Automatic Relative Radiometric Normalization of Bi-Temporal Satellite Images Using a Coarse-to-Fine Pseudo-Invariant Features Selection and Fuzzy Integral Fusion Strategies

Relative radiometric normalization (RRN) is important for pre-processing and analyzing multitemporal remote sensing (RS) images. Multitemporal RS images usually include different land use/land cover (LULC) types; therefore, considering an identical linear relationship during RRN modeling may result...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 8; p. 1777
Main Authors Moghimi, Armin, Mohammadzadeh, Ali, Celik, Turgay, Brisco, Brian, Amani, Meisam
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Relative radiometric normalization (RRN) is important for pre-processing and analyzing multitemporal remote sensing (RS) images. Multitemporal RS images usually include different land use/land cover (LULC) types; therefore, considering an identical linear relationship during RRN modeling may result in potential errors in the RRN results. To resolve this issue, we proposed a new automatic RRN technique that efficiently selects the clustered pseudo-invariant features (PIFs) through a coarse-to-fine strategy and uses them in a fusion-based RRN modeling approach. In the coarse stage, an efficient difference index was first generated from the down-sampled reference and target images by combining the spectral correlation, spectral angle mapper (SAM), and Chebyshev distance. This index was then categorized into three groups of changed, unchanged, and uncertain classes using a fast multiple thresholding technique. In the fine stage, the subject image was first segmented into different clusters by the histogram-based fuzzy c-means (HFCM) algorithm. The optimal PIFs were then selected from unchanged and uncertain regions using each cluster’s bivariate joint distribution analysis. In the RRN modeling step, two normalized subject images were first produced using the robust linear regression (RLR) and cluster-wise-RLR (CRLR) methods based on the clustered PIFs. Finally, the normalized images were fused using the Choquet fuzzy integral fusion strategy for overwhelming the discontinuity between clusters in the final results and keeping the radiometric rectification optimal. Several experiments were implemented on four different bi-temporal satellite images and a simulated dataset to demonstrate the efficiency of the proposed method. The results showed that the proposed method yielded superior RRN results and outperformed other considered well-known RRN algorithms in terms of both accuracy level and execution time.
AbstractList Relative radiometric normalization (RRN) is important for pre-processing and analyzing multitemporal remote sensing (RS) images. Multitemporal RS images usually include different land use/land cover (LULC) types; therefore, considering an identical linear relationship during RRN modeling may result in potential errors in the RRN results. To resolve this issue, we proposed a new automatic RRN technique that efficiently selects the clustered pseudo-invariant features (PIFs) through a coarse-to-fine strategy and uses them in a fusion-based RRN modeling approach. In the coarse stage, an efficient difference index was first generated from the down-sampled reference and target images by combining the spectral correlation, spectral angle mapper (SAM), and Chebyshev distance. This index was then categorized into three groups of changed, unchanged, and uncertain classes using a fast multiple thresholding technique. In the fine stage, the subject image was first segmented into different clusters by the histogram-based fuzzy c-means (HFCM) algorithm. The optimal PIFs were then selected from unchanged and uncertain regions using each cluster’s bivariate joint distribution analysis. In the RRN modeling step, two normalized subject images were first produced using the robust linear regression (RLR) and cluster-wise-RLR (CRLR) methods based on the clustered PIFs. Finally, the normalized images were fused using the Choquet fuzzy integral fusion strategy for overwhelming the discontinuity between clusters in the final results and keeping the radiometric rectification optimal. Several experiments were implemented on four different bi-temporal satellite images and a simulated dataset to demonstrate the efficiency of the proposed method. The results showed that the proposed method yielded superior RRN results and outperformed other considered well-known RRN algorithms in terms of both accuracy level and execution time.
