cn
  organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Chunhui
  surname: Zhang
  fullname: Zhang, Chunhui
  email: zhangchunhui@iie.ac.cn
  organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Shikun
  orcidid: 0000-0003-4297-9571
  surname: Li
  fullname: Li, Shikun
  email: lishikun@iie.ac.cn
  organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Dan
  orcidid: 0000-0003-1300-1769
  surname: Zeng
  fullname: Zeng, Dan
  email: dzeng@shu.edu.cn
  organization: Department of Communication Engineering, Shanghai University, Shanghai, China
– sequence: 5
  givenname: Shiming
  orcidid: 0000-0001-5293-310X
  surname: Ge
  fullname: Ge, Shiming
  email: geshiming@iie.ac.cn
  organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kMtOwzAQRS0EEm3hB2ATiXXK2LGTeAcq5SEqWLSwtRxnWrmEuDhOK_6e9CEWLNAsZqS5Zx63T45rVyMhFxSGlIK8no2m77MhA0aHCcgu2BHpUSHymDEQx10NgsY5o-KU9JtmCUB5zrMeuZmGtsQ6RC8YNs5_RBPUvrb1IlpbHY3XrmqDdbX239Fz7TYVlguM7mwTbFXpbeeMnMx11eD5IQ_I2_14NnqMJ68PT6PbSWySlIZYCi0lNaZIOTdcSI4gTJbnJdcGstTwwggsELAwcygZTwQKyYokFxQMapkMyNV-7sq7rxaboJau9XW3UrGUZ5yJPINOle9Vxrum8ThXxobdncFrWykKauuX2vmltn6pg18dyv6gK28_u8f_hy73kEXEX0DylAIkyQ_Uznj2
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2022_3178178
crossref_primary_10_1109_TNNLS_2022_3216010
crossref_primary_10_1109_JIOT_2024_3409813
crossref_primary_10_1109_TCSVT_2022_3167951
crossref_primary_10_1109_TCSVT_2023_3271124
crossref_primary_10_1109_TIFS_2025_3533906
crossref_primary_10_1109_TCSVT_2023_3250031
crossref_primary_10_1109_TCSVT_2024_3377251
crossref_primary_10_1109_JSEN_2023_3241624
crossref_primary_10_1109_TCSVT_2023_3338743
crossref_primary_10_3390_electronics11244080
crossref_primary_10_1016_j_engappai_2024_108398
crossref_primary_10_1109_TCSVT_2023_3282349
crossref_primary_10_1109_TCSVT_2024_3419933
crossref_primary_10_1109_TCSVT_2024_3400368
crossref_primary_10_1109_TCSVT_2022_3222013
crossref_primary_10_1109_TCSVT_2023_3285213
crossref_primary_10_1016_j_knosys_2024_112365
crossref_primary_10_1109_TCSVT_2024_3384756
crossref_primary_10_1109_TCSVT_2024_3393474
crossref_primary_10_1109_TCSVT_2023_3343397
crossref_primary_10_1007_s10489_024_05444_8
crossref_primary_10_1109_TNNLS_2022_3186008
crossref_primary_10_1016_j_inffus_2022_09_007
crossref_primary_10_1016_j_sysarc_2023_102912
crossref_primary_10_1109_JSTARS_2024_3490832
crossref_primary_10_1109_TCSVT_2024_3391018
crossref_primary_10_1016_j_neucom_2023_126872
crossref_primary_10_1109_TCSVT_2023_3277689
crossref_primary_10_1109_TCSVT_2023_3332353
crossref_primary_10_1109_ACCESS_2021_3107841
crossref_primary_10_1109_TCSVT_2022_3170620
crossref_primary_10_1109_TCSVT_2023_3327113
crossref_primary_10_1109_ACCESS_2023_3325842
crossref_primary_10_1109_TCDS_2023_3311171
crossref_primary_10_1109_TITS_2024_3424663
crossref_primary_10_1109_TCSVT_2022_3205375
crossref_primary_10_1016_j_asoc_2023_110412
crossref_primary_10_1109_TCSVT_2022_3175762
crossref_primary_10_1109_TCSVT_2023_3325814
crossref_primary_10_1109_TNNLS_2022_3186807
crossref_primary_10_1109_TCSVT_2023_3267115
crossref_primary_10_1016_j_patrec_2024_01_016
crossref_primary_10_14358_PERS_24_00060R2
crossref_primary_10_1109_TCSVT_2024_3399311
crossref_primary_10_1109_OJCS_2024_3505195
crossref_primary_10_3390_app14167022
crossref_primary_10_1109_TITS_2023_3329118
crossref_primary_10_1109_TCSVT_2023_3318557
crossref_primary_10_1109_TIP_2022_3141255
crossref_primary_10_1109_TCSVT_2023_3253799
crossref_primary_10_1109_TCSVT_2023_3310042
crossref_primary_10_3390_app13063816
Cites_doi 10.1109/TCSVT.2020.3037661
10.1109/TNNLS.2020.2970494
10.1109/CVPR.2019.00271
10.1109/CVPR42600.2020.01294
10.1109/BTAS46853.2019.9186009
10.1109/CVPR.2018.00552
10.1007/978-3-030-01252-6_17
10.1109/TCSVT.2020.2973301
10.1109/CVPR42600.2020.00241
10.1007/978-3-030-01264-9_8
10.1109/BTAS.2017.8272759
10.1109/ICCV.2019.00143
10.1007/s10479-011-0841-3
10.1145/3097983.3098135
10.1109/CVPR42600.2020.01389
10.1109/CVPR.2016.90
10.1609/aaai.v34i04.5746
10.1145/1150402.1150464
10.1109/ICCV.2019.00511
10.1109/ICCV.2019.00145
10.1109/TCSVT.2021.3060162
10.1609/aaai.v33i01.33013779
10.1609/aaai.v34i07.6715
10.1007/978-3-642-35289-8_25
10.1109/TCSVT.2017.2770319
10.1109/CVPR.2016.518
10.1109/ICCV.2019.00381
10.1109/CVPR.2017.754
10.1109/CVPR.2019.00297
10.1109/ICCV.2017.74
10.1109/TIP.2018.2883743
10.1109/CVPR.2019.00482
10.1109/TIFS.2018.2890812
10.1109/CVPR.2018.00454
10.1109/CVPR.2019.00726
10.1109/CVPR.2017.713
10.1109/CVPR42600.2020.00165
10.1109/TCSVT.2019.2935128
10.1109/CVPR.2019.00409
10.1109/CVPR.2019.00938
10.1609/aaai.v33i01.33014886
10.1007/s11263-021-01453-z
10.1109/CVPR.2018.00716
10.1109/CVPR.2018.00455
10.1609/aaai.v34i04.5963
10.1109/BTAS.2017.8272731
10.1145/3329784
10.5244/C.30.87
10.1609/aaai.v35i9.16969
10.1109/FG.2018.00020
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3090902
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2263
ExternalDocumentID 10_1109_TCSVT_2021_3090902
9461003
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61772513
  funderid: 10.13039/501100001809
– fundername: Youth Innovation Promotion Association, Chinese Academy of Sciences
  funderid: 10.13039/501100002367
– fundername: Open Research Project of the State Key Laboratory of Media Convergence and Communication, Communication University of China
  grantid: SKLMCC2020KF004
  funderid: 10.13039/501100015749
– fundername: National Key Research and Development Plan
  grantid: 2020AAA0140001
– fundername: Project from the Beijing Municipal Science and Technology Commission
  grantid: Z191100007119002
  funderid: 10.13039/501100009592
– fundername: Beijing Natural Science Foundation
  grantid: L192040
  funderid: 10.13039/501100004826
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-95a991ccb644c4594e05c788d4ac076c4bc5ebe0ebcf0d2435e592b38510cea93
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 05:18:49 EDT 2025
Tue Jul 01 00:41:15 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Wed Aug 27 02:40:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-95a991ccb644c4594e05c788d4ac076c4bc5ebe0ebcf0d2435e592b38510cea93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5293-310X
0000-0003-4297-9571
0000-0003-1300-1769
0000-0003-0818-5268
PQID 2647425870
PQPubID 85433
PageCount 13
ParticipantIDs proquest_journals_2647425870
crossref_citationtrail_10_1109_TCSVT_2021_3090902
crossref_primary_10_1109_TCSVT_2021_3090902
ieee_primary_9461003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref59
Chen (ref3)
ref14
ref58
ref53
ref11
ref10
ref54
ref16
ref19
ref18
Romero (ref12)
Lan (ref15)
Pereyra (ref25)
ref50
Ba (ref22)
ref46
ref48
ref47
ref42
ref41
ref43
Le (ref52) 2015; 7
ref49
Li (ref55) 2020
ref8
ref7
ref4
ref6
Jangho (ref45)
ref5
Simonyan (ref57)
Keskar (ref26)
ref34
ref36
Polino (ref23)
ref31
ref74
ref33
ref2
Anil (ref17)
Crowley (ref30)
ref71
ref70
ref73
ref72
Minar (ref1)
ref24
ref68
Ruder (ref35) 2017
ref67
ref69
ref20
ref64
ref63
Tian (ref13)
ref66
ref21
ref65
Krizhevsky (ref51) 2009
Shen (ref37) 2020
ref28
ref27
ref29
Yang (ref38) 2018
Song (ref39)
Chung (ref40)
ref60
Hinton (ref9)
ref62
ref61
Zagoruyko (ref44)
Furlanello (ref32)
References_xml – ident: ref7
  doi: 10.1109/TCSVT.2020.3037661
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref17
  article-title: Large scale distributed neural network training through online distillation
– ident: ref63
  doi: 10.1109/TNNLS.2020.2970494
– ident: ref24
  doi: 10.1109/CVPR.2019.00271
– ident: ref43
  doi: 10.1109/CVPR42600.2020.01294
– ident: ref71
  doi: 10.1109/BTAS46853.2019.9186009
– ident: ref70
  doi: 10.1109/CVPR.2018.00552
– ident: ref46
  doi: 10.1007/978-3-030-01252-6_17
– ident: ref6
  doi: 10.1109/TCSVT.2020.2973301
– ident: ref31
  doi: 10.1109/CVPR42600.2020.00241
– ident: ref60
  doi: 10.1007/978-3-030-01264-9_8
– year: 2017
  ident: ref35
  article-title: Knowledge adaptation: Teaching to adapt
  publication-title: arXiv:1702.02052
– start-page: 2765
  volume-title: Proc. Conf. Neural Inf. Process. Syst.
  ident: ref45
  article-title: Paraphrasing complex network: Network compression via factor transfer
– ident: ref54
  doi: 10.1109/BTAS.2017.8272759
– ident: ref20
  doi: 10.1109/ICCV.2019.00143
– ident: ref64
  doi: 10.1007/s10479-011-0841-3
– ident: ref34
  doi: 10.1145/3097983.3098135
– ident: ref33
  doi: 10.1109/CVPR42600.2020.01389
– ident: ref42
  doi: 10.1109/CVPR.2016.90
– ident: ref18
  doi: 10.1609/aaai.v34i04.5746
– year: 2009
  ident: ref51
  article-title: Learning multiple layers of features from tiny images
– volume-title: Proc. Deep Learn. Represent. Learn. Workshop Neural Inf. Process. Syst.
  ident: ref9
  article-title: Distilling the knowledge in a neural network
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref23
  article-title: Model compression via distillation and quantization
– year: 2020
  ident: ref37
  article-title: MEAL V2: Boosting vanilla ResNet-50 to 80%+ top-1 accuracy on ImageNet without tricks
  publication-title: arXiv:2009.08453
– ident: ref21
  doi: 10.1145/1150402.1150464
– start-page: 1837
  volume-title: Proc. Conf. Neural Inf. Process. Syst.
  ident: ref39
  article-title: Collaborative learning for deep neural networks
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref12
  article-title: FitNets: Hints for thin deep nets
– start-page: 2654
  volume-title: Proc. Conf. Neural Inf. Process. Syst.
  ident: ref22
  article-title: Do deep nets really need to be deep?
– ident: ref48
  doi: 10.1109/ICCV.2019.00511
– start-page: 7528
  volume-title: Proc. Conf. Neural Inf. Process. Syst.
  ident: ref15
  article-title: Knowledge distillation by on-the-fly native ensemble
– year: 2020
  ident: ref55
  article-title: ResKD: Residual-guided knowledge distillation
  publication-title: arXiv:2006.04719
– ident: ref47
  doi: 10.1109/ICCV.2019.00145
– ident: ref8
  doi: 10.1109/TCSVT.2021.3060162
– ident: ref49
  doi: 10.1609/aaai.v33i01.33013779
– ident: ref67
  doi: 10.1609/aaai.v34i07.6715
– start-page: 1607
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref32
  article-title: Born again neural networks
– ident: ref50
  doi: 10.1007/978-3-642-35289-8_25
– ident: ref4
  doi: 10.1109/TCSVT.2017.2770319
– ident: ref68
  doi: 10.1109/CVPR.2016.518
– ident: ref41
  doi: 10.1109/ICCV.2019.00381
– start-page: 742
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref3
  article-title: Learning efficient object detection models with knowledge distillation
– ident: ref14
  doi: 10.1109/CVPR.2017.754
– ident: ref16
  doi: 10.1109/CVPR.2019.00297
– ident: ref1
  article-title: Recent advances in deep learning: An overview
  publication-title: arXiv:1807.08169
– ident: ref65
  doi: 10.1109/ICCV.2017.74
– ident: ref62
  doi: 10.1109/TIP.2018.2883743
– ident: ref73
  doi: 10.1109/CVPR.2019.00482
– ident: ref74
  doi: 10.1109/TIFS.2018.2890812
– ident: ref27
  doi: 10.1109/CVPR.2018.00454
– ident: ref11
  doi: 10.1109/CVPR.2019.00726
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref26
  article-title: On large-batch training for deep learning: Generalization gap and sharp minima
– ident: ref69
  doi: 10.1109/CVPR.2017.713
– ident: ref61
  doi: 10.1109/CVPR42600.2020.00165
– ident: ref2
  doi: 10.1109/TCSVT.2019.2935128
– ident: ref10
  doi: 10.1109/CVPR.2019.00409
– ident: ref28
  doi: 10.1109/CVPR.2019.00938
– ident: ref36
  doi: 10.1609/aaai.v33i01.33014886
– start-page: 2006
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref40
  article-title: Feature-map-level online adversarial knowledge distillation
– ident: ref66
  doi: 10.1007/s11263-021-01453-z
– volume: 7
  start-page: 7
  year: 2015
  ident: ref52
  article-title: Tiny imagenet visual recognition challenge
  publication-title: CS 231N
– ident: ref59
  doi: 10.1109/CVPR.2018.00716
– start-page: 2893
  volume-title: Proc. Conf. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Moonshine: Distilling with cheap convolutions
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref57
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref29
  doi: 10.1109/CVPR.2018.00455
– ident: ref19
  doi: 10.1609/aaai.v34i04.5963
– year: 2018
  ident: ref38
  article-title: Knowledge distillation in generations: More tolerant teachers educate better students
  publication-title: arXiv:1805.05551
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref44
  article-title: Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref13
  article-title: Contrastive representation distillation
– ident: ref53
  doi: 10.1109/BTAS.2017.8272731
– ident: ref5
  doi: 10.1145/3329784
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref25
  article-title: Regularizing neural networks by penalizing confident output distributions
– ident: ref58
  doi: 10.5244/C.30.87
– ident: ref56
  doi: 10.1609/aaai.v35i9.16969
– ident: ref72
  doi: 10.1109/FG.2018.00020
SSID ssj0014847
Score 2.6254923
Snippet Knowledge distillation provides an effective way to transfer knowledge via teacher-student learning, where most existing distillation approaches apply a fixed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2251
SubjectTerms Data mining
Data models
deep learning
Distillation
Evolution
Germanium
Knowledge
Knowledge distillation
Knowledge management
Knowledge representation
Knowledge transfer
Learning
Predictive models
Teachers
teacher–student learning
Training
Title Student Network Learning via Evolutionary Knowledge Distillation
URI https://ieeexplore.ieee.org/document/9461003
https://www.proquest.com/docview/2647425870
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GTnDgNRCDgXrgBt3SNmmbG2gMTaDtsg3tViVeihDThkY3CX49TtpOvIS45ZBIkZ3YnxP7MyHngmq0hym4MXjKZZrhKGDUjSWXOpJCKVtf0euH3RG7G_NxhVyua2G01jb5TDfN0P7lT-awNE9lLWHIwQ215wYGbnmt1vrHgMW2mRjCBc-N0Y-VBTJUtIbtwcMQQ0HfawZUmETEL07IdlX5YYqtf7ndIb1yZ3layXNzmakmvH8jbfzv1nfJdgE0nev8ZOyRip7tk61P9IM1cjXIiS2dfp4L7hRkq4_O6kk6nVVxKuXizbkvn96cG2MUpnkG3QEZ3XaG7a5bdFRwIQi9zBVcIh4EUIiCgHHBNOWAspwwCTQKgSngqFWqFaR04iOU0lz4KkBYRkFLERyS6mw-00fEUZGM_JAzrRFAxjGXHCCkfhopxlJf8jrxShEnUNCNm64X08SGHVQkVi2JUUtSqKVOLtZrXnKyjT9n14yc1zMLEddJo9RkUtzH1wRhX4TWCY3T8e-rTsimbwobbE5Og1SzxVKfItzI1Jk9Zx8wydCs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxsxEB4heigc6AMQAdr60J7QBq9jZ9eHSiAeCgRyISBuiz2ZoKooIEio6G_pX-l_69i7G_UlbkjcfLAP9oxnvrFnvgH4aCWxPRxikmPqE02aRy0tk9wZR5mz3sf6iuNeu3OqD8_N-Qz8mNbCEFFMPqNmGMa__ME1TsJT2aYN5OCyblXdpYdvHKDdfT7YZWl-Ump_r7_TSaoeAgm22uk4scYxAkL07PdRG6tJGuSwb6AdcgiP2qPhfUjyOJQDxeCBjFW-xUBEIrlAtcQG_gXjDKPK6rDpH4XOY_syBihpkrPnrEtypN3s75yc9Tn4VGmzJW1IffzD7cU-Lv8Y_-jR9l_Bz_osykSWr83J2Dfx-180kc_1sF7DQgWlxXap-29ghkZvYf43gsVF2DopqTtFr8x2FxWd7KW4_-LE3n1179ztg-jWj4tiN5i9qzJHcAlOn2QLyzA7uh7RCgifuUy1jSZiiJznxhnEtlTDzGs9VM40IK1FWmBFqB76elwVMbCStohqUAQ1KCo1aMDGdM1NSSfy6OzFINfpzEqkDVivNaeoLM5dwcA2Y_vL5nf1_6s-wMtO__ioODrodddgToUyjpiBtA6z49sJvWNwNfbvo44LuHhqPfkF7TUvBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Student+Network+Learning+via+Evolutionary+Knowledge+Distillation&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhang%2C+Kangkai&rft.au=Zhang%2C+Chunhui&rft.au=Li%2C+Shikun&rft.au=Zeng%2C+Dan&rft.date=2022-04-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=4&rft.spage=2251&rft.epage=2263&rft_id=info:doi/10.1109%2FTCSVT.2021.3090902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2021_3090902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon