RNN-based pavement moduli prediction for flexible pavement design enhancement
In order to facilitate the effective implementation of the MEPDG, researchers concentrate on quantifying local material properties, with a particular emphasis on pavement layer moduli. The layer modulus is a critical parameter necessary for calculating pavement responses (stress, strain, and deflect...
Saved in:
Published in | Case Studies in Construction Materials Vol. 20; p. e02811 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to facilitate the effective implementation of the MEPDG, researchers concentrate on quantifying local material properties, with a particular emphasis on pavement layer moduli. The layer modulus is a critical parameter necessary for calculating pavement responses (stress, strain, and deflections) resulting from traffic loading. Accurately determining the layer modulus is crucial for enhancing pavement design as it directly impacts the required pavement layer thicknesses and associated costs. Backcalculation is a commonly used method for analyzing Falling Weight Deflectometer (FWD) data to determine pavement layer moduli, with Artificial Neural Networks (ANNs) being the traditional choice. However, ANNs have limitations in terms of convergence accuracy and generalization capability. The aim of this study is to improve the backcalculation of layer moduli to enhance pavement design. By utilizing FWD data, Recurrent Neural Network (RNN) was employed to address the limitations of conventional ANN. Both ANN and RNN networks were developed and trained using identical properties. The findings demonstrate that RNN achieved faster convergence and higher convergence accuracy compared to ANN. The RNN network generated reasonable and precise layer moduli values, exhibiting a determination coefficient (R) of 0.95 in comparison to the measured values, while the ANN network had an R-value of 0.79. The results indicate that the RNN network can learn the continuity pattern between deflection basin points, thereby enhancing the accuracy of FWD backcalculation. |
---|---|
AbstractList | In order to facilitate the effective implementation of the MEPDG, researchers concentrate on quantifying local material properties, with a particular emphasis on pavement layer moduli. The layer modulus is a critical parameter necessary for calculating pavement responses (stress, strain, and deflections) resulting from traffic loading. Accurately determining the layer modulus is crucial for enhancing pavement design as it directly impacts the required pavement layer thicknesses and associated costs. Backcalculation is a commonly used method for analyzing Falling Weight Deflectometer (FWD) data to determine pavement layer moduli, with Artificial Neural Networks (ANNs) being the traditional choice. However, ANNs have limitations in terms of convergence accuracy and generalization capability. The aim of this study is to improve the backcalculation of layer moduli to enhance pavement design. By utilizing FWD data, Recurrent Neural Network (RNN) was employed to address the limitations of conventional ANN. Both ANN and RNN networks were developed and trained using identical properties. The findings demonstrate that RNN achieved faster convergence and higher convergence accuracy compared to ANN. The RNN network generated reasonable and precise layer moduli values, exhibiting a determination coefficient (R) of 0.95 in comparison to the measured values, while the ANN network had an R-value of 0.79. The results indicate that the RNN network can learn the continuity pattern between deflection basin points, thereby enhancing the accuracy of FWD backcalculation. |
