RNN-based pavement moduli prediction for flexible pavement design enhancement

In order to facilitate the effective implementation of the MEPDG, researchers concentrate on quantifying local material properties, with a particular emphasis on pavement layer moduli. The layer modulus is a critical parameter necessary for calculating pavement responses (stress, strain, and deflect...

Full description

Saved in:
Bibliographic Details
Published inCase Studies in Construction Materials Vol. 20; p. e02811
Main Authors Al-Qaili, Abdulraaof H., Al-Mansour, Abdullah I., Al-Solieman, Hamad, AlSharabi, Khalil
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to facilitate the effective implementation of the MEPDG, researchers concentrate on quantifying local material properties, with a particular emphasis on pavement layer moduli. The layer modulus is a critical parameter necessary for calculating pavement responses (stress, strain, and deflections) resulting from traffic loading. Accurately determining the layer modulus is crucial for enhancing pavement design as it directly impacts the required pavement layer thicknesses and associated costs. Backcalculation is a commonly used method for analyzing Falling Weight Deflectometer (FWD) data to determine pavement layer moduli, with Artificial Neural Networks (ANNs) being the traditional choice. However, ANNs have limitations in terms of convergence accuracy and generalization capability. The aim of this study is to improve the backcalculation of layer moduli to enhance pavement design. By utilizing FWD data, Recurrent Neural Network (RNN) was employed to address the limitations of conventional ANN. Both ANN and RNN networks were developed and trained using identical properties. The findings demonstrate that RNN achieved faster convergence and higher convergence accuracy compared to ANN. The RNN network generated reasonable and precise layer moduli values, exhibiting a determination coefficient (R) of 0.95 in comparison to the measured values, while the ANN network had an R-value of 0.79. The results indicate that the RNN network can learn the continuity pattern between deflection basin points, thereby enhancing the accuracy of FWD backcalculation.
AbstractList In order to facilitate the effective implementation of the MEPDG, researchers concentrate on quantifying local material properties, with a particular emphasis on pavement layer moduli. The layer modulus is a critical parameter necessary for calculating pavement responses (stress, strain, and deflections) resulting from traffic loading. Accurately determining the layer modulus is crucial for enhancing pavement design as it directly impacts the required pavement layer thicknesses and associated costs. Backcalculation is a commonly used method for analyzing Falling Weight Deflectometer (FWD) data to determine pavement layer moduli, with Artificial Neural Networks (ANNs) being the traditional choice. However, ANNs have limitations in terms of convergence accuracy and generalization capability. The aim of this study is to improve the backcalculation of layer moduli to enhance pavement design. By utilizing FWD data, Recurrent Neural Network (RNN) was employed to address the limitations of conventional ANN. Both ANN and RNN networks were developed and trained using identical properties. The findings demonstrate that RNN achieved faster convergence and higher convergence accuracy compared to ANN. The RNN network generated reasonable and precise layer moduli values, exhibiting a determination coefficient (R) of 0.95 in comparison to the measured values, while the ANN network had an R-value of 0.79. The results indicate that the RNN network can learn the continuity pattern between deflection basin points, thereby enhancing the accuracy of FWD backcalculation.
ArticleNumber e02811
Author Al-Solieman, Hamad
AlSharabi, Khalil
Al-Qaili, Abdulraaof H.
Al-Mansour, Abdullah I.
Author_xml – sequence: 1
  givenname: Abdulraaof H.
  surname: Al-Qaili
  fullname: Al-Qaili, Abdulraaof H.
  email: aalqaili@ksu.edu.sa
  organization: Civil Engineering Department, King Saud University, Riyadh, Kingdom of Saudi Arabia
– sequence: 2
  givenname: Abdullah I.
  surname: Al-Mansour
  fullname: Al-Mansour, Abdullah I.
  organization: Civil Engineering Department, King Saud University, Riyadh, Kingdom of Saudi Arabia
– sequence: 3
  givenname: Hamad
  surname: Al-Solieman
  fullname: Al-Solieman, Hamad
  organization: Civil Engineering Department, King Saud University, Riyadh, Kingdom of Saudi Arabia
– sequence: 4
  givenname: Khalil
  surname: AlSharabi
  fullname: AlSharabi, Khalil
  organization: Electrical Engineering Department, King Saud University, Riyadh, Kingdom of Saudi Arabia
BookMark eNp9kNtKw0AQhhepYK19Aa_yAql7yGY34I0UD4VaQfR62cOkbsih7Maib2_Sinrl1QzD__8z852jSdu1gNAlwQuCSX5VLWy0zYJiyhaAqSTkBE0pJVnKccEnf_ozNI-xwngQ8VxSMUWPz5tNanQEl-z0Hhpo-6Tp3Hvtk10A523vuzYpu5CUNXx4U8OvzkH02zaB9k239jC6QKelriPMv-sMvd7dviwf0vXT_Wp5s04ty0mfFkxoAYxqzJyDQlMjuWRc69wQTgXFxmTcOGyIINIxojORZ0KyklhrcGHZDK2Oua7TldoF3-jwqTrt1WHQha3Sofe2BiW4EFo6LKXJMl3gcZUrJZWYlsAlGbLoMcuGLsYA5U8ewWrkqyo18lUjX3XkO5iujyYYvtx7CCpaDwMF5wPYfjjD_2f_Apl-hSU
Cites_doi 10.1080/10298430701827650
10.3141/2005-10
10.1061/(ASCE)0899-1561(2003)15:1(25)
10.1007/s00521-012-1131-y
10.3141/1806-03
10.3141/2457-09
10.1080/10298436.2017.1316846
10.1016/j.conbuildmat.2009.06.009
10.1139/L07-083
10.1080/10298430500150981
10.3390/ma16031126
10.1080/10298436.2016.1162303
10.1080/10298436.2017.1309197
10.1080/10298436.2016.1149838
10.3390/infrastructures8020035
10.1080/14680629.2021.1910546
10.1080/10298436.2021.1937622
10.1002/9781119318583.ch16
10.1080/14680629.2017.1400995
10.1080/10298436.2014.993196
10.1371/journal.pone.0180944
10.1016/j.ijprt.2016.11.006
10.1080/10298436.2021.1883016
10.1061/JPEODX.0000080
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.cscm.2023.e02811
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2214-5095
ExternalDocumentID oai_doaj_org_article_7577a8d088b44a90b858df82802fe581
10_1016_j_cscm_2023_e02811
S2214509523009920
GroupedDBID 0SF
4.4
457
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IXB
KQ8
M41
M~E
NCXOZ
OK1
RIG
ROL
SSZ
0R~
AAYXX
AFJKZ
CITATION
ID FETCH-LOGICAL-c361t-937a7e32a03dde9a2b85835aa6b152720bb45bd0b1718d31a4764783f1ccb09c3
IEDL.DBID IXB
ISSN 2214-5095
IngestDate Tue Oct 22 15:16:34 EDT 2024
Thu Sep 26 20:57:50 EDT 2024
Sat Aug 03 15:33:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pavement design
Falling weight deflectometer
Layer moduli backcalculation
Artificial neural network
Recurrent neural network
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-937a7e32a03dde9a2b85835aa6b152720bb45bd0b1718d31a4764783f1ccb09c3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214509523009920
ParticipantIDs doaj_primary_oai_doaj_org_article_7577a8d088b44a90b858df82802fe581
crossref_primary_10_1016_j_cscm_2023_e02811
elsevier_sciencedirect_doi_10_1016_j_cscm_2023_e02811
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Case Studies in Construction Materials
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sharma, Das (bib12) 2008; 35
Al-Qaili, Al-Solieman (bib2) 2022; 23
K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, Draw: A recurrent neural network for image generation, in International conference on machine learning, 2015, pp. 1462–1471.
Elbagalati, Elseifi, Gaspard, Zhang (bib8) 2018; 19
Seo, Kim, Choi, Park (bib13) 2009; 23
Gonzalez, Carbonell, van Bijsterveld (bib23) 2016; 5
Abu-Farsakh, Zadehmohamad, Voyiadjis (bib6) 2023; 8
Mateos, Snyder (bib11) 2002; 1806
Abd El-Raof, Abd El-Hakim, El-Badawy, Afify (bib9) 2018; 144
Mun, Kim (bib20) 2009; 10
Leiva-Villacorta, Vargas-Nordcbeck, Timm (bib24) 2017; 10
Ng, Hutson, Ksaibati, Wulff (bib1) 2019; 20
Mousa, Elseifi, Elbagalati, Mohammad (bib25) 2019; 20
Huang (bib10) 2004; vol. 2
Ceylan, Guclu, Tutumluer, Thompson (bib18) 2005; 6
Saltan, Uz, Aktas (bib21) 2013; 23
Abdelfattah, Baaj, Kadhim (bib5) 2022; 23
Varma, Emin Kutay (bib16) 2016; 17
Ceylan, Gopalakrishnan, Guclu (bib19) 2007; 2005
Han, Ma, Chen, Fan (bib26) 2022; 23
K. Gopalakrishnan, S. Kim, H. Ceylan, and O. Kaya, “Development of asphalt dynamic modulus master curve using falling weight deflectometer measurements.,” Iowa State University. Institute for Transportation, 2014.
B. Izevbekhai and N. Pederson, “Investigation of deflection and vibration dynamics of concrete and bituminous pavements constructed over geofoam,” St. Paul, MN: Minnesota Department of Transportation, Final Report to MnDOT, 2010.
Li, Wang (bib17) 2019; 20
Zaabar, Chatti, Lee, Lajnef (bib15) 2014; 2457
Ng, Hellrung, Ksaibati, Wulff (bib4) 2018; 19
Mehta, Roque (bib7) 2003; 15
Islam, Gassman (bib3) 2023; 16
Bao, Yue, Rao (bib28) 2017; 12
Leiva-Villacorta (10.1016/j.cscm.2023.e02811_bib24) 2017; 10
Saltan (10.1016/j.cscm.2023.e02811_bib21) 2013; 23
Islam (10.1016/j.cscm.2023.e02811_bib3) 2023; 16
Abdelfattah (10.1016/j.cscm.2023.e02811_bib5) 2022; 23
Al-Qaili (10.1016/j.cscm.2023.e02811_bib2) 2022; 23
Ceylan (10.1016/j.cscm.2023.e02811_bib18) 2005; 6
Varma (10.1016/j.cscm.2023.e02811_bib16) 2016; 17
Han (10.1016/j.cscm.2023.e02811_bib26) 2022; 23
Seo (10.1016/j.cscm.2023.e02811_bib13) 2009; 23
Abd El-Raof (10.1016/j.cscm.2023.e02811_bib9) 2018; 144
Abu-Farsakh (10.1016/j.cscm.2023.e02811_bib6) 2023; 8
Sharma (10.1016/j.cscm.2023.e02811_bib12) 2008; 35
Mehta (10.1016/j.cscm.2023.e02811_bib7) 2003; 15
10.1016/j.cscm.2023.e02811_bib27
Mateos (10.1016/j.cscm.2023.e02811_bib11) 2002; 1806
Ceylan (10.1016/j.cscm.2023.e02811_bib19) 2007; 2005
10.1016/j.cscm.2023.e02811_bib22
Zaabar (10.1016/j.cscm.2023.e02811_bib15) 2014; 2457
Ng (10.1016/j.cscm.2023.e02811_bib4) 2018; 19
Li (10.1016/j.cscm.2023.e02811_bib17) 2019; 20
Bao (10.1016/j.cscm.2023.e02811_bib28) 2017; 12
Gonzalez (10.1016/j.cscm.2023.e02811_bib23) 2016; 5
Ng (10.1016/j.cscm.2023.e02811_bib1) 2019; 20
Elbagalati (10.1016/j.cscm.2023.e02811_bib8) 2018; 19
Huang (10.1016/j.cscm.2023.e02811_bib10) 2004; vol. 2
Mun (10.1016/j.cscm.2023.e02811_bib20) 2009; 10
Mousa (10.1016/j.cscm.2023.e02811_bib25) 2019; 20
10.1016/j.cscm.2023.e02811_bib14
References_xml – volume: 35
  start-page: 57
  year: 2008
  end-page: 66
  ident: bib12
  article-title: Backcalculation of pavement layer moduli from falling weight deflectometer data using an artificial neural network
  publication-title: Can. J. Civ. Eng.
  contributor:
    fullname: Das
– volume: 2457
  start-page: 80
  year: 2014
  end-page: 92
  ident: bib15
  article-title: Backcalculation of asphalt concrete modulus master curve from field-measured falling weight deflectometer data: using a new time domain viscoelastic dynamic solution and genetic algorithm
  publication-title: Transp. Res. Rec.
  contributor:
    fullname: Lajnef
– volume: 23
  start-page: 1681
  year: 2022
  end-page: 1693
  ident: bib2
  article-title: Enhancing MEPDG distress models prediction for Saudi Arabia by local calibration
  publication-title: Road. Mater. Pavement Des.
  contributor:
    fullname: Al-Solieman
– volume: 2005
  start-page: 86
  year: 2007
  end-page: 94
  ident: bib19
  article-title: Advanced approaches to characterizing nonlinear pavement system responses
  publication-title: Transp. Res. Rec.
  contributor:
    fullname: Guclu
– volume: 10
  start-page: 9
  year: 2009
  end-page: 18
  ident: bib20
  article-title: Backcalculation of subgrade stiffness under rubblised PCC slabs using multilevel FWD loads
  publication-title: Int. J. Pavement Eng.
  contributor:
    fullname: Kim
– volume: 19
  start-page: 62
  year: 2018
  end-page: 74
  ident: bib4
  article-title: Systematic back-calculation protocol and prediction of resilient modulus for MEPDG
  publication-title: Int. J. Pavement Eng.
  contributor:
    fullname: Wulff
– volume: 12
  year: 2017
  ident: bib28
  article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory
  publication-title: PLoS One
  contributor:
    fullname: Rao
– volume: 23
  start-page: 3099
  year: 2022
  end-page: 3112
  ident: bib26
  article-title: Application of a hybrid neural network structure for FWD backcalculation based on LTPP database
  publication-title: Int. J. Pavement Eng.
  contributor:
    fullname: Fan
– volume: 20
  start-page: 600
  year: 2019
  end-page: 614
  ident: bib1
  article-title: A comprehensive field and laboratory test programme and electronic database of pavement material properties for MEPDG
  publication-title: Int. J. Pavement Eng.
  contributor:
    fullname: Wulff
– volume: 20
  start-page: 554
  year: 2019
  end-page: 571
  ident: bib25
  article-title: Evaluation of interface bonding conditions based on non-destructing testing deflection measurements
  publication-title: Road. Mater. Pavement Des.
  contributor:
    fullname: Mohammad
– volume: 23
  start-page: 1703
  year: 2013
  end-page: 1710
  ident: bib21
  article-title: Artificial neural networks–based backcalculation of the structural properties of a typical flexible pavement
  publication-title: Neural Comput. Appl.
  contributor:
    fullname: Aktas
– volume: 8
  start-page: 35
  year: 2023
  ident: bib6
  article-title: Incorporating the benefits of geosynthetic into MEPDG
  publication-title: Infrastructures
  contributor:
    fullname: Voyiadjis
– volume: 20
  start-page: 490
  year: 2019
  end-page: 498
  ident: bib17
  article-title: Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters
  publication-title: Int. J. Pavement Eng.
  contributor:
    fullname: Wang
– volume: 144
  start-page: 4018052
  year: 2018
  ident: bib9
  article-title: Simplified closed-form procedure for network-level determination of pavement layer moduli from falling weight deflectometer data
  publication-title: J. Transp. Eng. Part B Pavements
  contributor:
    fullname: Afify
– volume: 6
  start-page: 171
  year: 2005
  end-page: 182
  ident: bib18
  article-title: Backcalculation of full-depth asphalt pavement layer moduli considering nonlinear stress-dependent subgrade behavior
  publication-title: Int. J. Pavement Eng.
  contributor:
    fullname: Thompson
– volume: 16
  start-page: 1126
  year: 2023
  ident: bib3
  article-title: Predicting flexible pavement distress and IRI considering subgrade resilient modulus of fine-grained soils using MEPDG
  publication-title: Mater. (Basel)
  contributor:
    fullname: Gassman
– volume: 23
  start-page: 4174
  year: 2022
  end-page: 4189
  ident: bib5
  article-title: Calibration of MEPDG permanent deformation models using Hamburg wheel rut tester and field data
  publication-title: Int. J. Pavement Eng.
  contributor:
    fullname: Kadhim
– volume: 19
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib8
  article-title: Development of the pavement structural health index based on falling weight deflectometer testing
  publication-title: Int. J. Pavement Eng.
  contributor:
    fullname: Zhang
– volume: 10
  start-page: 139
  year: 2017
  end-page: 147
  ident: bib24
  article-title: Non-destructive evaluation of sustainable pavement technologies using artificial neural networks
  publication-title: Int. J. Pavement Res. Technol.
  contributor:
    fullname: Timm
– volume: 1806
  start-page: 19
  year: 2002
  end-page: 29
  ident: bib11
  article-title: Validation of flexible pavement structural response models with data from the Minnesota road research project
  publication-title: Transp. Res. Rec.
  contributor:
    fullname: Snyder
– volume: 15
  start-page: 25
  year: 2003
  end-page: 31
  ident: bib7
  article-title: Evaluation of FWD data for determination of layer moduli of pavements
  publication-title: J. Mater. Civ. Eng.
  contributor:
    fullname: Roque
– volume: 17
  start-page: 388
  year: 2016
  end-page: 402
  ident: bib16
  article-title: Backcalculation of viscoelastic and nonlinear flexible pavement layer properties from falling weight deflections
  publication-title: Int. J. Pavement Eng.
  contributor:
    fullname: Emin Kutay
– volume: 23
  start-page: 3206
  year: 2009
  end-page: 3213
  ident: bib13
  article-title: Evaluation of layer properties of flexible pavement using a pseudo-static analysis procedure of falling weight deflectometer
  publication-title: Constr. Build. Mater.
  contributor:
    fullname: Park
– volume: 5
  start-page: 211
  year: 2016
  end-page: 225
  ident: bib23
  article-title: Evaluation of multilayer pavement viscoelastic properties from falling weight deflectometer using neural networks
  publication-title: Mater. Infrastruct.
  contributor:
    fullname: van Bijsterveld
– volume: vol. 2
  year: 2004
  ident: bib10
  publication-title: Pavement Analysis and Design
  contributor:
    fullname: Huang
– ident: 10.1016/j.cscm.2023.e02811_bib27
– volume: 10
  start-page: 9
  issue: 1
  year: 2009
  ident: 10.1016/j.cscm.2023.e02811_bib20
  article-title: Backcalculation of subgrade stiffness under rubblised PCC slabs using multilevel FWD loads
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298430701827650
  contributor:
    fullname: Mun
– volume: 2005
  start-page: 86
  issue: 1
  year: 2007
  ident: 10.1016/j.cscm.2023.e02811_bib19
  article-title: Advanced approaches to characterizing nonlinear pavement system responses
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2005-10
  contributor:
    fullname: Ceylan
– volume: 15
  start-page: 25
  issue: 1
  year: 2003
  ident: 10.1016/j.cscm.2023.e02811_bib7
  article-title: Evaluation of FWD data for determination of layer moduli of pavements
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2003)15:1(25)
  contributor:
    fullname: Mehta
– volume: 23
  start-page: 1703
  issue: 6
  year: 2013
  ident: 10.1016/j.cscm.2023.e02811_bib21
  article-title: Artificial neural networks–based backcalculation of the structural properties of a typical flexible pavement
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1131-y
  contributor:
    fullname: Saltan
– volume: 1806
  start-page: 19
  issue: 1
  year: 2002
  ident: 10.1016/j.cscm.2023.e02811_bib11
  article-title: Validation of flexible pavement structural response models with data from the Minnesota road research project
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1806-03
  contributor:
    fullname: Mateos
– ident: 10.1016/j.cscm.2023.e02811_bib14
– volume: 2457
  start-page: 80
  issue: 1
  year: 2014
  ident: 10.1016/j.cscm.2023.e02811_bib15
  article-title: Backcalculation of asphalt concrete modulus master curve from field-measured falling weight deflectometer data: using a new time domain viscoelastic dynamic solution and genetic algorithm
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2457-09
  contributor:
    fullname: Zaabar
– volume: 20
  start-page: 600
  issue: 5
  year: 2019
  ident: 10.1016/j.cscm.2023.e02811_bib1
  article-title: A comprehensive field and laboratory test programme and electronic database of pavement material properties for MEPDG
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2017.1316846
  contributor:
    fullname: Ng
– volume: 23
  start-page: 3206
  issue: 10
  year: 2009
  ident: 10.1016/j.cscm.2023.e02811_bib13
  article-title: Evaluation of layer properties of flexible pavement using a pseudo-static analysis procedure of falling weight deflectometer
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.06.009
  contributor:
    fullname: Seo
– volume: 35
  start-page: 57
  issue: 1
  year: 2008
  ident: 10.1016/j.cscm.2023.e02811_bib12
  article-title: Backcalculation of pavement layer moduli from falling weight deflectometer data using an artificial neural network
  publication-title: Can. J. Civ. Eng.
  doi: 10.1139/L07-083
  contributor:
    fullname: Sharma
– volume: 6
  start-page: 171
  issue: 3
  year: 2005
  ident: 10.1016/j.cscm.2023.e02811_bib18
  article-title: Backcalculation of full-depth asphalt pavement layer moduli considering nonlinear stress-dependent subgrade behavior
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298430500150981
  contributor:
    fullname: Ceylan
– ident: 10.1016/j.cscm.2023.e02811_bib22
– volume: 16
  start-page: 1126
  issue: 3
  year: 2023
  ident: 10.1016/j.cscm.2023.e02811_bib3
  article-title: Predicting flexible pavement distress and IRI considering subgrade resilient modulus of fine-grained soils using MEPDG
  publication-title: Mater. (Basel)
  doi: 10.3390/ma16031126
  contributor:
    fullname: Islam
– volume: 19
  start-page: 62
  issue: 1
  year: 2018
  ident: 10.1016/j.cscm.2023.e02811_bib4
  article-title: Systematic back-calculation protocol and prediction of resilient modulus for MEPDG
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2016.1162303
  contributor:
    fullname: Ng
– volume: 20
  start-page: 490
  issue: 4
  year: 2019
  ident: 10.1016/j.cscm.2023.e02811_bib17
  article-title: Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2017.1309197
  contributor:
    fullname: Li
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cscm.2023.e02811_bib8
  article-title: Development of the pavement structural health index based on falling weight deflectometer testing
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2016.1149838
  contributor:
    fullname: Elbagalati
– volume: 8
  start-page: 35
  issue: 2
  year: 2023
  ident: 10.1016/j.cscm.2023.e02811_bib6
  article-title: Incorporating the benefits of geosynthetic into MEPDG
  publication-title: Infrastructures
  doi: 10.3390/infrastructures8020035
  contributor:
    fullname: Abu-Farsakh
– volume: 23
  start-page: 1681
  issue: 7
  year: 2022
  ident: 10.1016/j.cscm.2023.e02811_bib2
  article-title: Enhancing MEPDG distress models prediction for Saudi Arabia by local calibration
  publication-title: Road. Mater. Pavement Des.
  doi: 10.1080/14680629.2021.1910546
  contributor:
    fullname: Al-Qaili
– volume: 23
  start-page: 4174
  issue: 12
  year: 2022
  ident: 10.1016/j.cscm.2023.e02811_bib5
  article-title: Calibration of MEPDG permanent deformation models using Hamburg wheel rut tester and field data
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2021.1937622
  contributor:
    fullname: Abdelfattah
– volume: 5
  start-page: 211
  issue: 1
  year: 2016
  ident: 10.1016/j.cscm.2023.e02811_bib23
  article-title: Evaluation of multilayer pavement viscoelastic properties from falling weight deflectometer using neural networks
  publication-title: Mater. Infrastruct.
  doi: 10.1002/9781119318583.ch16
  contributor:
    fullname: Gonzalez
– volume: 20
  start-page: 554
  issue: 3
  year: 2019
  ident: 10.1016/j.cscm.2023.e02811_bib25
  article-title: Evaluation of interface bonding conditions based on non-destructing testing deflection measurements
  publication-title: Road. Mater. Pavement Des.
  doi: 10.1080/14680629.2017.1400995
  contributor:
    fullname: Mousa
– volume: 17
  start-page: 388
  issue: 5
  year: 2016
  ident: 10.1016/j.cscm.2023.e02811_bib16
  article-title: Backcalculation of viscoelastic and nonlinear flexible pavement layer properties from falling weight deflections
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2014.993196
  contributor:
    fullname: Varma
– volume: 12
  issue: 7
  year: 2017
  ident: 10.1016/j.cscm.2023.e02811_bib28
  article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0180944
  contributor:
    fullname: Bao
– volume: 10
  start-page: 139
  issue: 2
  year: 2017
  ident: 10.1016/j.cscm.2023.e02811_bib24
  article-title: Non-destructive evaluation of sustainable pavement technologies using artificial neural networks
  publication-title: Int. J. Pavement Res. Technol.
  doi: 10.1016/j.ijprt.2016.11.006
  contributor:
    fullname: Leiva-Villacorta
– volume: 23
  start-page: 3099
  issue: 9
  year: 2022
  ident: 10.1016/j.cscm.2023.e02811_bib26
  article-title: Application of a hybrid neural network structure for FWD backcalculation based on LTPP database
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2021.1883016
  contributor:
    fullname: Han
– volume: vol. 2
  year: 2004
  ident: 10.1016/j.cscm.2023.e02811_bib10
  contributor:
    fullname: Huang
– volume: 144
  start-page: 4018052
  issue: 4
  year: 2018
  ident: 10.1016/j.cscm.2023.e02811_bib9
  article-title: Simplified closed-form procedure for network-level determination of pavement layer moduli from falling weight deflectometer data
  publication-title: J. Transp. Eng. Part B Pavements
  doi: 10.1061/JPEODX.0000080
  contributor:
    fullname: Abd El-Raof
SSID ssj0002856827
Score 2.3205955
Snippet In order to facilitate the effective implementation of the MEPDG, researchers concentrate on quantifying local material properties, with a particular emphasis...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage e02811
SubjectTerms Artificial neural network
Falling weight deflectometer
Layer moduli backcalculation
Pavement design
Recurrent neural network
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMbCjh-xM4IiKpCagdEpW6WHTuiVUmrkv7_-uIUwgILq-NH9F2i7853_ozQTWGJM6TZd8vzBBTlEsUFTbx1PuNeMucgozsaZ8MJf5mKaeeqL6gJi_LAEbh7KaQ0yoWfwXJucmKVUK4McQKhpRcqBj4k7wRT82bLSGSKyvaUTCzoKj4LOHpO2Z0Pz9P0BxM1gv0dQuqQzOAQHbTeIX6Ib3WE9nx1jEav43ECbOPwyjTy3jX-WLrNYoZXa8izALY4OJ-4BHVLu_Df_VxToIF99Q7WhaYTNBk8vz0Nk_YWhKRgWVonwX8w0jNqSMDN54YCAkwYk1m4kpYSa7mwjtg00IxjqeESzo-yMi2CIfKCnaJetaz8GcJKFWXwB11JITmqbB7CJWlJ6ZRVYbzro9sdInoVxS70rgpsrgE_DfjpiF8fPQJoXz1BqLppCObTrfn0X-brI7GDXLecH7k8TDX7ZfHz_1j8Au2HKXmsvr1EvXq98VfBx6jtdfM5bQE6dc2r
  priority: 102
  providerName: Directory of Open Access Journals
Title RNN-based pavement moduli prediction for flexible pavement design enhancement
URI https://dx.doi.org/10.1016/j.cscm.2023.e02811
https://doaj.org/article/7577a8d088b44a90b858df82802fe581
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXryIouL8MXrwJnVt2rTp0Q3HEFZBHRQvJWlSrcyuzO7_97201e3iwWPDSxq-hPe-l7z3Qsh1Jh0lHHPuFkU2VpSzuc-oraXSga9DTym80Z3HwWzhPyQs6ZFJlwuDYZWt7m90utHWbcuoRXNUFcXomWKRbWAIQKKB5lD02z3mmiS-ZPxzzkI5C7h5uRXlbezQ5s40YV7ZV4YJ6dS71SDrujv2yZTx3zJTW6ZnekgOWs5o3TXTOiI9XR6T-VMc22iDlFUJU_S7tj5XarMsrGqNty-IuAWU1Mqx5qVc6l85ZcI2LF2-45pj0wlZTO9fJjO7fRvBzrzArW1gFSLUHhUOoKkjQSVnQKaECCQ-VEsdKX0mlSNdMD7Kc4UfYlapl7sZLE-UeaekX65KfUYszrMcWKLKKV6ZchmBExVKJ1dccuivBuSmQyStmhIYaRcb9pEifinilzb4DcgYQfuRxPLVpmG1fkvb9UtDFoaCK9Bw0vdF5ODkVQ7On0NzzTgMwjrI053dAEMVf_z8_J_9Lsg-fPlNGO4l6dfrjb4CslHLoXHSh2ZPDclePEkeX78BbPvTYw
link.rule.ids 315,783,787,867,2109,3513,27936,27937,45886
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCQIAozwxsKDRxXs5IK6oW2gzQSt0sO3YgqKRRSf8_d3mUdmFgdXyO9dm6--x7mJC7WFpKWOW9WxiaWFHOZK5HTS2V9l0dOEqhR3cS-cOZ-zz35i3Sb3JhMKyy1v2VTi-1dd3SrdHs5mnafaNYZBsYApBooDkUzu17mHaJ23w0720uWijzfFY-3YoCJkrUyTNVnFf8HWNGOnUeNPS17R0DVdbx37JTW7ZncEQOa9JoPFbzOiYtnZ2QyWsUmWiElJGLsup3YXwt1XqRGvkK3S8IuQGc1Eiw6KVc6N9-qozbMHT2gYuOTadkNnia9odm_TiCGTu-XZhAK0SgHSosgFOHgkrmAZsSwpf4Ui21pHQ9qSxpg_VRji3cANNKncSOYX3C2Dkj7WyZ6XNiMBYnQBNVQtFnymQIp6hAWolikoG86pD7BhGeVzUweBMc9skRP4748Qq_DukhaJueWL-6bFiu3nm9gDzwgkAwBSpOuq4ILZy8SuD0Z9FEewwG8RrI-c52gKHSP35-8U-5W7I_nE7GfDyKXi7JAXxxq5jcK9IuVmt9DcyjkDflzvoBokjT5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNN-based+pavement+moduli+prediction+for+flexible+pavement+design+enhancement&rft.jtitle=Case+Studies+in+Construction+Materials&rft.au=Al-Qaili%2C+Abdulraaof+H.&rft.au=Al-Mansour%2C+Abdullah+I.&rft.au=Al-Solieman%2C+Hamad&rft.au=AlSharabi%2C+Khalil&rft.date=2024-07-01&rft.pub=Elsevier+Ltd&rft.issn=2214-5095&rft.volume=20&rft_id=info:doi/10.1016%2Fj.cscm.2023.e02811&rft.externalDocID=S2214509523009920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5095&client=summon