Author Mohammadzadeh, Ali
Celik, Turgay
Brisco, Brian
Amani, Meisam
Moghimi, Armin
Author_xml – sequence: 1
  givenname: Armin
  orcidid: 0000-0002-0455-4882
  surname: Moghimi
  fullname: Moghimi, Armin
– sequence: 2
  givenname: Ali
  orcidid: 0000-0003-3329-5063
  surname: Mohammadzadeh
  fullname: Mohammadzadeh, Ali
– sequence: 3
  givenname: Turgay
  orcidid: 0000-0001-6925-6010
  surname: Celik
  fullname: Celik, Turgay
– sequence: 4
  givenname: Brian
  orcidid: 0000-0001-8439-362X
  surname: Brisco
  fullname: Brisco, Brian
– sequence: 5
  givenname: Meisam
  orcidid: 0000-0002-9495-4010
  surname: Amani
  fullname: Amani, Meisam
BookMark eNptkcGOFCEQhjtmTVzXvfgEJN5MWqHpoeG4TmztZKNmZ_dMGCg6TLphBHqTnWfyIWVmNBojlyJV__9RVL2sLnzwUFWvCX5HqcDvYyIt5qTrumfVZYO7pm4b0Vz8dX9RXae0w-VQSgRuL6sfN0sOs8pOozuYSnwEdKeMCzPkWJJfQpzV5A6lEjwKFn1w9T3M-xDVhDYqwzS5DGiY1QgJPSTnR6TQOqiYoM6h7p0H9C3BYkI9-EcVnfIZ9aDyEothAxPoE1p5g_rlcHhCg88wHvH9ko6VTY7lndFBelU9t2pKcP0rXlUP_cf79ef69uunYX1zW2vKSK653RrV8MZYaoVlAjATvKOEcMFBGNFSTQBWhgvGrdZKt9sO6MrAlnLbYUavquHMNUHt5D66WcUnGZSTp0SIo1SxjGwCaRlQbihoQrct01wVaGsFa7qWt2RlC-vNmbWP4fsCKctdWKIv7cuGrSimTDBaVPis0jGkFMFK7fJp5uXzbpIEy-OK5Z8VF8vbfyy_G_2P-CcQR6uB
CitedBy_id crossref_primary_10_3390_rs14225898
crossref_primary_10_1109_JSTARS_2023_3288973
crossref_primary_10_1080_15481603_2023_2259559
crossref_primary_10_3390_rs16234532
crossref_primary_10_3390_rs15235562
crossref_primary_10_1242_bio_060468
crossref_primary_10_1016_j_ejrs_2023_06_008
crossref_primary_10_1080_01431161_2022_2102951
crossref_primary_10_3390_app13042525
Cites_doi 10.1090/conm/112/1087109
10.1016/j.asr.2007.06.064
10.1080/01621459.1977.10481001
10.1016/j.rse.2003.10.024
10.1109/JSTARS.2021.3069919
10.3390/rs10030432
10.1016/0034-4257(93)90013-N
10.1109/JSTARS.2021.3082619
10.1080/01431161.2021.1934912
10.1080/01431161.2016.1213922
10.1007/s10586-017-1526-8
10.1016/j.ins.2010.10.016
10.3390/rs13163125
10.1109/34.85677
10.3390/s18030894
10.1016/0034-4257(91)90062-B
10.1016/S0920-5489(01)00085-X
10.1080/22797254.2019.1707124
10.1109/TGRS.2008.916211
10.1007/s12145-021-00757-5
10.1016/j.inffus.2004.12.002
10.1117/12.2245323
10.1109/LSP.2017.2755077
10.1109/TGRS.2013.2260552
10.1016/0924-2716(96)00018-4
10.1016/0165-0114(89)90194-2
10.1109/TGRS.2017.2694881
10.1109/TGRS.2021.3063151
10.1016/S0034-4257(02)00029-9
10.1016/j.apm.2013.01.006
10.3390/rs9111163
10.1016/j.rse.2007.07.013
10.1109/JSTARS.2020.3028062
10.1117/1.JRS.12.026021
10.1080/03610927708827533
10.1109/TGRS.2018.2876687
10.1109/TGRS.2020.2995394
10.1007/s40314-015-0254-z
10.3390/app9214543
10.1109/TGRS.2010.2045506
10.1109/TIP.2006.888195
10.1080/01431161.2021.1995075
10.1109/JSTARS.2020.2971857
10.1109/JSTARS.2018.2871373
10.1016/S0034-4257(97)00162-4
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs14081777
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_f6e38d3ec13b46c8a8964f962748415f
10_3390_rs14081777
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-8fbda282df3f9f69e06987311898e9d943c1ee5d8968fccac4b7e35deb38f7063
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:23:05 EDT 2025
Fri Jul 25 09:31:31 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Wed Aug 06 18:55:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-8fbda282df3f9f69e06987311898e9d943c1ee5d8968fccac4b7e35deb38f7063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9495-4010
0000-0002-0455-4882
0000-0001-6925-6010
0000-0003-3329-5063
0000-0001-8439-362X
OpenAccessLink https://www.proquest.com/docview/2653036963?pq-origsite=%requestingapplication%
PQID 2653036963
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_f6e38d3ec13b46c8a8964f962748415f
proquest_journals_2653036963
crossref_citationtrail_10_3390_rs14081777
crossref_primary_10_3390_rs14081777
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Canty (ref_15) 2008; 112
Ghosh (ref_39) 2011; 181
Zhou (ref_22) 2016; 37
Xu (ref_23) 2021; 42
Saradjian (ref_30) 2005; 6
Abdullah (ref_44) 2021; 2021
ref_19
ref_18
Murofushi (ref_33) 1989; 29
Sadeghi (ref_29) 2017; 36
Ghamisi (ref_36) 2013; 52
Brodu (ref_47) 2017; 55
Denaro (ref_28) 2020; 13
Lo (ref_32) 2001; 23
Ghanbari (ref_24) 2018; 11
ref_25
Du (ref_34) 2018; 57
Liu (ref_20) 2020; 13
Moghimi (ref_4) 2021; 14
Canty (ref_13) 2004; 91
Bazi (ref_7) 2010; 48
Mohsenifar (ref_6) 2021; 42
Teng (ref_37) 2008; 41
Holland (ref_42) 1977; 6
Sadeghi (ref_10) 2013; 37
He (ref_31) 2019; 22
ref_27
ref_26
Shah (ref_46) 2008; 46
Moghimi (ref_11) 2021; 60
Du (ref_12) 2002; 82
Boggs (ref_49) 1990; 112
Yang (ref_9) 2000; 66
Kruse (ref_35) 1993; 44
Moghimi (ref_3) 2020; 59
Elvidge (ref_2) 1995; 61
Nielsen (ref_16) 2007; 16
Byun (ref_21) 2018; 12
Hall (ref_1) 1991; 35
Yuan (ref_5) 1996; 51
ref_45
Wei (ref_8) 2021; 14
Nielsen (ref_14) 1998; 64
Nafchi (ref_38) 2017; 24
Gross (ref_43) 1977; 72
ref_40
Xie (ref_41) 1991; 13
Ma (ref_17) 2020; 53
ref_48
References_xml – volume: 112
  start-page: 183
  year: 1990
  ident: ref_49
  article-title: Orthogonal Distance Regression
  publication-title: Contemp. Math.
  doi: 10.1090/conm/112/1087109
– volume: 41
  start-page: 1744
  year: 2008
  ident: ref_37
  article-title: Hypothesis-Test-Based Landcover Change Detection Using Multi-Temporal Satellite Images–A Comparative Study
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2007.06.064
– volume: 72
  start-page: 341
  year: 1977
  ident: ref_43
  article-title: Confidence Intervals for Bisquare Regression Estimates
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1977.10481001
– volume: 91
  start-page: 441
  year: 2004
  ident: ref_13
  article-title: Automatic Radiometric Normalization of Multitemporal Satellite Imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.10.024
– volume: 14
  start-page: 4063
  year: 2021
  ident: ref_4
  article-title: Comparison of Keypoint Detectors and Descriptors for Relative Radiometric Normalization of Bitemporal Remote Sensing Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3069919
– ident: ref_19
  doi: 10.3390/rs10030432
– volume: 44
  start-page: 145
  year: 1993
  ident: ref_35
  article-title: The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis of Imaging Spectrometer Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(93)90013-N
– volume: 66
  start-page: 967
  year: 2000
  ident: ref_9
  article-title: Relative Radiometric Normalization Performance for Change Detection from Multi-Date Satellite Images
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 14
  start-page: 5891
  year: 2021
  ident: ref_8
  article-title: Enblending Mosaicked Remote Sensing Images with Spatiotemporal Fusion of Convolutional Neural Networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3082619
– volume: 42
  start-page: 6153
  year: 2021
  ident: ref_23
  article-title: A Novel Automatic Method on Pseudo-Invariant Features Extraction for Enhancing the Relative Radiometric Normalization of High-Resolution Images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2021.1934912
– volume: 37
  start-page: 4554
  year: 2016
  ident: ref_22
  article-title: A New Model for the Automatic Relative Radiometric Normalization of Multiple Images with Pseudo-Invariant Features
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1213922
– volume: 22
  start-page: 7933
  year: 2019
  ident: ref_31
  article-title: Relative Radiometric Correction of High-Resolution Remote Sensing Images Based on Feature Category
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-1526-8
– volume: 181
  start-page: 699
  year: 2011
  ident: ref_39
  article-title: Fuzzy Clustering Algorithms for Unsupervised Change Detection in Remote Sensing Images
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.10.016
– ident: ref_25
  doi: 10.3390/rs13163125
– ident: ref_48
– volume: 13
  start-page: 841
  year: 1991
  ident: ref_41
  article-title: A Validity Measure for Fuzzy Clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.85677
– ident: ref_45
  doi: 10.3390/s18030894
– volume: 35
  start-page: 11
  year: 1991
  ident: ref_1
  article-title: Radiometric Rectification: Toward a Common Radiometric Response among Multidate, Multisensor Images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90062-B
– volume: 23
  start-page: 429
  year: 2001
  ident: ref_32
  article-title: Video Segmentation Using a Histogram-Based Fuzzy c-Means Clustering Algorithm
  publication-title: Comput. Stand. Interfaces
  doi: 10.1016/S0920-5489(01)00085-X
– volume: 61
  start-page: 1255
  year: 1995
  ident: ref_2
  article-title: Relative Radiometric Normalization of Landsat Multispectral Scanner (MSS) Data Using an Automatic Scattergram-Controlled Regression
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 53
  start-page: 1
  year: 2020
  ident: ref_17
  article-title: Multi-Spectral Image Change Detection Based on Single-Band Iterative Weighting and Fuzzy C-Means Clustering
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2019.1707124
– volume: 46
  start-page: 1323
  year: 2008
  ident: ref_46
  article-title: An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.916211
– ident: ref_40
  doi: 10.1007/s12145-021-00757-5
– volume: 6
  start-page: 235
  year: 2005
  ident: ref_30
  article-title: Automatic Normalization of Satellite Images Using Unchanged Pixels within Urban Areas
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2004.12.002
– ident: ref_18
  doi: 10.1117/12.2245323
– volume: 24
  start-page: 1651
  year: 2017
  ident: ref_38
  article-title: CorrC2G: Color to Gray Conversion by Correlation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2017.2755077
– volume: 52
  start-page: 2382
  year: 2013
  ident: ref_36
  article-title: Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2260552
– volume: 51
  start-page: 117
  year: 1996
  ident: ref_5
  article-title: Comparison of Relative Radiometric Normalization Techniques
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/0924-2716(96)00018-4
– volume: 29
  start-page: 201
  year: 1989
  ident: ref_33
  article-title: An Interpretation of Fuzzy Measures and the Choquet Integral as an Integral with Respect to a Fuzzy Measure
  publication-title: Fuzzy sets Syst.
  doi: 10.1016/0165-0114(89)90194-2
– volume: 55
  start-page: 4610
  year: 2017
  ident: ref_47
  article-title: Super-Resolving Multiresolution Images with Band-Independent Geometry of Multispectral Pixels
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2694881
– volume: 60
  start-page: 1
  year: 2021
  ident: ref_11
  article-title: Distortion Robust Relative Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Using Image Features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3063151
– volume: 82
  start-page: 123
  year: 2002
  ident: ref_12
  article-title: Radiometric Normalization of Multitemporal High-Resolution Satellite Images with Quality Control for Land Cover Change Detection
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00029-9
– volume: 37
  start-page: 6437
  year: 2013
  ident: ref_10
  article-title: A New Model for Automatic Normalization of Multitemporal Satellite Images Using Artificial Neural Network and Mathematical Methods
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.01.006
– ident: ref_26
  doi: 10.3390/rs9111163
– volume: 112
  start-page: 1025
  year: 2008
  ident: ref_15
  article-title: Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-Weighted MAD Transformation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.013
– volume: 2021
  start-page: 2319004
  year: 2021
  ident: ref_44
  article-title: Application of Choquet Integral-Fuzzy Measures for Aggregating Customers’ Satisfaction
  publication-title: Adv. Fuzzy Syst.
– volume: 13
  start-page: 6029
  year: 2020
  ident: ref_20
  article-title: Robust Radiometric Normalization of Multitemporal Satellite Images via Block Adjustment without Master Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3028062
– volume: 12
  start-page: 26021
  year: 2018
  ident: ref_21
  article-title: Relative Radiometric Normalization of Bitemporal Very High-Resolution Satellite Images for Flood Change Detection
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.12.026021
– volume: 6
  start-page: 813
  year: 1977
  ident: ref_42
  article-title: Robust Regression Using Iteratively Reweighted Least-Squares
  publication-title: Commun. Stat. Methods
  doi: 10.1080/03610927708827533
– volume: 57
  start-page: 2741
  year: 2018
  ident: ref_34
  article-title: Multiple Instance Choquet Integral Classifier Fusion and Regression for Remote Sensing Applications
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2876687
– volume: 59
  start-page: 2503
  year: 2020
  ident: ref_3
  article-title: A Novel Radiometric Control Set Sample Selection Strategy for Relative Radiometric Normalization of Multitemporal Satellite Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2995394
– volume: 36
  start-page: 825
  year: 2017
  ident: ref_29
  article-title: A New Automatic Regression-Based Approach for Relative Radiometric Normalization of Multitemporal Satellite Imagery
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-015-0254-z
– ident: ref_27
  doi: 10.3390/app9214543
– volume: 48
  start-page: 3178
  year: 2010
  ident: ref_7
  article-title: Unsupervised Change Detection in Multispectral Remotely Sensed Imagery with Level Set Methods
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2045506
– volume: 16
  start-page: 463
  year: 2007
  ident: ref_16
  article-title: The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.888195
– volume: 42
  start-page: 9376
  year: 2021
  ident: ref_6
  article-title: A Novel Unsupervised Forest Change Detection Method Based on the Integration of a Multiresolution Singular Value Decomposition Fusion and an Edge-Aware Markov Random Field Algorithm
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2021.1995075
– volume: 13
  start-page: 976
  year: 2020
  ident: ref_28
  article-title: Hybrid Canonical Correlation Analysis and Regression for Radiometric Normalization of Cross-Sensor Satellite Imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2971857
– volume: 11
  start-page: 4526
  year: 2018
  ident: ref_24
  article-title: Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Based on a Gaussian Mixture Model and Error Ellipse
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2871373
– volume: 64
  start-page: 1
  year: 1998
  ident: ref_14
  article-title: Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00162-4
SSID ssj0000331904
Score 2.3606837
Snippet Relative radiometric normalization (RRN) is important for pre-processing and analyzing multitemporal remote sensing (RS) images. Multitemporal RS images...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1777
SubjectTerms Algorithms
Bivariate analysis
change detection
Chebyshev approximation
Clusters
Datasets
Histograms
image fusion
Invariants
Land cover
Land use
Methods
Modelling
multi-temporal satellite images
pseudo-invariant features (PIFs)
Regression analysis
relative radiometric normalization (RRN)
Remote sensing
Robustness (mathematics)
Satellite imagery
Spectral correlation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS91AEF_ES72U2iq-qmWgvXhYTNzNfhxVfPgKlVIVvIVkP2jhNRGTCPo39Y_szCbPWlropceEYRNmJjPzCzO_YeyDy30hvc-5qGrNpXSS26gL7kzE7GBlVmU04PzpQp1fy483xc2zVV_UEzbSA4-KO4wqCONFcLmopXKmMlbJmFbGGEw-kaIv5rxnYCrFYIGulcmRj1Qgrj-86xBKmFxr_VsGSkT9f8ThlFzmr9jLqSqE4_FtNtlaaF6zF9OC8q8Pb9iP46FvE7sqjO1r9wG-VJ5m54liHy6o9FxOM5XQRjj5xq9G1qklXFaJdrMPsPiO4aOD1CcAFZy2CGsD71s-x2ITPndh8C1fNPcIoFHjQPXhgHgcLtO2HDq6ajzMh8fHB1iMRBNLvKQ_brDiuQ3dFruen12dnvNp0QJ3QuU9N7H2FWIvH0W0UdmQKWu0QOxhTbDeSuHyEAqPqjcRTe5krYMoPAJxEzUWOdtsvWmbsMMg1tJpqWriEUPkjUYweDSBGKdMHbIZO1gpv3QTCzktw1iWiEbIUOUvQ83Y-yfZ25F7469SJ2TDJwniy0430IvKyYvKf3nRjO2tPKCcPuKuPFIFJXgMUW__xzN22cYRzU6ktp89tt7fDWEfK5q-fpec9yfXfvY9
  priority: 102
  providerName: Directory of Open Access Journals
Title Automatic Relative Radiometric Normalization of Bi-Temporal Satellite Images Using a Coarse-to-Fine Pseudo-Invariant Features Selection and Fuzzy Integral Fusion Strategies
URI https://www.proquest.com/docview/2653036963
https://doaj.org/article/f6e38d3ec13b46c8a8964f962748415f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbK7qG9IPpSt4WVpfbSg0WCHcc-VbuUlK3KCrEgcYsSP2ilbQKbBAl-Ez-SseNdVLXqMYllKZ7xeL7xzDcIfVKxTpjWMaFFmRLGFCPSpglRwsLpIFlURK7A-WTOjy_Y98vkMgTcmpBWubaJ3lDrWrkY-f4BT5y1BX35cn1DXNcod7saWmhsoSGYYCEGaDg9mp-ebaIsEQUVi1jPS0oB3--vGoAUIk7T9I-TyBP2_2WP_SGT7aDt4B3iSS_Ol-iZqV6h56FR-c-71-hh0rW1Z1nFfRrbrcFnhXY19I5qH8-dC7oMtZW4tnj6i5z37FNLvCg8_WZr8Ow3mJEG-3wBXODDGuCtIW1NMnA68WljOl2TWXULQBpWHjs_sQNcjhe-a46buqg0zrr7-zs86wknlvDoIm94zXdrmjfoIjs6PzwmoeECUZTHLRG21AVgMG2plZZLE3EpUgoYRAojtWRUxcYkWkguLIhesTI1NNEAyIVNwdl5iwZVXZl3CNuSqZTx0vGJAQIHIQiY2oEZxUVpohH6vF78XAU2ctcUY5kDKnGCyp8ENUIfN2Ovew6Of46aOhluRjjebP-iXl3lYRvmlhsqNDUqpiXjShTwK8z6BkQCXBk7QrtrDcjDZm7yJ9V7___PH9CLA1cd4RN7dtGgXXVmD3yWthyjLZF9G6Ph5OvJj8U4qOnYRwAeAbhS8wg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWClgCDhysJmvHcQ4ItYWwS9sVolupt5D4AUhLUjZJ0fY3IX4jM06yFQJx6zGJY8mZ8cx8zsw3hDzXoYmEMSHjeREzIbRgiYsjppUD75CIIA-wwPloJicn4v1pdLpBfg21MJhWOdhEb6hNpfGMfGcsI7S2oC-vz74z7BqFf1eHFhqdWhzY1Q-AbPWr6RuQ74vxOH0735-wvqsA01yGDVOuMDkADeO4S5xMbCABd3MItBNlE5MIrkNrI6MSqRysT4sitjwygDqVi8Gjw7zXyHXBwZNjZXr6bn2mE3BQ6EB0LKjwPNhZ1gBgVBjH8R9-z7cH-Mv6e5eW3iI3-1iU7nbKc5ts2PIO2erbon9Z3SU_d9um8pyutEuaO7f0Y26wYh-J_ekMA95FX8lJK0f3vrJ5x3W1oMe5J_tsLJ1-A6NVU5-dQHO6XwGYtqypWAohLv1Q29ZUbFqeA2wHOVOMStslvHDse_Tg1HlpaNpeXKzotKO3WMAlnvPRgV3X1vfIyZUI4j7ZLKvSPiDUFULHQhbIXgZ4H4SgYGqETlqqwgYj8nL4-Jnuuc-xBcciAwyEgsouBTUiz9ZjzzrGj3-O2kMZrkcgS7e_US0_Z_2mz5y0XBludcgLIbXKYSnC-XZHCgInNyLbgwZkvemos0tFf_j_x0_J1mR-dJgdTmcHj8iNMdZl-JSibbLZLFv7GKKlpnjiVZSST1e9J34Dp6MsHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiKdYKGAJOHCwNlk7jnNAqNs2aiisVn1IvYXED6i0TcomW7T9TfwCfh0zeWyFQNx6TOJYcmY8M58z8w0hb7RvAmGMz3iWh0wILVjkwoBp5cA7RMLLPCxw_jyV-yfi42lwukF-9bUwmFbZ28TGUJtS4xn5aCwDtLagLyPXpUXMduMPF98ZdpDCP619O41WRQ7s6gfAt-p9sguyfjsex3vHO_us6zDANJd-zZTLTQagwzjuIicj60nA4ByC7kjZyESCa9_awKhIKgdr1SIPLQ8MIFDlQvDuMO8tshkiKhqQzcnedHa4PuHxOKi3J1pOVM4jb7SoAM4oPwzDP7xg0yzgL1_QOLj4PrnXRaZ0u1WlB2TDFg_Jna5J-rfVI_Jze1mXDcMrbVPoLi09zAzW7yPNP51i-Dvv6jpp6ejkjB23zFdzepQ11J-1pck5mLCKNrkKNKM7JUBry-qSxRDw0llll6ZkSXEJIB6kTjFGXS7ghaOmYw9OnRWGxsurqxVNWrKLOVziqR_tuXZt9Zic3IgonpBBURb2KaEuFzoUMkcuM0D_IAQFUyOQ0lLl1huSd_3HT3XHhI4NOeYpICIUVHotqCF5vR570fJ__HPUBGW4HoGc3c2NcvE17UxA6qTlynCrfZ4LqVUGSxGuaX6kIIxyQ7LVa0DaGZIqvVb7Z_9__Irchv2QfkqmB8_J3TEWaTT5RVtkUC-W9gWETnX-stNRSr7c9Lb4DUD-Ma4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Relative+Radiometric+Normalization+of+Bi-Temporal+Satellite+Images+Using+a+Coarse-to-Fine+Pseudo-Invariant+Features+Selection+and+Fuzzy+Integral+Fusion+Strategies&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Moghimi%2C+Armin&rft.au=Mohammadzadeh%2C+Ali&rft.au=Celik%2C+Turgay&rft.au=Brisco%2C+Brian&rft.date=2022-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=8&rft.spage=1777&rft_id=info:doi/10.3390%2Frs14081777&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon