Automatic Relative Radiometric Normalization of Bi-Temporal Satellite Images Using a Coarse-to-Fine Pseudo-Invariant Features Selection and Fuzzy Integral Fusion Strategies
Relative radiometric normalization (RRN) is important for pre-processing and analyzing multitemporal remote sensing (RS) images. Multitemporal RS images usually include different land use/land cover (LULC) types; therefore, considering an identical linear relationship during RRN modeling may result...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 8; p. 1777 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Relative radiometric normalization (RRN) is important for pre-processing and analyzing multitemporal remote sensing (RS) images. Multitemporal RS images usually include different land use/land cover (LULC) types; therefore, considering an identical linear relationship during RRN modeling may result in potential errors in the RRN results. To resolve this issue, we proposed a new automatic RRN technique that efficiently selects the clustered pseudo-invariant features (PIFs) through a coarse-to-fine strategy and uses them in a fusion-based RRN modeling approach. In the coarse stage, an efficient difference index was first generated from the down-sampled reference and target images by combining the spectral correlation, spectral angle mapper (SAM), and Chebyshev distance. This index was then categorized into three groups of changed, unchanged, and uncertain classes using a fast multiple thresholding technique. In the fine stage, the subject image was first segmented into different clusters by the histogram-based fuzzy c-means (HFCM) algorithm. The optimal PIFs were then selected from unchanged and uncertain regions using each cluster’s bivariate joint distribution analysis. In the RRN modeling step, two normalized subject images were first produced using the robust linear regression (RLR) and cluster-wise-RLR (CRLR) methods based on the clustered PIFs. Finally, the normalized images were fused using the Choquet fuzzy integral fusion strategy for overwhelming the discontinuity between clusters in the final results and keeping the radiometric rectification optimal. Several experiments were implemented on four different bi-temporal satellite images and a simulated dataset to demonstrate the efficiency of the proposed method. The results showed that the proposed method yielded superior RRN results and outperformed other considered well-known RRN algorithms in terms of both accuracy level and execution time. |
---|---|
AbstractList | Relative radiometric normalization (RRN) is important for pre-processing and analyzing multitemporal remote sensing (RS) images. Multitemporal RS images usually include different land use/land cover (LULC) types; therefore, considering an identical linear relationship during RRN modeling may result in potential errors in the RRN results. To resolve this issue, we proposed a new automatic RRN technique that efficiently selects the clustered pseudo-invariant features (PIFs) through a coarse-to-fine strategy and uses them in a fusion-based RRN modeling approach. In the coarse stage, an efficient difference index was first generated from the down-sampled reference and target images by combining the spectral correlation, spectral angle mapper (SAM), and Chebyshev distance. This index was then categorized into three groups of changed, unchanged, and uncertain classes using a fast multiple thresholding technique. In the fine stage, the subject image was first segmented into different clusters by the histogram-based fuzzy c-means (HFCM) algorithm. The optimal PIFs were then selected from unchanged and uncertain regions using each cluster’s bivariate joint distribution analysis. In the RRN modeling step, two normalized subject images were first produced using the robust linear regression (RLR) and cluster-wise-RLR (CRLR) methods based on the clustered PIFs. Finally, the normalized images were fused using the Choquet fuzzy integral fusion strategy for overwhelming the discontinuity between clusters in the final results and keeping the radiometric rectification optimal. Several experiments were implemented on four different bi-temporal satellite images and a simulated dataset to demonstrate the efficiency of the proposed method. The results showed that the proposed method yielded superior RRN results and outperformed other considered well-known RRN algorithms in terms of both accuracy level and execution time. |
Author | Mohammadzadeh, Ali Celik, Turgay Brisco, Brian Amani, Meisam Moghimi, Armin |
Author_xml | – sequence: 1 givenname: Armin orcidid: 0000-0002-0455-4882 surname: Moghimi fullname: Moghimi, Armin – sequence: 2 givenname: Ali orcidid: 0000-0003-3329-5063 surname: Mohammadzadeh fullname: Mohammadzadeh, Ali – sequence: 3 givenname: Turgay orcidid: 0000-0001-6925-6010 surname: Celik fullname: Celik, Turgay – sequence: 4 givenname: Brian orcidid: 0000-0001-8439-362X surname: Brisco fullname: Brisco, Brian – sequence: 5 givenname: Meisam orcidid: 0000-0002-9495-4010 surname: Amani fullname: Amani, Meisam |
BookMark | eNptkcGOFCEQhjtmTVzXvfgEJN5MWqHpoeG4TmztZKNmZ_dMGCg6TLphBHqTnWfyIWVmNBojlyJV__9RVL2sLnzwUFWvCX5HqcDvYyIt5qTrumfVZYO7pm4b0Vz8dX9RXae0w-VQSgRuL6sfN0sOs8pOozuYSnwEdKeMCzPkWJJfQpzV5A6lEjwKFn1w9T3M-xDVhDYqwzS5DGiY1QgJPSTnR6TQOqiYoM6h7p0H9C3BYkI9-EcVnfIZ9aDyEothAxPoE1p5g_rlcHhCg88wHvH9ko6VTY7lndFBelU9t2pKcP0rXlUP_cf79ef69uunYX1zW2vKSK653RrV8MZYaoVlAjATvKOEcMFBGNFSTQBWhgvGrdZKt9sO6MrAlnLbYUavquHMNUHt5D66WcUnGZSTp0SIo1SxjGwCaRlQbihoQrct01wVaGsFa7qWt2RlC-vNmbWP4fsCKctdWKIv7cuGrSimTDBaVPis0jGkFMFK7fJp5uXzbpIEy-OK5Z8VF8vbfyy_G_2P-CcQR6uB |
CitedBy_id | crossref_primary_10_3390_rs14225898 crossref_primary_10_1109_JSTARS_2023_3288973 crossref_primary_10_1080_15481603_2023_2259559 crossref_primary_10_3390_rs16234532 crossref_primary_10_3390_rs15235562 crossref_primary_10_1242_bio_060468 crossref_primary_10_1016_j_ejrs_2023_06_008 crossref_primary_10_1080_01431161_2022_2102951 crossref_primary_10_3390_app13042525 |
Cites_doi | 10.1090/conm/112/1087109 10.1016/j.asr.2007.06.064 10.1080/01621459.1977.10481001 10.1016/j.rse.2003.10.024 10.1109/JSTARS.2021.3069919 10.3390/rs10030432 10.1016/0034-4257(93)90013-N 10.1109/JSTARS.2021.3082619 10.1080/01431161.2021.1934912 10.1080/01431161.2016.1213922 10.1007/s10586-017-1526-8 10.1016/j.ins.2010.10.016 10.3390/rs13163125 10.1109/34.85677 10.3390/s18030894 10.1016/0034-4257(91)90062-B 10.1016/S0920-5489(01)00085-X 10.1080/22797254.2019.1707124 10.1109/TGRS.2008.916211 10.1007/s12145-021-00757-5 10.1016/j.inffus.2004.12.002 10.1117/12.2245323 10.1109/LSP.2017.2755077 10.1109/TGRS.2013.2260552 10.1016/0924-2716(96)00018-4 10.1016/0165-0114(89)90194-2 10.1109/TGRS.2017.2694881 10.1109/TGRS.2021.3063151 10.1016/S0034-4257(02)00029-9 10.1016/j.apm.2013.01.006 10.3390/rs9111163 10.1016/j.rse.2007.07.013 10.1109/JSTARS.2020.3028062 10.1117/1.JRS.12.026021 10.1080/03610927708827533 10.1109/TGRS.2018.2876687 10.1109/TGRS.2020.2995394 10.1007/s40314-015-0254-z 10.3390/app9214543 10.1109/TGRS.2010.2045506 10.1109/TIP.2006.888195 10.1080/01431161.2021.1995075 10.1109/JSTARS.2020.2971857 10.1109/JSTARS.2018.2871373 10.1016/S0034-4257(97)00162-4 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs14081777 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_f6e38d3ec13b46c8a8964f962748415f 10_3390_rs14081777 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-8fbda282df3f9f69e06987311898e9d943c1ee5d8968fccac4b7e35deb38f7063 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:23:05 EDT 2025 Fri Jul 25 09:31:31 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Wed Aug 06 18:55:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-8fbda282df3f9f69e06987311898e9d943c1ee5d8968fccac4b7e35deb38f7063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9495-4010 0000-0002-0455-4882 0000-0001-6925-6010 0000-0003-3329-5063 0000-0001-8439-362X |
OpenAccessLink | https://www.proquest.com/docview/2653036963?pq-origsite=%requestingapplication% |
PQID | 2653036963 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f6e38d3ec13b46c8a8964f962748415f proquest_journals_2653036963 crossref_citationtrail_10_3390_rs14081777 crossref_primary_10_3390_rs14081777 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Canty (ref_15) 2008; 112 Ghosh (ref_39) 2011; 181 Zhou (ref_22) 2016; 37 Xu (ref_23) 2021; 42 Saradjian (ref_30) 2005; 6 Abdullah (ref_44) 2021; 2021 ref_19 ref_18 Murofushi (ref_33) 1989; 29 Sadeghi (ref_29) 2017; 36 Ghamisi (ref_36) 2013; 52 Brodu (ref_47) 2017; 55 Denaro (ref_28) 2020; 13 Lo (ref_32) 2001; 23 Ghanbari (ref_24) 2018; 11 ref_25 Du (ref_34) 2018; 57 Liu (ref_20) 2020; 13 Moghimi (ref_4) 2021; 14 Canty (ref_13) 2004; 91 Bazi (ref_7) 2010; 48 Mohsenifar (ref_6) 2021; 42 Teng (ref_37) 2008; 41 Holland (ref_42) 1977; 6 Sadeghi (ref_10) 2013; 37 He (ref_31) 2019; 22 ref_27 ref_26 Shah (ref_46) 2008; 46 Moghimi (ref_11) 2021; 60 Du (ref_12) 2002; 82 Boggs (ref_49) 1990; 112 Yang (ref_9) 2000; 66 Kruse (ref_35) 1993; 44 Moghimi (ref_3) 2020; 59 Elvidge (ref_2) 1995; 61 Nielsen (ref_16) 2007; 16 Byun (ref_21) 2018; 12 Hall (ref_1) 1991; 35 Yuan (ref_5) 1996; 51 ref_45 Wei (ref_8) 2021; 14 Nielsen (ref_14) 1998; 64 Nafchi (ref_38) 2017; 24 Gross (ref_43) 1977; 72 ref_40 Xie (ref_41) 1991; 13 Ma (ref_17) 2020; 53 ref_48 |
References_xml | – volume: 112 start-page: 183 year: 1990 ident: ref_49 article-title: Orthogonal Distance Regression publication-title: Contemp. Math. doi: 10.1090/conm/112/1087109 – volume: 41 start-page: 1744 year: 2008 ident: ref_37 article-title: Hypothesis-Test-Based Landcover Change Detection Using Multi-Temporal Satellite Images–A Comparative Study publication-title: Adv. Space Res. doi: 10.1016/j.asr.2007.06.064 – volume: 72 start-page: 341 year: 1977 ident: ref_43 article-title: Confidence Intervals for Bisquare Regression Estimates publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1977.10481001 – volume: 91 start-page: 441 year: 2004 ident: ref_13 article-title: Automatic Radiometric Normalization of Multitemporal Satellite Imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.10.024 – volume: 14 start-page: 4063 year: 2021 ident: ref_4 article-title: Comparison of Keypoint Detectors and Descriptors for Relative Radiometric Normalization of Bitemporal Remote Sensing Images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3069919 – ident: ref_19 doi: 10.3390/rs10030432 – volume: 44 start-page: 145 year: 1993 ident: ref_35 article-title: The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis of Imaging Spectrometer Data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(93)90013-N – volume: 66 start-page: 967 year: 2000 ident: ref_9 article-title: Relative Radiometric Normalization Performance for Change Detection from Multi-Date Satellite Images publication-title: Photogramm. Eng. Remote Sens. – volume: 14 start-page: 5891 year: 2021 ident: ref_8 article-title: Enblending Mosaicked Remote Sensing Images with Spatiotemporal Fusion of Convolutional Neural Networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3082619 – volume: 42 start-page: 6153 year: 2021 ident: ref_23 article-title: A Novel Automatic Method on Pseudo-Invariant Features Extraction for Enhancing the Relative Radiometric Normalization of High-Resolution Images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2021.1934912 – volume: 37 start-page: 4554 year: 2016 ident: ref_22 article-title: A New Model for the Automatic Relative Radiometric Normalization of Multiple Images with Pseudo-Invariant Features publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1213922 – volume: 22 start-page: 7933 year: 2019 ident: ref_31 article-title: Relative Radiometric Correction of High-Resolution Remote Sensing Images Based on Feature Category publication-title: Cluster Comput. doi: 10.1007/s10586-017-1526-8 – volume: 181 start-page: 699 year: 2011 ident: ref_39 article-title: Fuzzy Clustering Algorithms for Unsupervised Change Detection in Remote Sensing Images publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.10.016 – ident: ref_25 doi: 10.3390/rs13163125 – ident: ref_48 – volume: 13 start-page: 841 year: 1991 ident: ref_41 article-title: A Validity Measure for Fuzzy Clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.85677 – ident: ref_45 doi: 10.3390/s18030894 – volume: 35 start-page: 11 year: 1991 ident: ref_1 article-title: Radiometric Rectification: Toward a Common Radiometric Response among Multidate, Multisensor Images publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90062-B – volume: 23 start-page: 429 year: 2001 ident: ref_32 article-title: Video Segmentation Using a Histogram-Based Fuzzy c-Means Clustering Algorithm publication-title: Comput. Stand. Interfaces doi: 10.1016/S0920-5489(01)00085-X – volume: 61 start-page: 1255 year: 1995 ident: ref_2 article-title: Relative Radiometric Normalization of Landsat Multispectral Scanner (MSS) Data Using an Automatic Scattergram-Controlled Regression publication-title: Photogramm. Eng. Remote Sens. – volume: 53 start-page: 1 year: 2020 ident: ref_17 article-title: Multi-Spectral Image Change Detection Based on Single-Band Iterative Weighting and Fuzzy C-Means Clustering publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2019.1707124 – volume: 46 start-page: 1323 year: 2008 ident: ref_46 article-title: An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.916211 – ident: ref_40 doi: 10.1007/s12145-021-00757-5 – volume: 6 start-page: 235 year: 2005 ident: ref_30 article-title: Automatic Normalization of Satellite Images Using Unchanged Pixels within Urban Areas publication-title: Inf. Fusion doi: 10.1016/j.inffus.2004.12.002 – ident: ref_18 doi: 10.1117/12.2245323 – volume: 24 start-page: 1651 year: 2017 ident: ref_38 article-title: CorrC2G: Color to Gray Conversion by Correlation publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2017.2755077 – volume: 52 start-page: 2382 year: 2013 ident: ref_36 article-title: Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2260552 – volume: 51 start-page: 117 year: 1996 ident: ref_5 article-title: Comparison of Relative Radiometric Normalization Techniques publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/0924-2716(96)00018-4 – volume: 29 start-page: 201 year: 1989 ident: ref_33 article-title: An Interpretation of Fuzzy Measures and the Choquet Integral as an Integral with Respect to a Fuzzy Measure publication-title: Fuzzy sets Syst. doi: 10.1016/0165-0114(89)90194-2 – volume: 55 start-page: 4610 year: 2017 ident: ref_47 article-title: Super-Resolving Multiresolution Images with Band-Independent Geometry of Multispectral Pixels publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2694881 – volume: 60 start-page: 1 year: 2021 ident: ref_11 article-title: Distortion Robust Relative Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Using Image Features publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3063151 – volume: 82 start-page: 123 year: 2002 ident: ref_12 article-title: Radiometric Normalization of Multitemporal High-Resolution Satellite Images with Quality Control for Land Cover Change Detection publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00029-9 – volume: 37 start-page: 6437 year: 2013 ident: ref_10 article-title: A New Model for Automatic Normalization of Multitemporal Satellite Images Using Artificial Neural Network and Mathematical Methods publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.01.006 – ident: ref_26 doi: 10.3390/rs9111163 – volume: 112 start-page: 1025 year: 2008 ident: ref_15 article-title: Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-Weighted MAD Transformation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.013 – volume: 2021 start-page: 2319004 year: 2021 ident: ref_44 article-title: Application of Choquet Integral-Fuzzy Measures for Aggregating Customers’ Satisfaction publication-title: Adv. Fuzzy Syst. – volume: 13 start-page: 6029 year: 2020 ident: ref_20 article-title: Robust Radiometric Normalization of Multitemporal Satellite Images via Block Adjustment without Master Images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3028062 – volume: 12 start-page: 26021 year: 2018 ident: ref_21 article-title: Relative Radiometric Normalization of Bitemporal Very High-Resolution Satellite Images for Flood Change Detection publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.12.026021 – volume: 6 start-page: 813 year: 1977 ident: ref_42 article-title: Robust Regression Using Iteratively Reweighted Least-Squares publication-title: Commun. Stat. Methods doi: 10.1080/03610927708827533 – volume: 57 start-page: 2741 year: 2018 ident: ref_34 article-title: Multiple Instance Choquet Integral Classifier Fusion and Regression for Remote Sensing Applications publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2876687 – volume: 59 start-page: 2503 year: 2020 ident: ref_3 article-title: A Novel Radiometric Control Set Sample Selection Strategy for Relative Radiometric Normalization of Multitemporal Satellite Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2995394 – volume: 36 start-page: 825 year: 2017 ident: ref_29 article-title: A New Automatic Regression-Based Approach for Relative Radiometric Normalization of Multitemporal Satellite Imagery publication-title: Comput. Appl. Math. doi: 10.1007/s40314-015-0254-z – ident: ref_27 doi: 10.3390/app9214543 – volume: 48 start-page: 3178 year: 2010 ident: ref_7 article-title: Unsupervised Change Detection in Multispectral Remotely Sensed Imagery with Level Set Methods publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2045506 – volume: 16 start-page: 463 year: 2007 ident: ref_16 article-title: The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.888195 – volume: 42 start-page: 9376 year: 2021 ident: ref_6 article-title: A Novel Unsupervised Forest Change Detection Method Based on the Integration of a Multiresolution Singular Value Decomposition Fusion and an Edge-Aware Markov Random Field Algorithm publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2021.1995075 – volume: 13 start-page: 976 year: 2020 ident: ref_28 article-title: Hybrid Canonical Correlation Analysis and Regression for Radiometric Normalization of Cross-Sensor Satellite Imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2971857 – volume: 11 start-page: 4526 year: 2018 ident: ref_24 article-title: Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Based on a Gaussian Mixture Model and Error Ellipse publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2871373 – volume: 64 start-page: 1 year: 1998 ident: ref_14 article-title: Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00162-4 |
SSID | ssj0000331904 |
Score | 2.3606837 |
Snippet | Relative radiometric normalization (RRN) is important for pre-processing and analyzing multitemporal remote sensing (RS) images. Multitemporal RS images... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1777 |
SubjectTerms | Algorithms Bivariate analysis change detection Chebyshev approximation Clusters Datasets Histograms image fusion Invariants Land cover Land use Methods Modelling multi-temporal satellite images pseudo-invariant features (PIFs) Regression analysis relative radiometric normalization (RRN) Remote sensing Robustness (mathematics) Satellite imagery Spectral correlation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS91AEF_ES72U2iq-qmWgvXhYTNzNfhxVfPgKlVIVvIVkP2jhNRGTCPo39Y_szCbPWlropceEYRNmJjPzCzO_YeyDy30hvc-5qGrNpXSS26gL7kzE7GBlVmU04PzpQp1fy483xc2zVV_UEzbSA4-KO4wqCONFcLmopXKmMlbJmFbGGEw-kaIv5rxnYCrFYIGulcmRj1Qgrj-86xBKmFxr_VsGSkT9f8ThlFzmr9jLqSqE4_FtNtlaaF6zF9OC8q8Pb9iP46FvE7sqjO1r9wG-VJ5m54liHy6o9FxOM5XQRjj5xq9G1qklXFaJdrMPsPiO4aOD1CcAFZy2CGsD71s-x2ITPndh8C1fNPcIoFHjQPXhgHgcLtO2HDq6ajzMh8fHB1iMRBNLvKQ_brDiuQ3dFruen12dnvNp0QJ3QuU9N7H2FWIvH0W0UdmQKWu0QOxhTbDeSuHyEAqPqjcRTe5krYMoPAJxEzUWOdtsvWmbsMMg1tJpqWriEUPkjUYweDSBGKdMHbIZO1gpv3QTCzktw1iWiEbIUOUvQ83Y-yfZ25F7469SJ2TDJwniy0430IvKyYvKf3nRjO2tPKCcPuKuPFIFJXgMUW__xzN22cYRzU6ktp89tt7fDWEfK5q-fpec9yfXfvY9 priority: 102 providerName: Directory of Open Access Journals |
Title | Automatic Relative Radiometric Normalization of Bi-Temporal Satellite Images Using a Coarse-to-Fine Pseudo-Invariant Features Selection and Fuzzy Integral Fusion Strategies |
URI | https://www.proquest.com/docview/2653036963 https://doaj.org/article/f6e38d3ec13b46c8a8964f962748415f |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbK7qG9IPpSt4WVpfbSg0WCHcc-VbuUlK3KCrEgcYsSP2ilbQKbBAl-Ez-SseNdVLXqMYllKZ7xeL7xzDcIfVKxTpjWMaFFmRLGFCPSpglRwsLpIFlURK7A-WTOjy_Y98vkMgTcmpBWubaJ3lDrWrkY-f4BT5y1BX35cn1DXNcod7saWmhsoSGYYCEGaDg9mp-ebaIsEQUVi1jPS0oB3--vGoAUIk7T9I-TyBP2_2WP_SGT7aDt4B3iSS_Ol-iZqV6h56FR-c-71-hh0rW1Z1nFfRrbrcFnhXY19I5qH8-dC7oMtZW4tnj6i5z37FNLvCg8_WZr8Ow3mJEG-3wBXODDGuCtIW1NMnA68WljOl2TWXULQBpWHjs_sQNcjhe-a46buqg0zrr7-zs86wknlvDoIm94zXdrmjfoIjs6PzwmoeECUZTHLRG21AVgMG2plZZLE3EpUgoYRAojtWRUxcYkWkguLIhesTI1NNEAyIVNwdl5iwZVXZl3CNuSqZTx0vGJAQIHIQiY2oEZxUVpohH6vF78XAU2ctcUY5kDKnGCyp8ENUIfN2Ovew6Of46aOhluRjjebP-iXl3lYRvmlhsqNDUqpiXjShTwK8z6BkQCXBk7QrtrDcjDZm7yJ9V7___PH9CLA1cd4RN7dtGgXXVmD3yWthyjLZF9G6Ph5OvJj8U4qOnYRwAeAbhS8wg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWClgCDhysJmvHcQ4ItYWwS9sVolupt5D4AUhLUjZJ0fY3IX4jM06yFQJx6zGJY8mZ8cx8zsw3hDzXoYmEMSHjeREzIbRgiYsjppUD75CIIA-wwPloJicn4v1pdLpBfg21MJhWOdhEb6hNpfGMfGcsI7S2oC-vz74z7BqFf1eHFhqdWhzY1Q-AbPWr6RuQ74vxOH0735-wvqsA01yGDVOuMDkADeO4S5xMbCABd3MItBNlE5MIrkNrI6MSqRysT4sitjwygDqVi8Gjw7zXyHXBwZNjZXr6bn2mE3BQ6EB0LKjwPNhZ1gBgVBjH8R9-z7cH-Mv6e5eW3iI3-1iU7nbKc5ts2PIO2erbon9Z3SU_d9um8pyutEuaO7f0Y26wYh-J_ekMA95FX8lJK0f3vrJ5x3W1oMe5J_tsLJ1-A6NVU5-dQHO6XwGYtqypWAohLv1Q29ZUbFqeA2wHOVOMStslvHDse_Tg1HlpaNpeXKzotKO3WMAlnvPRgV3X1vfIyZUI4j7ZLKvSPiDUFULHQhbIXgZ4H4SgYGqETlqqwgYj8nL4-Jnuuc-xBcciAwyEgsouBTUiz9ZjzzrGj3-O2kMZrkcgS7e_US0_Z_2mz5y0XBludcgLIbXKYSnC-XZHCgInNyLbgwZkvemos0tFf_j_x0_J1mR-dJgdTmcHj8iNMdZl-JSibbLZLFv7GKKlpnjiVZSST1e9J34Dp6MsHA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiKdYKGAJOHCwNlk7jnNAqNs2aiisVn1IvYXED6i0TcomW7T9TfwCfh0zeWyFQNx6TOJYcmY8M58z8w0hb7RvAmGMz3iWh0wILVjkwoBp5cA7RMLLPCxw_jyV-yfi42lwukF-9bUwmFbZ28TGUJtS4xn5aCwDtLagLyPXpUXMduMPF98ZdpDCP619O41WRQ7s6gfAt-p9sguyfjsex3vHO_us6zDANJd-zZTLTQagwzjuIicj60nA4ByC7kjZyESCa9_awKhIKgdr1SIPLQ8MIFDlQvDuMO8tshkiKhqQzcnedHa4PuHxOKi3J1pOVM4jb7SoAM4oPwzDP7xg0yzgL1_QOLj4PrnXRaZ0u1WlB2TDFg_Jna5J-rfVI_Jze1mXDcMrbVPoLi09zAzW7yPNP51i-Dvv6jpp6ejkjB23zFdzepQ11J-1pck5mLCKNrkKNKM7JUBry-qSxRDw0llll6ZkSXEJIB6kTjFGXS7ghaOmYw9OnRWGxsurqxVNWrKLOVziqR_tuXZt9Zic3IgonpBBURb2KaEuFzoUMkcuM0D_IAQFUyOQ0lLl1huSd_3HT3XHhI4NOeYpICIUVHotqCF5vR570fJ__HPUBGW4HoGc3c2NcvE17UxA6qTlynCrfZ4LqVUGSxGuaX6kIIxyQ7LVa0DaGZIqvVb7Z_9__Irchv2QfkqmB8_J3TEWaTT5RVtkUC-W9gWETnX-stNRSr7c9Lb4DUD-Ma4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Relative+Radiometric+Normalization+of+Bi-Temporal+Satellite+Images+Using+a+Coarse-to-Fine+Pseudo-Invariant+Features+Selection+and+Fuzzy+Integral+Fusion+Strategies&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Moghimi%2C+Armin&rft.au=Mohammadzadeh%2C+Ali&rft.au=Celik%2C+Turgay&rft.au=Brisco%2C+Brian&rft.date=2022-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=8&rft.spage=1777&rft_id=info:doi/10.3390%2Frs14081777&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |