Importance of glycosidases in mammalian glycoprotein biosynthesis

Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc 3Man 9GlcNAc 2 and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of new...

Full description

Saved in:
Bibliographic Details
Published inBBA - General Subjects Vol. 1473; no. 1; pp. 96 - 107
Main Author Herscovics, Annette
Format Book Review Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 06.12.1999
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc 3Man 9GlcNAc 2 and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound α-glucosidase I and soluble α-glucosidase II of the endoplasmic reticulum remove the α1,2-glucose and α1,3-glucose residues, respectively, beginning immediately following transfer of Glc 3Man 9GlcNAc 2 to nascent polypeptides. The α-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo α-mannosidase provides an alternative pathway for removal of glucose residues. Removal of α1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of α1,2-mannosidases IA and IB that can form Man 5GlcNAc 2 and of α-mannosidase II that removes the α1,3- and α1,6-linked mannose from GlcNAcMan 5GlcNAc 2 to form GlcNAcMan 3GlcNAc 2. These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity α-mannosidases that can trim Man 4–9GlcNAc 2 to Man 3GlcNAc 2, and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining α-mannosidases will be required to evaluate their specific functions in glycoprotein maturation.
AbstractList Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc 3Man 9GlcNAc 2 and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound α-glucosidase I and soluble α-glucosidase II of the endoplasmic reticulum remove the α1,2-glucose and α1,3-glucose residues, respectively, beginning immediately following transfer of Glc 3Man 9GlcNAc 2 to nascent polypeptides. The α-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo α-mannosidase provides an alternative pathway for removal of glucose residues. Removal of α1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of α1,2-mannosidases IA and IB that can form Man 5GlcNAc 2 and of α-mannosidase II that removes the α1,3- and α1,6-linked mannose from GlcNAcMan 5GlcNAc 2 to form GlcNAcMan 3GlcNAc 2. These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity α-mannosidases that can trim Man 4–9GlcNAc 2 to Man 3GlcNAc 2, and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining α-mannosidases will be required to evaluate their specific functions in glycoprotein maturation.
Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation.Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation.
Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation.
Author Herscovics, Annette
Author_xml – sequence: 1
  givenname: Annette
  surname: Herscovics
  fullname: Herscovics, Annette
  email: annette@med.mcgill.ca
  organization: McGill Cancer Centre, McGill University, 3655 Drummond Street, Montréal, Que. H3G 1Y6, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10580131$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PxCAQhonR6K76EzQ9GT1UoZQW4sEY41eyiQf1TChMFdOWFViT_feyH2riQblMAs87wzxjtDm4ARA6IPiUYFKdPWKKy7wkFTsW4gRjUpOcbqAR4XWRc4yrTTT6RnbQOIQ3nA4TbBvtEMw4JpSM0OV9P3U-qkFD5trspZtrF6xRAUJmh6xXfa86q4bVy9S7COm6sS7Mh_gKwYY9tNWqLsD-uu6i55vrp6u7fPJwe391Ock1rUjMeWN4oapWMFaBMDUrqGlL3JgSdFnUlBZMaK45K2swhBlFMTbcaCxaU9ZVTXfR0apv-sT7DEKUvQ0auk4N4GZBVoIWmAuSwMM1OGt6MHLqba_8XH4tnYDzFaC9C8FDK7WNKlo3RK9sl0C5UCyXiuXCnxRCLhVLmtLsV_pnwN-5i1UOkqQPC14GbSF5N9aDjtI4-0-HT1G9kts
CitedBy_id crossref_primary_10_1002_term_195
crossref_primary_10_1093_glycob_12_6_369
crossref_primary_10_1242_jcs_113_4_587
crossref_primary_10_1016_j_ymben_2010_08_004
crossref_primary_10_1021_jo0517388
crossref_primary_10_1007_s00792_011_0411_2
crossref_primary_10_1016_j_fertnstert_2014_10_025
crossref_primary_10_1016_j_lwt_2011_09_008
crossref_primary_10_1093_mmy_myx103
crossref_primary_10_1016_j_chembiol_2015_09_006
crossref_primary_10_1016_j_tet_2013_10_050
crossref_primary_10_1016_S1089_8603_02_00104_0
crossref_primary_10_2217_17460794_1_2_197
crossref_primary_10_1074_jbc_M208020200
crossref_primary_10_1016_j_ecoenv_2020_111462
crossref_primary_10_1074_jbc_M111_248823
crossref_primary_10_1016_j_biochi_2004_11_004
crossref_primary_10_1016_j_ymeth_2006_10_002
crossref_primary_10_1097_IN9_0000000000000035
crossref_primary_10_1016_j_tifs_2019_05_010
crossref_primary_10_1016_S0006_2952_00_00403_2
crossref_primary_10_1021_bi200346n
crossref_primary_10_3390_v2040826
crossref_primary_10_1016_j_ymeth_2004_10_004
crossref_primary_10_1074_jbc_M800725200
crossref_primary_10_1111_j_1467_7652_2011_00630_x
crossref_primary_10_1039_D0OB01505A
crossref_primary_10_1074_mcp_RA120_002031
crossref_primary_10_1002_cbic_200500143
crossref_primary_10_1007_s12010_022_04243_6
crossref_primary_10_1002_cbic_201402026
crossref_primary_10_1016_j_bmc_2014_09_034
crossref_primary_10_1016_S0960_9822_01_00077_X
crossref_primary_10_1039_C9SC01653H
crossref_primary_10_1093_glycob_cwn080
crossref_primary_10_1038_sj_cr_7310065
crossref_primary_10_1271_bbb_70_471
crossref_primary_10_1002_path_4086
crossref_primary_10_1590_S0074_02762010000100012
crossref_primary_10_1038_srep10299
crossref_primary_10_1128_JVI_77_7_4370_4382_2003
crossref_primary_10_1016_j_tetasy_2006_09_010
crossref_primary_10_1034_j_1600_0854_2003_00123_x
crossref_primary_10_3390_jof9090919
crossref_primary_10_1128_MMBR_00040_15
crossref_primary_10_1073_pnas_1308421110
crossref_primary_10_2217_fmb_09_88
crossref_primary_10_1007_s10059_010_0159_z
crossref_primary_10_1039_C6RA24939F
crossref_primary_10_1074_jbc_M303395200
crossref_primary_10_1292_jvms_22_0222
crossref_primary_10_1016_j_tet_2010_07_019
crossref_primary_10_1093_glycob_cwn044
crossref_primary_10_1074_jbc_R000022200
crossref_primary_10_1007_s10482_015_0468_5
crossref_primary_10_1016_S0014_5793_00_01665_3
crossref_primary_10_1046_j_1471_4159_2002_01167_x
crossref_primary_10_1007_s10529_013_1183_9
crossref_primary_10_1007_s10719_016_9651_9
crossref_primary_10_1016_S0163_7827_03_00023_7
crossref_primary_10_1073_pnas_0704862104
crossref_primary_10_1084_jem_20071987
crossref_primary_10_1194_jlr_D012807
crossref_primary_10_1002_prot_21479
crossref_primary_10_1074_jbc_M204370200
crossref_primary_10_1002_jnr_23470
crossref_primary_10_1093_glycob_cwi045
crossref_primary_10_7852_ijie_2015_31_2_48
crossref_primary_10_1128_AEM_68_6_2731_2736_2002
crossref_primary_10_1016_j_bmc_2010_03_009
crossref_primary_10_1093_embo_reports_kve162
crossref_primary_10_1093_glycob_cwj099
crossref_primary_10_1093_emboj_19_4_581
crossref_primary_10_1093_glycob_cws070
crossref_primary_10_1016_j_exphem_2007_05_006
crossref_primary_10_1016_j_jsb_2015_02_006
crossref_primary_10_1093_glycob_cwm083
crossref_primary_10_1002_asia_201900203
crossref_primary_10_1007_s00431_002_1136_0
crossref_primary_10_1016_j_virol_2010_05_031
crossref_primary_10_1074_jbc_M203362200
crossref_primary_10_1007_s10482_007_9179_x
crossref_primary_10_1007_s11248_009_9299_3
crossref_primary_10_1074_jbc_M004935200
crossref_primary_10_1002_tcr_201900004
crossref_primary_10_1016_j_foodchem_2012_03_086
crossref_primary_10_1016_S0965_1748_00_00121_1
crossref_primary_10_1073_pnas_1111482109
crossref_primary_10_1093_glycob_cwq169
crossref_primary_10_1111_febs_12424
crossref_primary_10_1016_j_ijbiomac_2008_10_012
crossref_primary_10_1007_s00418_003_0521_8
crossref_primary_10_1074_jbc_M401718200
crossref_primary_10_1007_s00418_016_1513_9
crossref_primary_10_1016_j_bbamcr_2011_05_006
crossref_primary_10_1016_j_ijbiomac_2019_03_100
crossref_primary_10_1078_0171_9335_00127
crossref_primary_10_1002_ejoc_200400823
crossref_primary_10_1021_bi301096a
crossref_primary_10_1093_glycob_cwp170
crossref_primary_10_1016_j_tet_2013_09_008
crossref_primary_10_1016_S0022_2836_03_00172_4
crossref_primary_10_1016_j_tibs_2024_09_007
crossref_primary_10_1016_j_bbrc_2011_09_100
crossref_primary_10_1186_1472_6750_13_16
crossref_primary_10_1016_j_exppara_2009_12_014
crossref_primary_10_1016_j_bcp_2006_05_016
crossref_primary_10_1074_jbc_M011740200
crossref_primary_10_1016_j_yexcr_2006_09_010
crossref_primary_10_1016_j_jbc_2024_107944
crossref_primary_10_1093_glycob_11_7_565
crossref_primary_10_1590_S1415_47572001000100030
crossref_primary_10_3390_bioengineering10121391