ArticleNumber | e02811 |
Author | Al-Solieman, Hamad AlSharabi, Khalil Al-Qaili, Abdulraaof H. Al-Mansour, Abdullah I. |
Author_xml | – sequence: 1 givenname: Abdulraaof H. surname: Al-Qaili fullname: Al-Qaili, Abdulraaof H. email: aalqaili@ksu.edu.sa organization: Civil Engineering Department, King Saud University, Riyadh, Kingdom of Saudi Arabia – sequence: 2 givenname: Abdullah I. surname: Al-Mansour fullname: Al-Mansour, Abdullah I. organization: Civil Engineering Department, King Saud University, Riyadh, Kingdom of Saudi Arabia – sequence: 3 givenname: Hamad surname: Al-Solieman fullname: Al-Solieman, Hamad organization: Civil Engineering Department, King Saud University, Riyadh, Kingdom of Saudi Arabia – sequence: 4 givenname: Khalil surname: AlSharabi fullname: AlSharabi, Khalil organization: Electrical Engineering Department, King Saud University, Riyadh, Kingdom of Saudi Arabia |
BookMark | eNp9kNtKw0AQhhepYK19Aa_yAql7yGY34I0UD4VaQfR62cOkbsih7Maib2_Sinrl1QzD__8z852jSdu1gNAlwQuCSX5VLWy0zYJiyhaAqSTkBE0pJVnKccEnf_ozNI-xwngQ8VxSMUWPz5tNanQEl-z0Hhpo-6Tp3Hvtk10A523vuzYpu5CUNXx4U8OvzkH02zaB9k239jC6QKelriPMv-sMvd7dviwf0vXT_Wp5s04ty0mfFkxoAYxqzJyDQlMjuWRc69wQTgXFxmTcOGyIINIxojORZ0KyklhrcGHZDK2Oua7TldoF3-jwqTrt1WHQha3Sofe2BiW4EFo6LKXJMl3gcZUrJZWYlsAlGbLoMcuGLsYA5U8ewWrkqyo18lUjX3XkO5iujyYYvtx7CCpaDwMF5wPYfjjD_2f_Apl-hSU |
Cites_doi | 10.1080/10298430701827650 10.3141/2005-10 10.1061/(ASCE)0899-1561(2003)15:1(25) 10.1007/s00521-012-1131-y 10.3141/1806-03 10.3141/2457-09 10.1080/10298436.2017.1316846 10.1016/j.conbuildmat.2009.06.009 10.1139/L07-083 10.1080/10298430500150981 10.3390/ma16031126 10.1080/10298436.2016.1162303 10.1080/10298436.2017.1309197 10.1080/10298436.2016.1149838 10.3390/infrastructures8020035 10.1080/14680629.2021.1910546 10.1080/10298436.2021.1937622 10.1002/9781119318583.ch16 10.1080/14680629.2017.1400995 10.1080/10298436.2014.993196 10.1371/journal.pone.0180944 10.1016/j.ijprt.2016.11.006 10.1080/10298436.2021.1883016 10.1061/JPEODX.0000080 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.cscm.2023.e02811 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2214-5095 |
ExternalDocumentID | oai_doaj_org_article_7577a8d088b44a90b858df82802fe581 10_1016_j_cscm_2023_e02811 S2214509523009920 |
GroupedDBID | 0SF 4.4 457 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IXB KQ8 M41 M~E NCXOZ OK1 RIG ROL SSZ 0R~ AAYXX AFJKZ CITATION |
ID | FETCH-LOGICAL-c361t-937a7e32a03dde9a2b85835aa6b152720bb45bd0b1718d31a4764783f1ccb09c3 |
IEDL.DBID | IXB |
ISSN | 2214-5095 |
IngestDate | Tue Oct 22 15:16:34 EDT 2024 Thu Sep 26 20:57:50 EDT 2024 Sat Aug 03 15:33:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pavement design Falling weight deflectometer Layer moduli backcalculation Artificial neural network Recurrent neural network |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-937a7e32a03dde9a2b85835aa6b152720bb45bd0b1718d31a4764783f1ccb09c3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214509523009920 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7577a8d088b44a90b858df82802fe581 crossref_primary_10_1016_j_cscm_2023_e02811 elsevier_sciencedirect_doi_10_1016_j_cscm_2023_e02811 |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Case Studies in Construction Materials |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Sharma, Das (bib12) 2008; 35 Al-Qaili, Al-Solieman (bib2) 2022; 23 K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, Draw: A recurrent neural network for image generation, in International conference on machine learning, 2015, pp. 1462–1471. Elbagalati, Elseifi, Gaspard, Zhang (bib8) 2018; 19 Seo, Kim, Choi, Park (bib13) 2009; 23 Gonzalez, Carbonell, van Bijsterveld (bib23) 2016; 5 Abu-Farsakh, Zadehmohamad, Voyiadjis (bib6) 2023; 8 Mateos, Snyder (bib11) 2002; 1806 Abd El-Raof, Abd El-Hakim, El-Badawy, Afify (bib9) 2018; 144 Mun, Kim (bib20) 2009; 10 Leiva-Villacorta, Vargas-Nordcbeck, Timm (bib24) 2017; 10 Ng, Hutson, Ksaibati, Wulff (bib1) 2019; 20 Mousa, Elseifi, Elbagalati, Mohammad (bib25) 2019; 20 Huang (bib10) 2004; vol. 2 Ceylan, Guclu, Tutumluer, Thompson (bib18) 2005; 6 Saltan, Uz, Aktas (bib21) 2013; 23 Abdelfattah, Baaj, Kadhim (bib5) 2022; 23 Varma, Emin Kutay (bib16) 2016; 17 Ceylan, Gopalakrishnan, Guclu (bib19) 2007; 2005 Han, Ma, Chen, Fan (bib26) 2022; 23 K. Gopalakrishnan, S. Kim, H. Ceylan, and O. Kaya, “Development of asphalt dynamic modulus master curve using falling weight deflectometer measurements.,” Iowa State University. Institute for Transportation, 2014. B. Izevbekhai and N. Pederson, “Investigation of deflection and vibration dynamics of concrete and bituminous pavements constructed over geofoam,” St. Paul, MN: Minnesota Department of Transportation, Final Report to MnDOT, 2010. Li, Wang (bib17) 2019; 20 Zaabar, Chatti, Lee, Lajnef (bib15) 2014; 2457 Ng, Hellrung, Ksaibati, Wulff (bib4) 2018; 19 Mehta, Roque (bib7) 2003; 15 Islam, Gassman (bib3) 2023; 16 Bao, Yue, Rao (bib28) 2017; 12 Leiva-Villacorta (10.1016/j.cscm.2023.e02811_bib24) 2017; 10 Saltan (10.1016/j.cscm.2023.e02811_bib21) 2013; 23 Islam (10.1016/j.cscm.2023.e02811_bib3) 2023; 16 Abdelfattah (10.1016/j.cscm.2023.e02811_bib5) 2022; 23 Al-Qaili (10.1016/j.cscm.2023.e02811_bib2) 2022; 23 Ceylan (10.1016/j.cscm.2023.e02811_bib18) 2005; 6 Varma (10.1016/j.cscm.2023.e02811_bib16) 2016; 17 Han (10.1016/j.cscm.2023.e02811_bib26) 2022; 23 Seo (10.1016/j.cscm.2023.e02811_bib13) 2009; 23 Abd El-Raof (10.1016/j.cscm.2023.e02811_bib9) 2018; 144 Abu-Farsakh (10.1016/j.cscm.2023.e02811_bib6) 2023; 8 Sharma (10.1016/j.cscm.2023.e02811_bib12) 2008; 35 Mehta (10.1016/j.cscm.2023.e02811_bib7) 2003; 15 10.1016/j.cscm.2023.e02811_bib27 Mateos (10.1016/j.cscm.2023.e02811_bib11) 2002; 1806 Ceylan (10.1016/j.cscm.2023.e02811_bib19) 2007; 2005 10.1016/j.cscm.2023.e02811_bib22 Zaabar (10.1016/j.cscm.2023.e02811_bib15) 2014; 2457 Ng (10.1016/j.cscm.2023.e02811_bib4) 2018; 19 Li (10.1016/j.cscm.2023.e02811_bib17) 2019; 20 Bao (10.1016/j.cscm.2023.e02811_bib28) 2017; 12 Gonzalez (10.1016/j.cscm.2023.e02811_bib23) 2016; 5 Ng (10.1016/j.cscm.2023.e02811_bib1) 2019; 20 Elbagalati (10.1016/j.cscm.2023.e02811_bib8) 2018; 19 Huang (10.1016/j.cscm.2023.e02811_bib10) 2004; vol. 2 Mun (10.1016/j.cscm.2023.e02811_bib20) 2009; 10 Mousa (10.1016/j.cscm.2023.e02811_bib25) 2019; 20 10.1016/j.cscm.2023.e02811_bib14 |
References_xml | – volume: 35 start-page: 57 year: 2008 end-page: 66 ident: bib12 article-title: Backcalculation of pavement layer moduli from falling weight deflectometer data using an artificial neural network publication-title: Can. J. Civ. Eng. contributor: fullname: Das – volume: 2457 start-page: 80 year: 2014 end-page: 92 ident: bib15 article-title: Backcalculation of asphalt concrete modulus master curve from field-measured falling weight deflectometer data: using a new time domain viscoelastic dynamic solution and genetic algorithm publication-title: Transp. Res. Rec. contributor: fullname: Lajnef – volume: 23 start-page: 1681 year: 2022 end-page: 1693 ident: bib2 article-title: Enhancing MEPDG distress models prediction for Saudi Arabia by local calibration publication-title: Road. Mater. Pavement Des. contributor: fullname: Al-Solieman – volume: 2005 start-page: 86 year: 2007 end-page: 94 ident: bib19 article-title: Advanced approaches to characterizing nonlinear pavement system responses publication-title: Transp. Res. Rec. contributor: fullname: Guclu – volume: 10 start-page: 9 year: 2009 end-page: 18 ident: bib20 article-title: Backcalculation of subgrade stiffness under rubblised PCC slabs using multilevel FWD loads publication-title: Int. J. Pavement Eng. contributor: fullname: Kim – volume: 19 start-page: 62 year: 2018 end-page: 74 ident: bib4 article-title: Systematic back-calculation protocol and prediction of resilient modulus for MEPDG publication-title: Int. J. Pavement Eng. contributor: fullname: Wulff – volume: 12 year: 2017 ident: bib28 article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory publication-title: PLoS One contributor: fullname: Rao – volume: 23 start-page: 3099 year: 2022 end-page: 3112 ident: bib26 article-title: Application of a hybrid neural network structure for FWD backcalculation based on LTPP database publication-title: Int. J. Pavement Eng. contributor: fullname: Fan – volume: 20 start-page: 600 year: 2019 end-page: 614 ident: bib1 article-title: A comprehensive field and laboratory test programme and electronic database of pavement material properties for MEPDG publication-title: Int. J. Pavement Eng. contributor: fullname: Wulff – volume: 20 start-page: 554 year: 2019 end-page: 571 ident: bib25 article-title: Evaluation of interface bonding conditions based on non-destructing testing deflection measurements publication-title: Road. Mater. Pavement Des. contributor: fullname: Mohammad – volume: 23 start-page: 1703 year: 2013 end-page: 1710 ident: bib21 article-title: Artificial neural networks–based backcalculation of the structural properties of a typical flexible pavement publication-title: Neural Comput. Appl. contributor: fullname: Aktas – volume: 8 start-page: 35 year: 2023 ident: bib6 article-title: Incorporating the benefits of geosynthetic into MEPDG publication-title: Infrastructures contributor: fullname: Voyiadjis – volume: 20 start-page: 490 year: 2019 end-page: 498 ident: bib17 article-title: Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters publication-title: Int. J. Pavement Eng. contributor: fullname: Wang – volume: 144 start-page: 4018052 year: 2018 ident: bib9 article-title: Simplified closed-form procedure for network-level determination of pavement layer moduli from falling weight deflectometer data publication-title: J. Transp. Eng. Part B Pavements contributor: fullname: Afify – volume: 6 start-page: 171 year: 2005 end-page: 182 ident: bib18 article-title: Backcalculation of full-depth asphalt pavement layer moduli considering nonlinear stress-dependent subgrade behavior publication-title: Int. J. Pavement Eng. contributor: fullname: Thompson – volume: 16 start-page: 1126 year: 2023 ident: bib3 article-title: Predicting flexible pavement distress and IRI considering subgrade resilient modulus of fine-grained soils using MEPDG publication-title: Mater. (Basel) contributor: fullname: Gassman – volume: 23 start-page: 4174 year: 2022 end-page: 4189 ident: bib5 article-title: Calibration of MEPDG permanent deformation models using Hamburg wheel rut tester and field data publication-title: Int. J. Pavement Eng. contributor: fullname: Kadhim – volume: 19 start-page: 1 year: 2018 end-page: 8 ident: bib8 article-title: Development of the pavement structural health index based on falling weight deflectometer testing publication-title: Int. J. Pavement Eng. contributor: fullname: Zhang – volume: 10 start-page: 139 year: 2017 end-page: 147 ident: bib24 article-title: Non-destructive evaluation of sustainable pavement technologies using artificial neural networks publication-title: Int. J. Pavement Res. Technol. contributor: fullname: Timm – volume: 1806 start-page: 19 year: 2002 end-page: 29 ident: bib11 article-title: Validation of flexible pavement structural response models with data from the Minnesota road research project publication-title: Transp. Res. Rec. contributor: fullname: Snyder – volume: 15 start-page: 25 year: 2003 end-page: 31 ident: bib7 article-title: Evaluation of FWD data for determination of layer moduli of pavements publication-title: J. Mater. Civ. Eng. contributor: fullname: Roque – volume: 17 start-page: 388 year: 2016 end-page: 402 ident: bib16 article-title: Backcalculation of viscoelastic and nonlinear flexible pavement layer properties from falling weight deflections publication-title: Int. J. Pavement Eng. contributor: fullname: Emin Kutay – volume: 23 start-page: 3206 year: 2009 end-page: 3213 ident: bib13 article-title: Evaluation of layer properties of flexible pavement using a pseudo-static analysis procedure of falling weight deflectometer publication-title: Constr. Build. Mater. contributor: fullname: Park – volume: 5 start-page: 211 year: 2016 end-page: 225 ident: bib23 article-title: Evaluation of multilayer pavement viscoelastic properties from falling weight deflectometer using neural networks publication-title: Mater. Infrastruct. contributor: fullname: van Bijsterveld – volume: vol. 2 year: 2004 ident: bib10 publication-title: Pavement Analysis and Design contributor: fullname: Huang – ident: 10.1016/j.cscm.2023.e02811_bib27 – volume: 10 start-page: 9 issue: 1 year: 2009 ident: 10.1016/j.cscm.2023.e02811_bib20 article-title: Backcalculation of subgrade stiffness under rubblised PCC slabs using multilevel FWD loads publication-title: Int. J. Pavement Eng. doi: 10.1080/10298430701827650 contributor: fullname: Mun – volume: 2005 start-page: 86 issue: 1 year: 2007 ident: 10.1016/j.cscm.2023.e02811_bib19 article-title: Advanced approaches to characterizing nonlinear pavement system responses publication-title: Transp. Res. Rec. doi: 10.3141/2005-10 contributor: fullname: Ceylan – volume: 15 start-page: 25 issue: 1 year: 2003 ident: 10.1016/j.cscm.2023.e02811_bib7 article-title: Evaluation of FWD data for determination of layer moduli of pavements publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2003)15:1(25) contributor: fullname: Mehta – volume: 23 start-page: 1703 issue: 6 year: 2013 ident: 10.1016/j.cscm.2023.e02811_bib21 article-title: Artificial neural networks–based backcalculation of the structural properties of a typical flexible pavement publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1131-y contributor: fullname: Saltan – volume: 1806 start-page: 19 issue: 1 year: 2002 ident: 10.1016/j.cscm.2023.e02811_bib11 article-title: Validation of flexible pavement structural response models with data from the Minnesota road research project publication-title: Transp. Res. Rec. doi: 10.3141/1806-03 contributor: fullname: Mateos – ident: 10.1016/j.cscm.2023.e02811_bib14 – volume: 2457 start-page: 80 issue: 1 year: 2014 ident: 10.1016/j.cscm.2023.e02811_bib15 article-title: Backcalculation of asphalt concrete modulus master curve from field-measured falling weight deflectometer data: using a new time domain viscoelastic dynamic solution and genetic algorithm publication-title: Transp. Res. Rec. doi: 10.3141/2457-09 contributor: fullname: Zaabar – volume: 20 start-page: 600 issue: 5 year: 2019 ident: 10.1016/j.cscm.2023.e02811_bib1 article-title: A comprehensive field and laboratory test programme and electronic database of pavement material properties for MEPDG publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2017.1316846 contributor: fullname: Ng – volume: 23 start-page: 3206 issue: 10 year: 2009 ident: 10.1016/j.cscm.2023.e02811_bib13 article-title: Evaluation of layer properties of flexible pavement using a pseudo-static analysis procedure of falling weight deflectometer publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.06.009 contributor: fullname: Seo – volume: 35 start-page: 57 issue: 1 year: 2008 ident: 10.1016/j.cscm.2023.e02811_bib12 article-title: Backcalculation of pavement layer moduli from falling weight deflectometer data using an artificial neural network publication-title: Can. J. Civ. Eng. doi: 10.1139/L07-083 contributor: fullname: Sharma – volume: 6 start-page: 171 issue: 3 year: 2005 ident: 10.1016/j.cscm.2023.e02811_bib18 article-title: Backcalculation of full-depth asphalt pavement layer moduli considering nonlinear stress-dependent subgrade behavior publication-title: Int. J. Pavement Eng. doi: 10.1080/10298430500150981 contributor: fullname: Ceylan – ident: 10.1016/j.cscm.2023.e02811_bib22 – volume: 16 start-page: 1126 issue: 3 year: 2023 ident: 10.1016/j.cscm.2023.e02811_bib3 article-title: Predicting flexible pavement distress and IRI considering subgrade resilient modulus of fine-grained soils using MEPDG publication-title: Mater. (Basel) doi: 10.3390/ma16031126 contributor: fullname: Islam – volume: 19 start-page: 62 issue: 1 year: 2018 ident: 10.1016/j.cscm.2023.e02811_bib4 article-title: Systematic back-calculation protocol and prediction of resilient modulus for MEPDG publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2016.1162303 contributor: fullname: Ng – volume: 20 start-page: 490 issue: 4 year: 2019 ident: 10.1016/j.cscm.2023.e02811_bib17 article-title: Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2017.1309197 contributor: fullname: Li – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.cscm.2023.e02811_bib8 article-title: Development of the pavement structural health index based on falling weight deflectometer testing publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2016.1149838 contributor: fullname: Elbagalati – volume: 8 start-page: 35 issue: 2 year: 2023 ident: 10.1016/j.cscm.2023.e02811_bib6 article-title: Incorporating the benefits of geosynthetic into MEPDG publication-title: Infrastructures doi: 10.3390/infrastructures8020035 contributor: fullname: Abu-Farsakh – volume: 23 start-page: 1681 issue: 7 year: 2022 ident: 10.1016/j.cscm.2023.e02811_bib2 article-title: Enhancing MEPDG distress models prediction for Saudi Arabia by local calibration publication-title: Road. Mater. Pavement Des. doi: 10.1080/14680629.2021.1910546 contributor: fullname: Al-Qaili – volume: 23 start-page: 4174 issue: 12 year: 2022 ident: 10.1016/j.cscm.2023.e02811_bib5 article-title: Calibration of MEPDG permanent deformation models using Hamburg wheel rut tester and field data publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2021.1937622 contributor: fullname: Abdelfattah – volume: 5 start-page: 211 issue: 1 year: 2016 ident: 10.1016/j.cscm.2023.e02811_bib23 article-title: Evaluation of multilayer pavement viscoelastic properties from falling weight deflectometer using neural networks publication-title: Mater. Infrastruct. doi: 10.1002/9781119318583.ch16 contributor: fullname: Gonzalez – volume: 20 start-page: 554 issue: 3 year: 2019 ident: 10.1016/j.cscm.2023.e02811_bib25 article-title: Evaluation of interface bonding conditions based on non-destructing testing deflection measurements publication-title: Road. Mater. Pavement Des. doi: 10.1080/14680629.2017.1400995 contributor: fullname: Mousa – volume: 17 start-page: 388 issue: 5 year: 2016 ident: 10.1016/j.cscm.2023.e02811_bib16 article-title: Backcalculation of viscoelastic and nonlinear flexible pavement layer properties from falling weight deflections publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2014.993196 contributor: fullname: Varma – volume: 12 issue: 7 year: 2017 ident: 10.1016/j.cscm.2023.e02811_bib28 article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory publication-title: PLoS One doi: 10.1371/journal.pone.0180944 contributor: fullname: Bao – volume: 10 start-page: 139 issue: 2 year: 2017 ident: 10.1016/j.cscm.2023.e02811_bib24 article-title: Non-destructive evaluation of sustainable pavement technologies using artificial neural networks publication-title: Int. J. Pavement Res. Technol. doi: 10.1016/j.ijprt.2016.11.006 contributor: fullname: Leiva-Villacorta – volume: 23 start-page: 3099 issue: 9 year: 2022 ident: 10.1016/j.cscm.2023.e02811_bib26 article-title: Application of a hybrid neural network structure for FWD backcalculation based on LTPP database publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2021.1883016 contributor: fullname: Han – volume: vol. 2 year: 2004 ident: 10.1016/j.cscm.2023.e02811_bib10 contributor: fullname: Huang – volume: 144 start-page: 4018052 issue: 4 year: 2018 ident: 10.1016/j.cscm.2023.e02811_bib9 article-title: Simplified closed-form procedure for network-level determination of pavement layer moduli from falling weight deflectometer data publication-title: J. Transp. Eng. Part B Pavements doi: 10.1061/JPEODX.0000080 contributor: fullname: Abd El-Raof |
SSID | ssj0002856827 |
Score | 2.3205955 |
Snippet | In order to facilitate the effective implementation of the MEPDG, researchers concentrate on quantifying local material properties, with a particular emphasis... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | e02811 |
SubjectTerms | Artificial neural network Falling weight deflectometer Layer moduli backcalculation Pavement design Recurrent neural network |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMbCjh-xM4IiKpCagdEpW6WHTuiVUmrkv7_-uIUwgILq-NH9F2i7853_ozQTWGJM6TZd8vzBBTlEsUFTbx1PuNeMucgozsaZ8MJf5mKaeeqL6gJi_LAEbh7KaQ0yoWfwXJucmKVUK4McQKhpRcqBj4k7wRT82bLSGSKyvaUTCzoKj4LOHpO2Z0Pz9P0BxM1gv0dQuqQzOAQHbTeIX6Ib3WE9nx1jEav43ECbOPwyjTy3jX-WLrNYoZXa8izALY4OJ-4BHVLu_Df_VxToIF99Q7WhaYTNBk8vz0Nk_YWhKRgWVonwX8w0jNqSMDN54YCAkwYk1m4kpYSa7mwjtg00IxjqeESzo-yMi2CIfKCnaJetaz8GcJKFWXwB11JITmqbB7CJWlJ6ZRVYbzro9sdInoVxS70rgpsrgE_DfjpiF8fPQJoXz1BqLppCObTrfn0X-brI7GDXLecH7k8TDX7ZfHz_1j8Au2HKXmsvr1EvXq98VfBx6jtdfM5bQE6dc2r priority: 102 providerName: Directory of Open Access Journals |
Title | RNN-based pavement moduli prediction for flexible pavement design enhancement |
URI | https://dx.doi.org/10.1016/j.cscm.2023.e02811 https://doaj.org/article/7577a8d088b44a90b858df82802fe581 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXryIouL8MXrwJnVt2rTp0Q3HEFZBHRQvJWlSrcyuzO7_97201e3iwWPDSxq-hPe-l7z3Qsh1Jh0lHHPuFkU2VpSzuc-oraXSga9DTym80Z3HwWzhPyQs6ZFJlwuDYZWt7m90utHWbcuoRXNUFcXomWKRbWAIQKKB5lD02z3mmiS-ZPxzzkI5C7h5uRXlbezQ5s40YV7ZV4YJ6dS71SDrujv2yZTx3zJTW6ZnekgOWs5o3TXTOiI9XR6T-VMc22iDlFUJU_S7tj5XarMsrGqNty-IuAWU1Mqx5qVc6l85ZcI2LF2-45pj0wlZTO9fJjO7fRvBzrzArW1gFSLUHhUOoKkjQSVnQKaECCQ-VEsdKX0mlSNdMD7Kc4UfYlapl7sZLE-UeaekX65KfUYszrMcWKLKKV6ZchmBExVKJ1dccuivBuSmQyStmhIYaRcb9pEifinilzb4DcgYQfuRxPLVpmG1fkvb9UtDFoaCK9Bw0vdF5ODkVQ7On0NzzTgMwjrI053dAEMVf_z8_J_9Lsg-fPlNGO4l6dfrjb4CslHLoXHSh2ZPDclePEkeX78BbPvTYw |
link.rule.ids | 315,783,787,867,2109,3513,27936,27937,45886 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCQIAozwxsKDRxXs5IK6oW2gzQSt0sO3YgqKRRSf8_d3mUdmFgdXyO9dm6--x7mJC7WFpKWOW9WxiaWFHOZK5HTS2V9l0dOEqhR3cS-cOZ-zz35i3Sb3JhMKyy1v2VTi-1dd3SrdHs5mnafaNYZBsYApBooDkUzu17mHaJ23w0720uWijzfFY-3YoCJkrUyTNVnFf8HWNGOnUeNPS17R0DVdbx37JTW7ZncEQOa9JoPFbzOiYtnZ2QyWsUmWiElJGLsup3YXwt1XqRGvkK3S8IuQGc1Eiw6KVc6N9-qozbMHT2gYuOTadkNnia9odm_TiCGTu-XZhAK0SgHSosgFOHgkrmAZsSwpf4Ui21pHQ9qSxpg_VRji3cANNKncSOYX3C2Dkj7WyZ6XNiMBYnQBNVQtFnymQIp6hAWolikoG86pD7BhGeVzUweBMc9skRP4748Qq_DukhaJueWL-6bFiu3nm9gDzwgkAwBSpOuq4ILZy8SuD0Z9FEewwG8RrI-c52gKHSP35-8U-5W7I_nE7GfDyKXi7JAXxxq5jcK9IuVmt9DcyjkDflzvoBokjT5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNN-based+pavement+moduli+prediction+for+flexible+pavement+design+enhancement&rft.jtitle=Case+Studies+in+Construction+Materials&rft.au=Al-Qaili%2C+Abdulraaof+H.&rft.au=Al-Mansour%2C+Abdullah+I.&rft.au=Al-Solieman%2C+Hamad&rft.au=AlSharabi%2C+Khalil&rft.date=2024-07-01&rft.pub=Elsevier+Ltd&rft.issn=2214-5095&rft.volume=20&rft_id=info:doi/10.1016%2Fj.cscm.2023.e02811&rft.externalDocID=S2214509523009920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5095&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5095&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5095&client=summon |