crossref_primary_10_1016_S0040_4039_01_01777_4
crossref_primary_10_1038_nrmicro1087
crossref_primary_10_1016_j_chembiol_2004_07_009
crossref_primary_10_1074_jbc_M403065200
crossref_primary_10_3109_14756366_2016_1142983
crossref_primary_10_1089_ars_2007_1817
crossref_primary_10_1016_j_carres_2008_05_026
crossref_primary_10_1038_nsmb715
crossref_primary_10_4052_tigg_21_131
crossref_primary_10_1073_pnas_0914004107
crossref_primary_10_1111_1744_7917_12885
crossref_primary_10_1007_s10719_011_9356_z
crossref_primary_10_1007_s10719_013_9495_5
crossref_primary_10_1016_j_carres_2004_08_007
crossref_primary_10_1016_j_ibmb_2013_01_005
crossref_primary_10_1016_j_exppara_2005_04_002
crossref_primary_10_1007_s11064_015_1650_x
crossref_primary_10_1016_j_fgb_2010_06_004
crossref_primary_10_1074_jbc_M109_076075
crossref_primary_10_1016_j_jmb_2007_11_098
crossref_primary_10_1016_S0003_2697_02_00039_8
crossref_primary_10_1016_j_carres_2006_11_012
crossref_primary_10_1016_j_carres_2005_12_005
crossref_primary_10_1080_09583157_2013_838209
crossref_primary_10_1128_JVI_02458_09
crossref_primary_10_1002_chem_201801902
crossref_primary_10_1016_j_yexcr_2008_11_006
crossref_primary_10_1016_S0300_9084_01_01319_0
crossref_primary_10_1046_j_1523_1755_2001_00733_x
crossref_primary_10_1371_journal_pgen_1004349
crossref_primary_10_1038_sj_onc_1205525
crossref_primary_10_1074_jbc_M100119200
crossref_primary_10_3390_ijms23137373
crossref_primary_10_1016_j_chmed_2022_06_008
crossref_primary_10_1016_S0300_9084_03_00049_X
crossref_primary_10_1038_nchembio0508_269
crossref_primary_10_1590_S0074_02762008000700016
crossref_primary_10_1074_jbc_M312392200
crossref_primary_10_1007_s00018_010_0595_0
crossref_primary_10_1016_j_ijbiomac_2019_07_135
crossref_primary_10_2217_fmb_10_157
crossref_primary_10_1007_s10482_011_9636_4
crossref_primary_10_1093_jb_mvu065
crossref_primary_10_1146_annurev_biochem_73_011303_074043
crossref_primary_10_1093_glycob_cwt106
crossref_primary_10_1016_j_carres_2006_05_011
crossref_primary_10_1074_mcp_M100028_MCP200
crossref_primary_10_1074_jbc_M512769200
crossref_primary_10_1016_S0960_894X_01_00300_6
crossref_primary_10_1099_mic_0_2008_019315_0
crossref_primary_10_1002_pmic_200401071
crossref_primary_10_1002_prot_10206
crossref_primary_10_1074_jbc_275_15_11071
crossref_primary_10_1111_j_1574_6968_2004_tb09637_x
crossref_primary_10_1203_01_PDR_0000072327_55955_F7
crossref_primary_10_1016_j_pep_2013_02_004
crossref_primary_10_1074_jbc_M309249200
crossref_primary_10_1186_1471_2164_11_57
crossref_primary_10_1111_j_1574_6968_2006_00093_x
crossref_primary_10_1016_S0892_0362_03_00078_3
crossref_primary_10_1016_j_biochi_2010_07_016
crossref_primary_10_1016_j_bbrc_2007_08_057
crossref_primary_10_1074_jbc_M703218200
crossref_primary_10_1007_s10482_010_9437_1
crossref_primary_10_1006_jmbi_2001_4946
crossref_primary_10_1093_glycob_cwl076
crossref_primary_10_1002_chem_201705600
crossref_primary_10_1074_jbc_M006927200
crossref_primary_10_1074_jbc_M302621200
crossref_primary_10_1016_j_semcdb_2014_11_008
crossref_primary_10_7554_eLife_20609
crossref_primary_10_1093_embo_reports_kve089
crossref_primary_10_3390_ph13110366
crossref_primary_10_1016_j_carres_2009_04_028
crossref_primary_10_1034_j_1600_0854_2000_011208_x
ContentType Book Review
Journal Article
Copyright 1999 Elsevier Science B.V.
Copyright_xml – notice: 1999 Elsevier Science B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/S0304-4165(99)00171-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 107
ExternalDocumentID 10580131
10_1016_S0304_4165_99_00171_3
S0304416599001713
Genre Research Support, U.S. Gov't, P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM-31265
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
-~X
.55
.GJ
ABJNI
CGR
CUY
CVF
ECM
EIF
F5P
H~9
MVM
NPM
PKN
RIG
TWZ
UHS
X7M
Y6R
ZGI
~KM
7X8
ID FETCH-LOGICAL-c361t-8bd82a6f9556e9d7523df40bd4ec42733259c8c8547ed15da300d8dc09fd47673
IEDL.DBID AIKHN
ISSN 0304-4165
0006-3002
IngestDate Mon Aug 18 11:16:02 EDT 2025
Wed Feb 19 02:33:27 EST 2025
Tue Jul 01 03:48:46 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Fri Feb 23 02:32:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords N-Glycan processing
Glycoprotein folding
SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
α-Glucosidase
RT-PCR, reverse transcriptase-polymerase chain reaction
α-Mannosidase
Endo α-mannosidase
Quality control
ER, endoplasmic reticulum
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-8bd82a6f9556e9d7523df40bd4ec42733259c8c8547ed15da300d8dc09fd47673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 10580131
PQID 69320891
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_69320891
pubmed_primary_10580131
crossref_citationtrail_10_1016_S0304_4165_99_00171_3
crossref_primary_10_1016_S0304_4165_99_00171_3
elsevier_sciencedirect_doi_10_1016_S0304_4165_99_00171_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-12-06
PublicationDateYYYYMMDD 1999-12-06
PublicationDate_xml – month: 12
  year: 1999
  text: 1999-12-06
  day: 06
PublicationDecade 1990
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle BBA - General Subjects
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 1999
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Moremen, Trimble, Herscovics (BIB2) 1994; 4
Knop, Hauser, Wolf (BIB64) 1996; 12
Goss, Baker, Carver, Dennis (BIB97) 1995; 1
Herscovics, Orlean (BIB4) 1993; 7
Goss, Reid, Bailey, Dennis (BIB98) 1997; 3
Bause, Bieberich, Rolfs, Völker, Schmidt (BIB69) 1993; 217
Bieberich, Treml, Völker, Rolfs, Kalz-Füller, Bause (BIB71) 1997; 246
Bergeron, Brenner, Thomas, Williams (BIB28) 1994; 19
Datema, Romero, Legler, Schwartz (BIB12) 1982; 79
Nilsson, Hoe, Slusarewicz, Rabouille, Watson, Hunte, Watzele, Berger, Warren (BIB93) 1994; 13
Brada, Kerjaschki, Roth (BIB26) 1990; 110
Weng, Spiro (BIB59) 1996; 325
Hughes, Feeney (BIB95) 1986; 158
Rodan, Simons, Trombetta, Helenius (BIB37) 1996; 15
Moremen, Robbins (BIB89) 1991; 115
Chui, Oh-Eda, Liao, Panneerselvam, Lal, Marek, Freeze, Moremen, Fukuda, Marth (BIB100) 1997; 90
Sousa, Parodi (BIB42) 1995; 14
Fukuda (BIB101) 1990; 1
Tremblay, Campbell Dyke, Herscovics (BIB75) 1998; 8
R.G. Spiro, in: J. Rothblatt, P. Novick, T. Stevens (Eds.), Guidebook to the Secretory Pathway, Sambrook and Tooze Publication at Oxford University Press, Oxford, 1994, pp. 188–189.
C. Labriola, J.J. Cazzulo, A.J. Parodi, Mol. Biol. Cell 10 (1999) in press.
Campbell Dyke, Athanassiadis, Herscovics (BIB77) 1997; 41
Jakob, Burda, Roth, Aebi (BIB65) 1998; 142
Roth, Brada, Lackie, Schweden, Bause (BIB80) 1990; 53
Lipari, Herscovics (BIB84) 1996; 271
Tang, Low, Hong (BIB27) 1997; 73
A. Herscovics, in: B.M. Pinto (Ed.), Comprehensive Natural Products Chemistry, Vol. 3, Elsevier, Amsterdam, 1999, pp. 13–35.
Datema, Olofsson, Romero (BIB9) 1987; 33
Misago, Liao, Kudo, Eto, Mattei, Moremen, Fukuda (BIB90) 1995; 92
Yang, Omura, Bonifacino, Weissman (BIB63) 1998; 187
Lal, Pang, Kalelkar, Romero, Herscovics, Moremen (BIB54) 1998; 8
Dairaku, Spiro (BIB52) 1997; 7
Winchester, Fleet (BIB11) 1992; 2
Kalz-Füller, Heidrich-Kaul, Nöthen, Bause, Schwanitz (BIB16) 1996; 34
Romero, Dijkgraaf, Shahinian, Herscovics, Bussey (BIB19) 1997; 7
Hentges, Bause (BIB20) 1997; 378
Karaivanova, Luan, Spiro (BIB48) 1998; 8
Zapun, Darby, Tessier, Michalak, Bergeron, Thomas (BIB34) 1998; 273
Spiro, Zhu, Bhoyroo, Söling (BIB50) 1996; 271
Bischoff, Liscum, Kornfeld (BIB56) 1986; 261
Kumano, Omichi, Hase (BIB106) 1996; 119
Camirand, Heysen, Grondin, Herscovics (BIB72) 1991; 266
Moremen, Touster, Robbins (BIB88) 1991; 266
Colley (BIB91) 1997; 7
Roberts, Klein, Palmantier, Dhume, George, Olden (BIB99) 1998; 22
Spiro, Bhoyroo, Spiro (BIB51) 1997; 272
Howard, Braun, McCarter, Moremen, Liao, Withers (BIB55) 1997; 238
Lal, Schutzbach, Forsee, Neame, Moremen (BIB70) 1994; 269
Roberts, Klein, Palmantier, Dhume, George, Olden (BIB45) 1998; 22
Herscovics, Schneikert, Athanassiadis, Moremen (BIB73) 1994; 269
Lipari, Herscovics (BIB83) 1999; 38
Kalz-Füller, Bieberich, Bause (BIB15) 1995; 231
Kornfeld, Kornfeld (BIB1) 1985; 54
Hubbard, Robbins (BIB8) 1979; 254
Trombetta, Simons, Helenius (BIB21) 1996; 271
Lipari, Gour-Salin, Herscovics (BIB53) 1995; 209
Trudel, Herscovics, Holland (BIB13) 1988; 66
Elliott, Oliver, High (BIB33) 1997; 272
Igdoura, Herscovics, Lal, Moremen, Morales, Hermo (BIB81) 1999; 78
Parodi (BIB31) 1998; 31
Tulsiani, Touster (BIB102) 1985; 260
Bieberich, Bause (BIB79) 1995; 233
Monis, Bonay, Hughes (BIB103) 1987; 168
Flura, Brada, Ziak, Roth (BIB22) 1997; 7
Henrissat (BIB17) 1991; 280
Martiniuk, Ellenbogen, Hirschhorn (BIB24) 1985; 260
Herscovics (BIB5) 1999; 1426
Elbein (BIB96) 1991; 5
Oliver, van der Wal, Bulleid, High (BIB32) 1997; 275
Williams (BIB30) 1995; 73
Nilsson, Slusarewicz, Hoe, Warren (BIB92) 1993; 330
Alonso, Santa-Cecilia, Calvo (BIB14) 1993; 215
Hebert, Foellmer, Helenius (BIB36) 1995; 81
Daniel, Winchester, Warren (BIB3) 1994; 4
Arendt, Ostergaard (BIB23) 1997; 272
Su, Stoller, Rocco, Zemsky, Green (BIB62) 1993; 268
Vallée, Lipari, Lal, Herscovics, Moremen, Howell (BIB86) 1998; 25
Schneikert, Herscovics (BIB74) 1994; 4
Lucocq, Brada, Roth (BIB25) 1986; 102
Bonay, Hughes (BIB104) 1991; 197
Rizzolo, Kornfeld (BIB57) 1988; 263
Tulsiani, Touster (BIB68) 1988; 263
Hammond, Helenius (BIB29) 1995; 7
Weng, Spiro (BIB47) 1996; 6
Bonay, Roth, Hughes (BIB105) 1992; 205
Weng, Spiro (BIB58) 1993; 268
Jiang, Sheraton, Ram, Dijkgraaf, Klis, Bussey (BIB18) 1996; 178
Nilsson, Rabouille, Hui, Watson, Warren (BIB94) 1996; 109
Velasco, Hendricks, Moremen, Tulsiani, Touster, Farquhar (BIB78) 1993; 122
Zapun, Petrescu, Rudd, Dwek, Thomas, Bergeron (BIB38) 1997; 88
Tabas, Kornfeld (BIB67) 1979; 254
Schneikert, Herscovics (BIB82) 1995; 270
Van der Wal, Oliver, High (BIB35) 1998; 256
Cacan, Duvet, Kmiecik, Labiau, Mir, Verbert (BIB66) 1998; 80
Van Leeuwen, Kearse (BIB40) 1997; 272
Tulsiani, Opheim, Touster (BIB87) 1977; 252
Kornfeld, Li, Tabas (BIB7) 1978; 253
Mehta, Zitzmann, Rudd, Block, Dwek (BIB44) 1998; 430
Hiraizumi, Spohr, Spiro (BIB49) 1993; 268
Bause, Breuer, Schweden, Roeser, Geyer (BIB76) 1992; 208
Block, Lu, Mehta, Blumberg, Tennant, Ebling, Korba, Lansky, Jacob, Dwek (BIB43) 1998; 4
Bischoff, Kornfeld (BIB107) 1986; 261
Dole, Lipari, Herscovics, Howell (BIB85) 1997; 120
Elbein (BIB10) 1991; 5
Bischoff, Moremen, Lodish (BIB61) 1990; 265
Bischoff, Kornfeld (BIB60) 1983; 258
Helenius, Trombetta, Hebert, Simons (BIB39) 1997; 7
References_xml – volume: 66
  start-page: 1119
  year: 1988
  end-page: 1125
  ident: BIB13
  publication-title: Biochem. Cell Biol.
– volume: 19
  start-page: 124
  year: 1994
  end-page: 128
  ident: BIB28
  publication-title: Trends Biochem. Sci.
– volume: 168
  start-page: 287
  year: 1987
  end-page: 294
  ident: BIB103
  publication-title: Eur. J. Biochem.
– volume: 261
  start-page: 4758
  year: 1986
  end-page: 4765
  ident: BIB107
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 113
  year: 1994
  end-page: 126
  ident: BIB2
  publication-title: Glycobiology
– volume: 266
  start-page: 15120
  year: 1991
  end-page: 15127
  ident: BIB72
  publication-title: J. Biol. Chem.
– volume: 271
  start-page: 27615
  year: 1996
  end-page: 27622
  ident: BIB84
  publication-title: J. Biol. Chem.
– volume: 272
  start-page: 13117
  year: 1997
  end-page: 13125
  ident: BIB23
  publication-title: J. Biol. Chem.
– volume: 115
  start-page: 1521
  year: 1991
  end-page: 1534
  ident: BIB89
  publication-title: J. Cell Biol.
– volume: 81
  start-page: 425
  year: 1995
  end-page: 433
  ident: BIB36
  publication-title: Cell
– volume: 7
  start-page: 540
  year: 1993
  end-page: 550
  ident: BIB4
  publication-title: FASEB J.
– reference: C. Labriola, J.J. Cazzulo, A.J. Parodi, Mol. Biol. Cell 10 (1999) in press.
– volume: 8
  start-page: 981
  year: 1998
  end-page: 995
  ident: BIB54
  publication-title: Glycobiology
– volume: 272
  start-page: 13849
  year: 1997
  end-page: 13855
  ident: BIB33
  publication-title: J. Biol. Chem.
– volume: 142
  start-page: 1223
  year: 1998
  end-page: 1233
  ident: BIB65
  publication-title: J. Cell Biol.
– volume: 268
  start-page: 25656
  year: 1993
  end-page: 25663
  ident: BIB58
  publication-title: J. Biol. Chem.
– volume: 122
  start-page: 39
  year: 1993
  end-page: 51
  ident: BIB78
  publication-title: J. Cell Biol.
– volume: 102
  start-page: 2137
  year: 1986
  end-page: 2146
  ident: BIB25
  publication-title: J. Cell Biol.
– volume: 38
  start-page: 1111
  year: 1999
  end-page: 1118
  ident: BIB83
  publication-title: Biochemistry
– volume: 6
  start-page: 861
  year: 1996
  end-page: 868
  ident: BIB47
  publication-title: Glycobiology
– volume: 22
  start-page: 455
  year: 1998
  end-page: 462
  ident: BIB45
  publication-title: Cancer Detect. Prev.
– volume: 209
  start-page: 322
  year: 1995
  end-page: 326
  ident: BIB53
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 34
  start-page: 442
  year: 1996
  end-page: 443
  ident: BIB16
  publication-title: Genomics
– volume: 41
  start-page: 155
  year: 1997
  end-page: 159
  ident: BIB77
  publication-title: Genomics
– volume: 263
  start-page: 5408
  year: 1988
  end-page: 5417
  ident: BIB68
  publication-title: J. Biol. Chem.
– volume: 158
  start-page: 227
  year: 1986
  end-page: 237
  ident: BIB95
  publication-title: Eur. J. Biochem.
– volume: 215
  start-page: 37
  year: 1993
  end-page: 42
  ident: BIB14
  publication-title: Eur. J. Biochem.
– volume: 1
  start-page: 9
  year: 1990
  end-page: 15
  ident: BIB101
  publication-title: Glycobiology
– volume: 7
  start-page: 997
  year: 1997
  end-page: 1004
  ident: BIB19
  publication-title: Glycobiology
– volume: 7
  start-page: 1
  year: 1997
  end-page: 13
  ident: BIB91
  publication-title: Glycobiology
– volume: 272
  start-page: 4179
  year: 1997
  end-page: 4186
  ident: BIB40
  publication-title: J. Biol. Chem.
– volume: 263
  start-page: 9520
  year: 1988
  end-page: 9525
  ident: BIB57
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 610
  year: 1998
  end-page: 614
  ident: BIB43
  publication-title: Nature Med.
– volume: 7
  start-page: 579
  year: 1997
  end-page: 586
  ident: BIB52
  publication-title: Glycobiology
– volume: 3
  start-page: 1077
  year: 1997
  end-page: 1086
  ident: BIB98
  publication-title: Clin. Cancer Res.
– volume: 265
  start-page: 17110
  year: 1990
  end-page: 17117
  ident: BIB61
  publication-title: J. Biol. Chem.
– volume: 269
  start-page: 9872
  year: 1994
  end-page: 9881
  ident: BIB70
  publication-title: J. Biol. Chem.
– volume: 253
  start-page: 7771
  year: 1978
  end-page: 7778
  ident: BIB7
  publication-title: J. Biol. Chem.
– volume: 53
  start-page: 131
  year: 1990
  end-page: 141
  ident: BIB80
  publication-title: Eur. J. Cell Biol.
– volume: 231
  start-page: 344
  year: 1995
  end-page: 351
  ident: BIB15
  publication-title: Eur. J. Biochem.
– volume: 33
  start-page: 221
  year: 1987
  end-page: 286
  ident: BIB9
  publication-title: Pharmacol. Ther.
– volume: 7
  start-page: 617
  year: 1997
  end-page: 624
  ident: BIB22
  publication-title: Glycobiology
– volume: 31
  start-page: 601
  year: 1998
  end-page: 614
  ident: BIB31
  publication-title: Braz. J. Med. Biol. Res.
– volume: 14
  start-page: 4196
  year: 1995
  end-page: 4203
  ident: BIB42
  publication-title: EMBO J.
– volume: 73
  start-page: 123
  year: 1995
  end-page: 132
  ident: BIB30
  publication-title: Biochem. Cell Biol.
– volume: 205
  start-page: 399
  year: 1992
  end-page: 407
  ident: BIB105
  publication-title: Eur. J. Biochem.
– volume: 73
  start-page: 98
  year: 1997
  end-page: 104
  ident: BIB27
  publication-title: Eur. J. Cell Biol.
– volume: 109
  start-page: 1975
  year: 1996
  end-page: 1989
  ident: BIB94
  publication-title: J. Cell Sci.
– volume: 5
  start-page: 3055
  year: 1991
  end-page: 3063
  ident: BIB96
  publication-title: FASEB J.
– reference: R.G. Spiro, in: J. Rothblatt, P. Novick, T. Stevens (Eds.), Guidebook to the Secretory Pathway, Sambrook and Tooze Publication at Oxford University Press, Oxford, 1994, pp. 188–189.
– volume: 12
  start-page: 1229
  year: 1996
  end-page: 1238
  ident: BIB64
  publication-title: Yeast
– volume: 80
  start-page: 59
  year: 1998
  end-page: 68
  ident: BIB66
  publication-title: Biochimie
– volume: 1
  start-page: 935
  year: 1995
  end-page: 944
  ident: BIB97
  publication-title: Clin. Cancer Res.
– volume: 197
  start-page: 229
  year: 1991
  end-page: 238
  ident: BIB104
  publication-title: Eur. J. Biochem.
– volume: 25
  start-page: 143
  year: 1998
  ident: BIB86
  publication-title: Am. Crystallogr. Assoc. Ser. 2
– volume: 79
  start-page: 6787
  year: 1982
  end-page: 6791
  ident: BIB12
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 6921
  year: 1996
  end-page: 6930
  ident: BIB37
  publication-title: EMBO J.
– volume: 233
  start-page: 644
  year: 1995
  end-page: 649
  ident: BIB79
  publication-title: Eur. J. Biochem.
– volume: 92
  start-page: 11766
  year: 1995
  end-page: 11770
  ident: BIB90
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 325
  start-page: 113
  year: 1996
  end-page: 123
  ident: BIB59
  publication-title: Arch. Biochem. Biophys.
– volume: 217
  start-page: 535
  year: 1993
  end-page: 540
  ident: BIB69
  publication-title: Eur. J. Biochem.
– volume: 178
  start-page: 1162
  year: 1996
  end-page: 1171
  ident: BIB18
  publication-title: J. Bacteriol.
– volume: 7
  start-page: 193
  year: 1997
  end-page: 200
  ident: BIB39
  publication-title: Trends Cell Biol.
– volume: 22
  start-page: 455
  year: 1998
  end-page: 462
  ident: BIB99
  publication-title: Cancer Detect. Prev.
– volume: 258
  start-page: 7907
  year: 1983
  end-page: 7910
  ident: BIB60
  publication-title: J. Biol. Chem.
– volume: 88
  start-page: 29
  year: 1997
  end-page: 38
  ident: BIB38
  publication-title: Cell
– volume: 261
  start-page: 4766
  year: 1986
  end-page: 4774
  ident: BIB56
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 551
  year: 1994
  end-page: 566
  ident: BIB3
  publication-title: Glycobiology
– volume: 271
  start-page: 11588
  year: 1996
  end-page: 11594
  ident: BIB50
  publication-title: J. Biol. Chem.
– volume: 90
  start-page: 157
  year: 1997
  end-page: 167
  ident: BIB100
  publication-title: Cell
– volume: 260
  start-page: 13081
  year: 1985
  end-page: 13087
  ident: BIB102
  publication-title: J. Biol. Chem.
– volume: 54
  start-page: 631
  year: 1985
  end-page: 664
  ident: BIB1
  publication-title: Annu. Rev. Biochem.
– volume: 430
  start-page: 17
  year: 1998
  end-page: 22
  ident: BIB44
  publication-title: FEBS Lett.
– reference: A. Herscovics, in: B.M. Pinto (Ed.), Comprehensive Natural Products Chemistry, Vol. 3, Elsevier, Amsterdam, 1999, pp. 13–35.
– volume: 2
  start-page: 199
  year: 1992
  end-page: 210
  ident: BIB11
  publication-title: Glycobiology
– volume: 330
  start-page: 1
  year: 1993
  end-page: 4
  ident: BIB92
  publication-title: FEBS Lett.
– volume: 273
  start-page: 6009
  year: 1998
  end-page: 6012
  ident: BIB34
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 445
  year: 1994
  end-page: 450
  ident: BIB74
  publication-title: Glycobiology
– volume: 272
  start-page: 29356
  year: 1997
  end-page: 29363
  ident: BIB51
  publication-title: J. Biol. Chem.
– volume: 256
  start-page: 51
  year: 1998
  end-page: 59
  ident: BIB35
  publication-title: Eur. J. Biochem.
– volume: 269
  start-page: 9864
  year: 1994
  end-page: 9871
  ident: BIB73
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 3055
  year: 1991
  end-page: 3063
  ident: BIB10
  publication-title: FASEB J.
– volume: 187
  start-page: 835
  year: 1998
  end-page: 846
  ident: BIB63
  publication-title: J. Exp. Med.
– volume: 1426
  start-page: 275
  year: 1999
  end-page: 285
  ident: BIB5
  publication-title: Biochim. Biophys. Acta
– volume: 8
  start-page: 585
  year: 1998
  end-page: 595
  ident: BIB75
  publication-title: Glycobiology
– volume: 252
  start-page: 3227
  year: 1977
  end-page: 3233
  ident: BIB87
  publication-title: J. Biol. Chem.
– volume: 378
  start-page: 1031
  year: 1997
  end-page: 1038
  ident: BIB20
  publication-title: Biol. Chem.
– volume: 7
  start-page: 523
  year: 1995
  end-page: 529
  ident: BIB29
  publication-title: Curr. Opin. Cell Biol.
– volume: 8
  start-page: 725
  year: 1998
  end-page: 730
  ident: BIB48
  publication-title: Glycobiology
– volume: 13
  start-page: 562
  year: 1994
  end-page: 574
  ident: BIB93
  publication-title: EMBO J.
– volume: 254
  start-page: 4568
  year: 1979
  end-page: 4576
  ident: BIB8
  publication-title: J. Biol. Chem.
– volume: 266
  start-page: 16876
  year: 1991
  end-page: 16885
  ident: BIB88
  publication-title: J. Biol. Chem.
– volume: 238
  start-page: 896
  year: 1997
  end-page: 898
  ident: BIB55
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 254
  start-page: 11655
  year: 1979
  end-page: 11663
  ident: BIB67
  publication-title: J. Biol. Chem.
– volume: 208
  start-page: 451
  year: 1992
  end-page: 457
  ident: BIB76
  publication-title: Eur. J. Biochem.
– volume: 78
  start-page: 441
  year: 1999
  end-page: 452
  ident: BIB81
  publication-title: Eur. J. Cell Biol.
– volume: 270
  start-page: 17736
  year: 1995
  end-page: 17740
  ident: BIB82
  publication-title: J. Biol. Chem.
– volume: 260
  start-page: 1238
  year: 1985
  end-page: 1242
  ident: BIB24
  publication-title: J. Biol. Chem.
– volume: 119
  start-page: 991
  year: 1996
  end-page: 997
  ident: BIB106
  publication-title: J. Biochem.
– volume: 275
  start-page: 86
  year: 1997
  end-page: 88
  ident: BIB32
  publication-title: Science
– volume: 268
  start-page: 9927
  year: 1993
  end-page: 9935
  ident: BIB49
  publication-title: J. Biol. Chem.
– volume: 120
  start-page: 69
  year: 1997
  end-page: 72
  ident: BIB85
  publication-title: J. Struct. Biol.
– volume: 246
  start-page: 681
  year: 1997
  end-page: 689
  ident: BIB71
  publication-title: Eur. J. Biochem.
– volume: 280
  start-page: 309
  year: 1991
  end-page: 316
  ident: BIB17
  publication-title: Biochem. J.
– volume: 268
  start-page: 14301
  year: 1993
  end-page: 14309
  ident: BIB62
  publication-title: J. Biol. Chem.
– volume: 271
  start-page: 27509
  year: 1996
  end-page: 27516
  ident: BIB21
  publication-title: J. Biol. Chem.
– volume: 110
  start-page: 309
  year: 1990
  end-page: 318
  ident: BIB26
  publication-title: J. Cell Biol.
SSID ssj0000595
ssj0025309
Score 1.2919933
Snippet Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc 3Man 9GlcNAc 2 and thus providing the substrates for...
Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 96
SubjectTerms alpha-Glucosidases - metabolism
alpha-Mannosidase
Animals
Endo α-mannosidase
Endoplasmic Reticulum - enzymology
Glycoprotein folding
Glycoproteins - biosynthesis
Glycoside Hydrolases - metabolism
Golgi Apparatus - enzymology
Humans
Mannosidases - metabolism
N-Glycan processing
Quality control
α-Glucosidase
α-Mannosidase
Title Importance of glycosidases in mammalian glycoprotein biosynthesis
URI https://dx.doi.org/10.1016/S0304-4165(99)00171-3
https://www.ncbi.nlm.nih.gov/pubmed/10580131
https://www.proquest.com/docview/69320891
Volume 1473
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9wwDCbyQNF2StPXNW3qoUM7KGdbD0tjcEhw6QEZ2gbNJsiSHBjI2UF9GW7Jbw8l27l2CAJ0MkCbskzR5CeJIgG-eCELKWhFssoaggjcE2O9IwbdgZEl_l5ljLY4F_ML9v2SX27BbDwLE8IqB9vf2_RorQfKdJDm9Kaupz_Dph7CCY72NCR9oduwm1MlULV3j88W8_ONQeax-Ep4ngSGzUGevpFI_KrUt9gOoY-5qMcgaHRFp3vwMhxPSPo1_Vew5Zt9eNZXlFzvw_PZWMDtNRyfLSO4xk9K2iq5ul7bFnUP3VaX1E2yNMtlXOTo78SEDUgu67ZbNwgLu7p7AxenJ79mczJUTCCWimxFZOlkbkSlOBdeuQJnma5iaemYtwyBCsXJjpVWclZ4l3FnaJo66WyqKscKUdC3sNO0jX8PSc5NKXjJMpdbZqUxlXJSIN6TwlVV7ifARiFpO6QTD1UtrvUmbgxlq4NstVI6ylbTCRw9sN30-TSeYpDjCOh_FEOjzX-K9fM4YhpFH3ZCTOPb204LRK2pVNkE3vUD-VdfuAwpiD78_2sP4EXM7RBiXsRH2Fn9ufWfELmsykPYPrrLDgf9DNfFj9-Le9jd55k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5Rqgo4UfpggZYcemgPZpON7dhHtCpaKOVSkLhZjh9VJDZBZDnshd_O2EnYckBIvTqxE4_n8dmeB8A3x0UheO5J5o0miMAd0cZZotEcaFGieJXR2-KCz67o2TW7XoPpEAsT3Cp73d_p9Kit-5ZxT83xbVWN_4RLPYQTDPVpSPqSv4G3FMU3SOfRw8rPA_ED664SKAmvr8J4uiFi43cpf8RRSP6SgXoJgEZDdLINWyE4IelO9N_Dmqt34F1XT3K5AxvToXzbBzg-nUdojRNKGp_8vVmaBjkPjVabVHUy1_N5POLonsR0DdhcVk27rBEUtlX7Ea5Ofl5OZ6Svl0BMzrMFEaUVE829ZIw7aQvcY1pP09JSZyjClBy3OkYYwWjhbMasztPUCmtS6S0teJF_gvW6qd0uJBOmS85KmtmJoUZo7aUVHNGe4Nb7iRsBHYikTJ9MPNS0uFErrzGkrQq0VVKqSFuVj-Doqdttl03jtQ5iWAH1jC0UavzXuh4OK6aQ9OEeRNeuuW8VR8yaCpmN4HO3kP_8CxMhAdHe_3_2EDZml7_P1fnpxa992IxZHoL3Cz-A9cXdvfuCGGZRfo08-ghyYea6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Importance+of+glycosidases+in+mammalian+glycoprotein+biosynthesis&rft.jtitle=BBA+-+General+Subjects&rft.au=Herscovics%2C+Annette&rft.date=1999-12-06&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1473&rft.issue=1&rft.spage=96&rft.epage=107&rft_id=info:doi/10.1016%2FS0304-4165%2899%2900171-3&rft.externalDocID=S0304416599001713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon