Importance of glycosidases in mammalian glycoprotein biosynthesis
Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc 3Man 9GlcNAc 2 and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of new...
Saved in:
Published in | BBA - General Subjects Vol. 1473; no. 1; pp. 96 - 107 |
---|---|
Main Author | |
Format | Book Review Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
06.12.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Processing glycosidases play an important role in
N-glycan biosynthesis in mammalian cells by trimming Glc
3Man
9GlcNAc
2 and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound α-glucosidase I and soluble α-glucosidase II of the endoplasmic reticulum remove the α1,2-glucose and α1,3-glucose residues, respectively, beginning immediately following transfer of Glc
3Man
9GlcNAc
2 to nascent polypeptides. The α-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo α-mannosidase provides an alternative pathway for removal of glucose residues. Removal of α1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of α1,2-mannosidases IA and IB that can form Man
5GlcNAc
2 and of α-mannosidase II that removes the α1,3- and α1,6-linked mannose from GlcNAcMan
5GlcNAc
2 to form GlcNAcMan
3GlcNAc
2. These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity α-mannosidases that can trim Man
4–9GlcNAc
2 to Man
3GlcNAc
2, and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining α-mannosidases will be required to evaluate their specific functions in glycoprotein maturation. |
---|---|
AbstractList | Processing glycosidases play an important role in
N-glycan biosynthesis in mammalian cells by trimming Glc
3Man
9GlcNAc
2 and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound α-glucosidase I and soluble α-glucosidase II of the endoplasmic reticulum remove the α1,2-glucose and α1,3-glucose residues, respectively, beginning immediately following transfer of Glc
3Man
9GlcNAc
2 to nascent polypeptides. The α-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo α-mannosidase provides an alternative pathway for removal of glucose residues. Removal of α1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of α1,2-mannosidases IA and IB that can form Man
5GlcNAc
2 and of α-mannosidase II that removes the α1,3- and α1,6-linked mannose from GlcNAcMan
5GlcNAc
2 to form GlcNAcMan
3GlcNAc
2. These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity α-mannosidases that can trim Man
4–9GlcNAc
2 to Man
3GlcNAc
2, and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining α-mannosidases will be required to evaluate their specific functions in glycoprotein maturation. Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation.Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation. Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation. |
Author | Herscovics, Annette |
Author_xml | – sequence: 1 givenname: Annette surname: Herscovics fullname: Herscovics, Annette email: annette@med.mcgill.ca organization: McGill Cancer Centre, McGill University, 3655 Drummond Street, Montréal, Que. H3G 1Y6, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10580131$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1PxCAQhonR6K76EzQ9GT1UoZQW4sEY41eyiQf1TChMFdOWFViT_feyH2riQblMAs87wzxjtDm4ARA6IPiUYFKdPWKKy7wkFTsW4gRjUpOcbqAR4XWRc4yrTTT6RnbQOIQ3nA4TbBvtEMw4JpSM0OV9P3U-qkFD5trspZtrF6xRAUJmh6xXfa86q4bVy9S7COm6sS7Mh_gKwYY9tNWqLsD-uu6i55vrp6u7fPJwe391Ock1rUjMeWN4oapWMFaBMDUrqGlL3JgSdFnUlBZMaK45K2swhBlFMTbcaCxaU9ZVTXfR0apv-sT7DEKUvQ0auk4N4GZBVoIWmAuSwMM1OGt6MHLqba_8XH4tnYDzFaC9C8FDK7WNKlo3RK9sl0C5UCyXiuXCnxRCLhVLmtLsV_pnwN-5i1UOkqQPC14GbSF5N9aDjtI4-0-HT1G9kts |
CitedBy_id | crossref_primary_10_1002_term_195 crossref_primary_10_1093_glycob_12_6_369 crossref_primary_10_1242_jcs_113_4_587 crossref_primary_10_1016_j_ymben_2010_08_004 crossref_primary_10_1021_jo0517388 crossref_primary_10_1007_s00792_011_0411_2 crossref_primary_10_1016_j_fertnstert_2014_10_025 crossref_primary_10_1016_j_lwt_2011_09_008 crossref_primary_10_1093_mmy_myx103 crossref_primary_10_1016_j_chembiol_2015_09_006 crossref_primary_10_1016_j_tet_2013_10_050 crossref_primary_10_1016_S1089_8603_02_00104_0 crossref_primary_10_2217_17460794_1_2_197 crossref_primary_10_1074_jbc_M208020200 crossref_primary_10_1016_j_ecoenv_2020_111462 crossref_primary_10_1074_jbc_M111_248823 crossref_primary_10_1016_j_biochi_2004_11_004 crossref_primary_10_1016_j_ymeth_2006_10_002 crossref_primary_10_1097_IN9_0000000000000035 crossref_primary_10_1016_j_tifs_2019_05_010 crossref_primary_10_1016_S0006_2952_00_00403_2 crossref_primary_10_1021_bi200346n crossref_primary_10_3390_v2040826 crossref_primary_10_1016_j_ymeth_2004_10_004 crossref_primary_10_1074_jbc_M800725200 crossref_primary_10_1111_j_1467_7652_2011_00630_x crossref_primary_10_1039_D0OB01505A crossref_primary_10_1074_mcp_RA120_002031 crossref_primary_10_1002_cbic_200500143 crossref_primary_10_1007_s12010_022_04243_6 crossref_primary_10_1002_cbic_201402026 crossref_primary_10_1016_j_bmc_2014_09_034 crossref_primary_10_1016_S0960_9822_01_00077_X crossref_primary_10_1039_C9SC01653H crossref_primary_10_1093_glycob_cwn080 crossref_primary_10_1038_sj_cr_7310065 crossref_primary_10_1271_bbb_70_471 crossref_primary_10_1002_path_4086 crossref_primary_10_1590_S0074_02762010000100012 crossref_primary_10_1038_srep10299 crossref_primary_10_1128_JVI_77_7_4370_4382_2003 crossref_primary_10_1016_j_tetasy_2006_09_010 crossref_primary_10_1034_j_1600_0854_2003_00123_x crossref_primary_10_3390_jof9090919 crossref_primary_10_1128_MMBR_00040_15 crossref_primary_10_1073_pnas_1308421110 crossref_primary_10_2217_fmb_09_88 crossref_primary_10_1007_s10059_010_0159_z crossref_primary_10_1039_C6RA24939F crossref_primary_10_1074_jbc_M303395200 crossref_primary_10_1292_jvms_22_0222 crossref_primary_10_1016_j_tet_2010_07_019 crossref_primary_10_1093_glycob_cwn044 crossref_primary_10_1074_jbc_R000022200 crossref_primary_10_1007_s10482_015_0468_5 crossref_primary_10_1016_S0014_5793_00_01665_3 crossref_primary_10_1046_j_1471_4159_2002_01167_x crossref_primary_10_1007_s10529_013_1183_9 crossref_primary_10_1007_s10719_016_9651_9 crossref_primary_10_1016_S0163_7827_03_00023_7 crossref_primary_10_1073_pnas_0704862104 crossref_primary_10_1084_jem_20071987 crossref_primary_10_1194_jlr_D012807 crossref_primary_10_1002_prot_21479 crossref_primary_10_1074_jbc_M204370200 crossref_primary_10_1002_jnr_23470 crossref_primary_10_1093_glycob_cwi045 crossref_primary_10_7852_ijie_2015_31_2_48 crossref_primary_10_1128_AEM_68_6_2731_2736_2002 crossref_primary_10_1016_j_bmc_2010_03_009 crossref_primary_10_1093_embo_reports_kve162 crossref_primary_10_1093_glycob_cwj099 crossref_primary_10_1093_emboj_19_4_581 crossref_primary_10_1093_glycob_cws070 crossref_primary_10_1016_j_exphem_2007_05_006 crossref_primary_10_1016_j_jsb_2015_02_006 crossref_primary_10_1093_glycob_cwm083 crossref_primary_10_1002_asia_201900203 crossref_primary_10_1007_s00431_002_1136_0 crossref_primary_10_1016_j_virol_2010_05_031 crossref_primary_10_1074_jbc_M203362200 crossref_primary_10_1007_s10482_007_9179_x crossref_primary_10_1007_s11248_009_9299_3 crossref_primary_10_1074_jbc_M004935200 crossref_primary_10_1002_tcr_201900004 crossref_primary_10_1016_j_foodchem_2012_03_086 crossref_primary_10_1016_S0965_1748_00_00121_1 crossref_primary_10_1073_pnas_1111482109 crossref_primary_10_1093_glycob_cwq169 crossref_primary_10_1111_febs_12424 crossref_primary_10_1016_j_ijbiomac_2008_10_012 crossref_primary_10_1007_s00418_003_0521_8 crossref_primary_10_1074_jbc_M401718200 crossref_primary_10_1007_s00418_016_1513_9 crossref_primary_10_1016_j_bbamcr_2011_05_006 crossref_primary_10_1016_j_ijbiomac_2019_03_100 crossref_primary_10_1078_0171_9335_00127 crossref_primary_10_1002_ejoc_200400823 crossref_primary_10_1021_bi301096a crossref_primary_10_1093_glycob_cwp170 crossref_primary_10_1016_j_tet_2013_09_008 crossref_primary_10_1016_S0022_2836_03_00172_4 crossref_primary_10_1016_j_tibs_2024_09_007 crossref_primary_10_1016_j_bbrc_2011_09_100 crossref_primary_10_1186_1472_6750_13_16 crossref_primary_10_1016_j_exppara_2009_12_014 crossref_primary_10_1016_j_bcp_2006_05_016 crossref_primary_10_1074_jbc_M011740200 crossref_primary_10_1016_j_yexcr_2006_09_010 crossref_primary_10_1016_j_jbc_2024_107944 crossref_primary_10_1093_glycob_11_7_565 crossref_primary_10_1590_S1415_47572001000100030 crossref_primary_10_3390_bioengineering10121391 crossref_primary_10_1016_S0040_4039_01_01777_4 crossref_primary_10_1038_nrmicro1087 crossref_primary_10_1016_j_chembiol_2004_07_009 crossref_primary_10_1074_jbc_M403065200 crossref_primary_10_3109_14756366_2016_1142983 crossref_primary_10_1089_ars_2007_1817 crossref_primary_10_1016_j_carres_2008_05_026 crossref_primary_10_1038_nsmb715 crossref_primary_10_4052_tigg_21_131 crossref_primary_10_1073_pnas_0914004107 crossref_primary_10_1111_1744_7917_12885 crossref_primary_10_1007_s10719_011_9356_z crossref_primary_10_1007_s10719_013_9495_5 crossref_primary_10_1016_j_carres_2004_08_007 crossref_primary_10_1016_j_ibmb_2013_01_005 crossref_primary_10_1016_j_exppara_2005_04_002 crossref_primary_10_1007_s11064_015_1650_x crossref_primary_10_1016_j_fgb_2010_06_004 crossref_primary_10_1074_jbc_M109_076075 crossref_primary_10_1016_j_jmb_2007_11_098 crossref_primary_10_1016_S0003_2697_02_00039_8 crossref_primary_10_1016_j_carres_2006_11_012 crossref_primary_10_1016_j_carres_2005_12_005 crossref_primary_10_1080_09583157_2013_838209 crossref_primary_10_1128_JVI_02458_09 crossref_primary_10_1002_chem_201801902 crossref_primary_10_1016_j_yexcr_2008_11_006 crossref_primary_10_1016_S0300_9084_01_01319_0 crossref_primary_10_1046_j_1523_1755_2001_00733_x crossref_primary_10_1371_journal_pgen_1004349 crossref_primary_10_1038_sj_onc_1205525 crossref_primary_10_1074_jbc_M100119200 crossref_primary_10_3390_ijms23137373 crossref_primary_10_1016_j_chmed_2022_06_008 crossref_primary_10_1016_S0300_9084_03_00049_X crossref_primary_10_1038_nchembio0508_269 crossref_primary_10_1590_S0074_02762008000700016 crossref_primary_10_1074_jbc_M312392200 crossref_primary_10_1007_s00018_010_0595_0 crossref_primary_10_1016_j_ijbiomac_2019_07_135 crossref_primary_10_2217_fmb_10_157 crossref_primary_10_1007_s10482_011_9636_4 crossref_primary_10_1093_jb_mvu065 crossref_primary_10_1146_annurev_biochem_73_011303_074043 crossref_primary_10_1093_glycob_cwt106 crossref_primary_10_1016_j_carres_2006_05_011 crossref_primary_10_1074_mcp_M100028_MCP200 crossref_primary_10_1074_jbc_M512769200 crossref_primary_10_1016_S0960_894X_01_00300_6 crossref_primary_10_1099_mic_0_2008_019315_0 crossref_primary_10_1002_pmic_200401071 crossref_primary_10_1002_prot_10206 crossref_primary_10_1074_jbc_275_15_11071 crossref_primary_10_1111_j_1574_6968_2004_tb09637_x crossref_primary_10_1203_01_PDR_0000072327_55955_F7 crossref_primary_10_1016_j_pep_2013_02_004 crossref_primary_10_1074_jbc_M309249200 crossref_primary_10_1186_1471_2164_11_57 crossref_primary_10_1111_j_1574_6968_2006_00093_x crossref_primary_10_1016_S0892_0362_03_00078_3 crossref_primary_10_1016_j_biochi_2010_07_016 crossref_primary_10_1016_j_bbrc_2007_08_057 crossref_primary_10_1074_jbc_M703218200 crossref_primary_10_1007_s10482_010_9437_1 crossref_primary_10_1006_jmbi_2001_4946 crossref_primary_10_1093_glycob_cwl076 crossref_primary_10_1002_chem_201705600 crossref_primary_10_1074_jbc_M006927200 crossref_primary_10_1074_jbc_M302621200 crossref_primary_10_1016_j_semcdb_2014_11_008 crossref_primary_10_7554_eLife_20609 crossref_primary_10_1093_embo_reports_kve089 crossref_primary_10_3390_ph13110366 crossref_primary_10_1016_j_carres_2009_04_028 crossref_primary_10_1034_j_1600_0854_2000_011208_x |
ContentType | Book Review Journal Article |
Copyright | 1999 Elsevier Science B.V. |
Copyright_xml | – notice: 1999 Elsevier Science B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/S0304-4165(99)00171-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 107 |
ExternalDocumentID | 10580131 10_1016_S0304_4165_99_00171_3 S0304416599001713 |
Genre | Research Support, U.S. Gov't, P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM-31265 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH -~X .55 .GJ ABJNI CGR CUY CVF ECM EIF F5P H~9 MVM NPM PKN RIG TWZ UHS X7M Y6R ZGI ~KM 7X8 |
ID | FETCH-LOGICAL-c361t-8bd82a6f9556e9d7523df40bd4ec42733259c8c8547ed15da300d8dc09fd47673 |
IEDL.DBID | AIKHN |
ISSN | 0304-4165 0006-3002 |
IngestDate | Mon Aug 18 11:16:02 EDT 2025 Wed Feb 19 02:33:27 EST 2025 Tue Jul 01 03:48:46 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Fri Feb 23 02:32:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | N-Glycan processing Glycoprotein folding SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis α-Glucosidase RT-PCR, reverse transcriptase-polymerase chain reaction α-Mannosidase Endo α-mannosidase Quality control ER, endoplasmic reticulum |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-8bd82a6f9556e9d7523df40bd4ec42733259c8c8547ed15da300d8dc09fd47673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 10580131 |
PQID | 69320891 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_69320891 pubmed_primary_10580131 crossref_citationtrail_10_1016_S0304_4165_99_00171_3 crossref_primary_10_1016_S0304_4165_99_00171_3 elsevier_sciencedirect_doi_10_1016_S0304_4165_99_00171_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1999-12-06 |
PublicationDateYYYYMMDD | 1999-12-06 |
PublicationDate_xml | – month: 12 year: 1999 text: 1999-12-06 day: 06 |
PublicationDecade | 1990 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | BBA - General Subjects |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 1999 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Moremen, Trimble, Herscovics (BIB2) 1994; 4 Knop, Hauser, Wolf (BIB64) 1996; 12 Goss, Baker, Carver, Dennis (BIB97) 1995; 1 Herscovics, Orlean (BIB4) 1993; 7 Goss, Reid, Bailey, Dennis (BIB98) 1997; 3 Bause, Bieberich, Rolfs, Völker, Schmidt (BIB69) 1993; 217 Bieberich, Treml, Völker, Rolfs, Kalz-Füller, Bause (BIB71) 1997; 246 Bergeron, Brenner, Thomas, Williams (BIB28) 1994; 19 Datema, Romero, Legler, Schwartz (BIB12) 1982; 79 Nilsson, Hoe, Slusarewicz, Rabouille, Watson, Hunte, Watzele, Berger, Warren (BIB93) 1994; 13 Brada, Kerjaschki, Roth (BIB26) 1990; 110 Weng, Spiro (BIB59) 1996; 325 Hughes, Feeney (BIB95) 1986; 158 Rodan, Simons, Trombetta, Helenius (BIB37) 1996; 15 Moremen, Robbins (BIB89) 1991; 115 Chui, Oh-Eda, Liao, Panneerselvam, Lal, Marek, Freeze, Moremen, Fukuda, Marth (BIB100) 1997; 90 Sousa, Parodi (BIB42) 1995; 14 Fukuda (BIB101) 1990; 1 Tremblay, Campbell Dyke, Herscovics (BIB75) 1998; 8 R.G. Spiro, in: J. Rothblatt, P. Novick, T. Stevens (Eds.), Guidebook to the Secretory Pathway, Sambrook and Tooze Publication at Oxford University Press, Oxford, 1994, pp. 188–189. C. Labriola, J.J. Cazzulo, A.J. Parodi, Mol. Biol. Cell 10 (1999) in press. Campbell Dyke, Athanassiadis, Herscovics (BIB77) 1997; 41 Jakob, Burda, Roth, Aebi (BIB65) 1998; 142 Roth, Brada, Lackie, Schweden, Bause (BIB80) 1990; 53 Lipari, Herscovics (BIB84) 1996; 271 Tang, Low, Hong (BIB27) 1997; 73 A. Herscovics, in: B.M. Pinto (Ed.), Comprehensive Natural Products Chemistry, Vol. 3, Elsevier, Amsterdam, 1999, pp. 13–35. Datema, Olofsson, Romero (BIB9) 1987; 33 Misago, Liao, Kudo, Eto, Mattei, Moremen, Fukuda (BIB90) 1995; 92 Yang, Omura, Bonifacino, Weissman (BIB63) 1998; 187 Lal, Pang, Kalelkar, Romero, Herscovics, Moremen (BIB54) 1998; 8 Dairaku, Spiro (BIB52) 1997; 7 Winchester, Fleet (BIB11) 1992; 2 Kalz-Füller, Heidrich-Kaul, Nöthen, Bause, Schwanitz (BIB16) 1996; 34 Romero, Dijkgraaf, Shahinian, Herscovics, Bussey (BIB19) 1997; 7 Hentges, Bause (BIB20) 1997; 378 Karaivanova, Luan, Spiro (BIB48) 1998; 8 Zapun, Darby, Tessier, Michalak, Bergeron, Thomas (BIB34) 1998; 273 Spiro, Zhu, Bhoyroo, Söling (BIB50) 1996; 271 Bischoff, Liscum, Kornfeld (BIB56) 1986; 261 Kumano, Omichi, Hase (BIB106) 1996; 119 Camirand, Heysen, Grondin, Herscovics (BIB72) 1991; 266 Moremen, Touster, Robbins (BIB88) 1991; 266 Colley (BIB91) 1997; 7 Roberts, Klein, Palmantier, Dhume, George, Olden (BIB99) 1998; 22 Spiro, Bhoyroo, Spiro (BIB51) 1997; 272 Howard, Braun, McCarter, Moremen, Liao, Withers (BIB55) 1997; 238 Lal, Schutzbach, Forsee, Neame, Moremen (BIB70) 1994; 269 Roberts, Klein, Palmantier, Dhume, George, Olden (BIB45) 1998; 22 Herscovics, Schneikert, Athanassiadis, Moremen (BIB73) 1994; 269 Lipari, Herscovics (BIB83) 1999; 38 Kalz-Füller, Bieberich, Bause (BIB15) 1995; 231 Kornfeld, Kornfeld (BIB1) 1985; 54 Hubbard, Robbins (BIB8) 1979; 254 Trombetta, Simons, Helenius (BIB21) 1996; 271 Lipari, Gour-Salin, Herscovics (BIB53) 1995; 209 Trudel, Herscovics, Holland (BIB13) 1988; 66 Elliott, Oliver, High (BIB33) 1997; 272 Igdoura, Herscovics, Lal, Moremen, Morales, Hermo (BIB81) 1999; 78 Parodi (BIB31) 1998; 31 Tulsiani, Touster (BIB102) 1985; 260 Bieberich, Bause (BIB79) 1995; 233 Monis, Bonay, Hughes (BIB103) 1987; 168 Flura, Brada, Ziak, Roth (BIB22) 1997; 7 Henrissat (BIB17) 1991; 280 Martiniuk, Ellenbogen, Hirschhorn (BIB24) 1985; 260 Herscovics (BIB5) 1999; 1426 Elbein (BIB96) 1991; 5 Oliver, van der Wal, Bulleid, High (BIB32) 1997; 275 Williams (BIB30) 1995; 73 Nilsson, Slusarewicz, Hoe, Warren (BIB92) 1993; 330 Alonso, Santa-Cecilia, Calvo (BIB14) 1993; 215 Hebert, Foellmer, Helenius (BIB36) 1995; 81 Daniel, Winchester, Warren (BIB3) 1994; 4 Arendt, Ostergaard (BIB23) 1997; 272 Su, Stoller, Rocco, Zemsky, Green (BIB62) 1993; 268 Vallée, Lipari, Lal, Herscovics, Moremen, Howell (BIB86) 1998; 25 Schneikert, Herscovics (BIB74) 1994; 4 Lucocq, Brada, Roth (BIB25) 1986; 102 Bonay, Hughes (BIB104) 1991; 197 Rizzolo, Kornfeld (BIB57) 1988; 263 Tulsiani, Touster (BIB68) 1988; 263 Hammond, Helenius (BIB29) 1995; 7 Weng, Spiro (BIB47) 1996; 6 Bonay, Roth, Hughes (BIB105) 1992; 205 Weng, Spiro (BIB58) 1993; 268 Jiang, Sheraton, Ram, Dijkgraaf, Klis, Bussey (BIB18) 1996; 178 Nilsson, Rabouille, Hui, Watson, Warren (BIB94) 1996; 109 Velasco, Hendricks, Moremen, Tulsiani, Touster, Farquhar (BIB78) 1993; 122 Zapun, Petrescu, Rudd, Dwek, Thomas, Bergeron (BIB38) 1997; 88 Tabas, Kornfeld (BIB67) 1979; 254 Schneikert, Herscovics (BIB82) 1995; 270 Van der Wal, Oliver, High (BIB35) 1998; 256 Cacan, Duvet, Kmiecik, Labiau, Mir, Verbert (BIB66) 1998; 80 Van Leeuwen, Kearse (BIB40) 1997; 272 Tulsiani, Opheim, Touster (BIB87) 1977; 252 Kornfeld, Li, Tabas (BIB7) 1978; 253 Mehta, Zitzmann, Rudd, Block, Dwek (BIB44) 1998; 430 Hiraizumi, Spohr, Spiro (BIB49) 1993; 268 Bause, Breuer, Schweden, Roeser, Geyer (BIB76) 1992; 208 Block, Lu, Mehta, Blumberg, Tennant, Ebling, Korba, Lansky, Jacob, Dwek (BIB43) 1998; 4 Bischoff, Kornfeld (BIB107) 1986; 261 Dole, Lipari, Herscovics, Howell (BIB85) 1997; 120 Elbein (BIB10) 1991; 5 Bischoff, Moremen, Lodish (BIB61) 1990; 265 Bischoff, Kornfeld (BIB60) 1983; 258 Helenius, Trombetta, Hebert, Simons (BIB39) 1997; 7 |
References_xml | – volume: 66 start-page: 1119 year: 1988 end-page: 1125 ident: BIB13 publication-title: Biochem. Cell Biol. – volume: 19 start-page: 124 year: 1994 end-page: 128 ident: BIB28 publication-title: Trends Biochem. Sci. – volume: 168 start-page: 287 year: 1987 end-page: 294 ident: BIB103 publication-title: Eur. J. Biochem. – volume: 261 start-page: 4758 year: 1986 end-page: 4765 ident: BIB107 publication-title: J. Biol. Chem. – volume: 4 start-page: 113 year: 1994 end-page: 126 ident: BIB2 publication-title: Glycobiology – volume: 266 start-page: 15120 year: 1991 end-page: 15127 ident: BIB72 publication-title: J. Biol. Chem. – volume: 271 start-page: 27615 year: 1996 end-page: 27622 ident: BIB84 publication-title: J. Biol. Chem. – volume: 272 start-page: 13117 year: 1997 end-page: 13125 ident: BIB23 publication-title: J. Biol. Chem. – volume: 115 start-page: 1521 year: 1991 end-page: 1534 ident: BIB89 publication-title: J. Cell Biol. – volume: 81 start-page: 425 year: 1995 end-page: 433 ident: BIB36 publication-title: Cell – volume: 7 start-page: 540 year: 1993 end-page: 550 ident: BIB4 publication-title: FASEB J. – reference: C. Labriola, J.J. Cazzulo, A.J. Parodi, Mol. Biol. Cell 10 (1999) in press. – volume: 8 start-page: 981 year: 1998 end-page: 995 ident: BIB54 publication-title: Glycobiology – volume: 272 start-page: 13849 year: 1997 end-page: 13855 ident: BIB33 publication-title: J. Biol. Chem. – volume: 142 start-page: 1223 year: 1998 end-page: 1233 ident: BIB65 publication-title: J. Cell Biol. – volume: 268 start-page: 25656 year: 1993 end-page: 25663 ident: BIB58 publication-title: J. Biol. Chem. – volume: 122 start-page: 39 year: 1993 end-page: 51 ident: BIB78 publication-title: J. Cell Biol. – volume: 102 start-page: 2137 year: 1986 end-page: 2146 ident: BIB25 publication-title: J. Cell Biol. – volume: 38 start-page: 1111 year: 1999 end-page: 1118 ident: BIB83 publication-title: Biochemistry – volume: 6 start-page: 861 year: 1996 end-page: 868 ident: BIB47 publication-title: Glycobiology – volume: 22 start-page: 455 year: 1998 end-page: 462 ident: BIB45 publication-title: Cancer Detect. Prev. – volume: 209 start-page: 322 year: 1995 end-page: 326 ident: BIB53 publication-title: Biochem. Biophys. Res. Commun. – volume: 34 start-page: 442 year: 1996 end-page: 443 ident: BIB16 publication-title: Genomics – volume: 41 start-page: 155 year: 1997 end-page: 159 ident: BIB77 publication-title: Genomics – volume: 263 start-page: 5408 year: 1988 end-page: 5417 ident: BIB68 publication-title: J. Biol. Chem. – volume: 158 start-page: 227 year: 1986 end-page: 237 ident: BIB95 publication-title: Eur. J. Biochem. – volume: 215 start-page: 37 year: 1993 end-page: 42 ident: BIB14 publication-title: Eur. J. Biochem. – volume: 1 start-page: 9 year: 1990 end-page: 15 ident: BIB101 publication-title: Glycobiology – volume: 7 start-page: 997 year: 1997 end-page: 1004 ident: BIB19 publication-title: Glycobiology – volume: 7 start-page: 1 year: 1997 end-page: 13 ident: BIB91 publication-title: Glycobiology – volume: 272 start-page: 4179 year: 1997 end-page: 4186 ident: BIB40 publication-title: J. Biol. Chem. – volume: 263 start-page: 9520 year: 1988 end-page: 9525 ident: BIB57 publication-title: J. Biol. Chem. – volume: 4 start-page: 610 year: 1998 end-page: 614 ident: BIB43 publication-title: Nature Med. – volume: 7 start-page: 579 year: 1997 end-page: 586 ident: BIB52 publication-title: Glycobiology – volume: 3 start-page: 1077 year: 1997 end-page: 1086 ident: BIB98 publication-title: Clin. Cancer Res. – volume: 265 start-page: 17110 year: 1990 end-page: 17117 ident: BIB61 publication-title: J. Biol. Chem. – volume: 269 start-page: 9872 year: 1994 end-page: 9881 ident: BIB70 publication-title: J. Biol. Chem. – volume: 253 start-page: 7771 year: 1978 end-page: 7778 ident: BIB7 publication-title: J. Biol. Chem. – volume: 53 start-page: 131 year: 1990 end-page: 141 ident: BIB80 publication-title: Eur. J. Cell Biol. – volume: 231 start-page: 344 year: 1995 end-page: 351 ident: BIB15 publication-title: Eur. J. Biochem. – volume: 33 start-page: 221 year: 1987 end-page: 286 ident: BIB9 publication-title: Pharmacol. Ther. – volume: 7 start-page: 617 year: 1997 end-page: 624 ident: BIB22 publication-title: Glycobiology – volume: 31 start-page: 601 year: 1998 end-page: 614 ident: BIB31 publication-title: Braz. J. Med. Biol. Res. – volume: 14 start-page: 4196 year: 1995 end-page: 4203 ident: BIB42 publication-title: EMBO J. – volume: 73 start-page: 123 year: 1995 end-page: 132 ident: BIB30 publication-title: Biochem. Cell Biol. – volume: 205 start-page: 399 year: 1992 end-page: 407 ident: BIB105 publication-title: Eur. J. Biochem. – volume: 73 start-page: 98 year: 1997 end-page: 104 ident: BIB27 publication-title: Eur. J. Cell Biol. – volume: 109 start-page: 1975 year: 1996 end-page: 1989 ident: BIB94 publication-title: J. Cell Sci. – volume: 5 start-page: 3055 year: 1991 end-page: 3063 ident: BIB96 publication-title: FASEB J. – reference: R.G. Spiro, in: J. Rothblatt, P. Novick, T. Stevens (Eds.), Guidebook to the Secretory Pathway, Sambrook and Tooze Publication at Oxford University Press, Oxford, 1994, pp. 188–189. – volume: 12 start-page: 1229 year: 1996 end-page: 1238 ident: BIB64 publication-title: Yeast – volume: 80 start-page: 59 year: 1998 end-page: 68 ident: BIB66 publication-title: Biochimie – volume: 1 start-page: 935 year: 1995 end-page: 944 ident: BIB97 publication-title: Clin. Cancer Res. – volume: 197 start-page: 229 year: 1991 end-page: 238 ident: BIB104 publication-title: Eur. J. Biochem. – volume: 25 start-page: 143 year: 1998 ident: BIB86 publication-title: Am. Crystallogr. Assoc. Ser. 2 – volume: 79 start-page: 6787 year: 1982 end-page: 6791 ident: BIB12 publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 6921 year: 1996 end-page: 6930 ident: BIB37 publication-title: EMBO J. – volume: 233 start-page: 644 year: 1995 end-page: 649 ident: BIB79 publication-title: Eur. J. Biochem. – volume: 92 start-page: 11766 year: 1995 end-page: 11770 ident: BIB90 publication-title: Proc. Natl. Acad. Sci. USA – volume: 325 start-page: 113 year: 1996 end-page: 123 ident: BIB59 publication-title: Arch. Biochem. Biophys. – volume: 217 start-page: 535 year: 1993 end-page: 540 ident: BIB69 publication-title: Eur. J. Biochem. – volume: 178 start-page: 1162 year: 1996 end-page: 1171 ident: BIB18 publication-title: J. Bacteriol. – volume: 7 start-page: 193 year: 1997 end-page: 200 ident: BIB39 publication-title: Trends Cell Biol. – volume: 22 start-page: 455 year: 1998 end-page: 462 ident: BIB99 publication-title: Cancer Detect. Prev. – volume: 258 start-page: 7907 year: 1983 end-page: 7910 ident: BIB60 publication-title: J. Biol. Chem. – volume: 88 start-page: 29 year: 1997 end-page: 38 ident: BIB38 publication-title: Cell – volume: 261 start-page: 4766 year: 1986 end-page: 4774 ident: BIB56 publication-title: J. Biol. Chem. – volume: 4 start-page: 551 year: 1994 end-page: 566 ident: BIB3 publication-title: Glycobiology – volume: 271 start-page: 11588 year: 1996 end-page: 11594 ident: BIB50 publication-title: J. Biol. Chem. – volume: 90 start-page: 157 year: 1997 end-page: 167 ident: BIB100 publication-title: Cell – volume: 260 start-page: 13081 year: 1985 end-page: 13087 ident: BIB102 publication-title: J. Biol. Chem. – volume: 54 start-page: 631 year: 1985 end-page: 664 ident: BIB1 publication-title: Annu. Rev. Biochem. – volume: 430 start-page: 17 year: 1998 end-page: 22 ident: BIB44 publication-title: FEBS Lett. – reference: A. Herscovics, in: B.M. Pinto (Ed.), Comprehensive Natural Products Chemistry, Vol. 3, Elsevier, Amsterdam, 1999, pp. 13–35. – volume: 2 start-page: 199 year: 1992 end-page: 210 ident: BIB11 publication-title: Glycobiology – volume: 330 start-page: 1 year: 1993 end-page: 4 ident: BIB92 publication-title: FEBS Lett. – volume: 273 start-page: 6009 year: 1998 end-page: 6012 ident: BIB34 publication-title: J. Biol. Chem. – volume: 4 start-page: 445 year: 1994 end-page: 450 ident: BIB74 publication-title: Glycobiology – volume: 272 start-page: 29356 year: 1997 end-page: 29363 ident: BIB51 publication-title: J. Biol. Chem. – volume: 256 start-page: 51 year: 1998 end-page: 59 ident: BIB35 publication-title: Eur. J. Biochem. – volume: 269 start-page: 9864 year: 1994 end-page: 9871 ident: BIB73 publication-title: J. Biol. Chem. – volume: 5 start-page: 3055 year: 1991 end-page: 3063 ident: BIB10 publication-title: FASEB J. – volume: 187 start-page: 835 year: 1998 end-page: 846 ident: BIB63 publication-title: J. Exp. Med. – volume: 1426 start-page: 275 year: 1999 end-page: 285 ident: BIB5 publication-title: Biochim. Biophys. Acta – volume: 8 start-page: 585 year: 1998 end-page: 595 ident: BIB75 publication-title: Glycobiology – volume: 252 start-page: 3227 year: 1977 end-page: 3233 ident: BIB87 publication-title: J. Biol. Chem. – volume: 378 start-page: 1031 year: 1997 end-page: 1038 ident: BIB20 publication-title: Biol. Chem. – volume: 7 start-page: 523 year: 1995 end-page: 529 ident: BIB29 publication-title: Curr. Opin. Cell Biol. – volume: 8 start-page: 725 year: 1998 end-page: 730 ident: BIB48 publication-title: Glycobiology – volume: 13 start-page: 562 year: 1994 end-page: 574 ident: BIB93 publication-title: EMBO J. – volume: 254 start-page: 4568 year: 1979 end-page: 4576 ident: BIB8 publication-title: J. Biol. Chem. – volume: 266 start-page: 16876 year: 1991 end-page: 16885 ident: BIB88 publication-title: J. Biol. Chem. – volume: 238 start-page: 896 year: 1997 end-page: 898 ident: BIB55 publication-title: Biochem. Biophys. Res. Commun. – volume: 254 start-page: 11655 year: 1979 end-page: 11663 ident: BIB67 publication-title: J. Biol. Chem. – volume: 208 start-page: 451 year: 1992 end-page: 457 ident: BIB76 publication-title: Eur. J. Biochem. – volume: 78 start-page: 441 year: 1999 end-page: 452 ident: BIB81 publication-title: Eur. J. Cell Biol. – volume: 270 start-page: 17736 year: 1995 end-page: 17740 ident: BIB82 publication-title: J. Biol. Chem. – volume: 260 start-page: 1238 year: 1985 end-page: 1242 ident: BIB24 publication-title: J. Biol. Chem. – volume: 119 start-page: 991 year: 1996 end-page: 997 ident: BIB106 publication-title: J. Biochem. – volume: 275 start-page: 86 year: 1997 end-page: 88 ident: BIB32 publication-title: Science – volume: 268 start-page: 9927 year: 1993 end-page: 9935 ident: BIB49 publication-title: J. Biol. Chem. – volume: 120 start-page: 69 year: 1997 end-page: 72 ident: BIB85 publication-title: J. Struct. Biol. – volume: 246 start-page: 681 year: 1997 end-page: 689 ident: BIB71 publication-title: Eur. J. Biochem. – volume: 280 start-page: 309 year: 1991 end-page: 316 ident: BIB17 publication-title: Biochem. J. – volume: 268 start-page: 14301 year: 1993 end-page: 14309 ident: BIB62 publication-title: J. Biol. Chem. – volume: 271 start-page: 27509 year: 1996 end-page: 27516 ident: BIB21 publication-title: J. Biol. Chem. – volume: 110 start-page: 309 year: 1990 end-page: 318 ident: BIB26 publication-title: J. Cell Biol. |
SSID | ssj0000595 ssj0025309 |
Score | 1.2919933 |
Snippet | Processing glycosidases play an important role in
N-glycan biosynthesis in mammalian cells by trimming Glc
3Man
9GlcNAc
2 and thus providing the substrates for... Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 96 |
SubjectTerms | alpha-Glucosidases - metabolism alpha-Mannosidase Animals Endo α-mannosidase Endoplasmic Reticulum - enzymology Glycoprotein folding Glycoproteins - biosynthesis Glycoside Hydrolases - metabolism Golgi Apparatus - enzymology Humans Mannosidases - metabolism N-Glycan processing Quality control α-Glucosidase α-Mannosidase |
Title | Importance of glycosidases in mammalian glycoprotein biosynthesis |
URI | https://dx.doi.org/10.1016/S0304-4165(99)00171-3 https://www.ncbi.nlm.nih.gov/pubmed/10580131 https://www.proquest.com/docview/69320891 |
Volume | 1473 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9wwDCbyQNF2StPXNW3qoUM7KGdbD0tjcEhw6QEZ2gbNJsiSHBjI2UF9GW7Jbw8l27l2CAJ0MkCbskzR5CeJIgG-eCELKWhFssoaggjcE2O9IwbdgZEl_l5ljLY4F_ML9v2SX27BbDwLE8IqB9vf2_RorQfKdJDm9Kaupz_Dph7CCY72NCR9oduwm1MlULV3j88W8_ONQeax-Ep4ngSGzUGevpFI_KrUt9gOoY-5qMcgaHRFp3vwMhxPSPo1_Vew5Zt9eNZXlFzvw_PZWMDtNRyfLSO4xk9K2iq5ul7bFnUP3VaX1E2yNMtlXOTo78SEDUgu67ZbNwgLu7p7AxenJ79mczJUTCCWimxFZOlkbkSlOBdeuQJnma5iaemYtwyBCsXJjpVWclZ4l3FnaJo66WyqKscKUdC3sNO0jX8PSc5NKXjJMpdbZqUxlXJSIN6TwlVV7ifARiFpO6QTD1UtrvUmbgxlq4NstVI6ylbTCRw9sN30-TSeYpDjCOh_FEOjzX-K9fM4YhpFH3ZCTOPb204LRK2pVNkE3vUD-VdfuAwpiD78_2sP4EXM7RBiXsRH2Fn9ufWfELmsykPYPrrLDgf9DNfFj9-Le9jd55k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5Rqgo4UfpggZYcemgPZpON7dhHtCpaKOVSkLhZjh9VJDZBZDnshd_O2EnYckBIvTqxE4_n8dmeB8A3x0UheO5J5o0miMAd0cZZotEcaFGieJXR2-KCz67o2TW7XoPpEAsT3Cp73d_p9Kit-5ZxT83xbVWN_4RLPYQTDPVpSPqSv4G3FMU3SOfRw8rPA_ED664SKAmvr8J4uiFi43cpf8RRSP6SgXoJgEZDdLINWyE4IelO9N_Dmqt34F1XT3K5AxvToXzbBzg-nUdojRNKGp_8vVmaBjkPjVabVHUy1_N5POLonsR0DdhcVk27rBEUtlX7Ea5Ofl5OZ6Svl0BMzrMFEaUVE829ZIw7aQvcY1pP09JSZyjClBy3OkYYwWjhbMasztPUCmtS6S0teJF_gvW6qd0uJBOmS85KmtmJoUZo7aUVHNGe4Nb7iRsBHYikTJ9MPNS0uFErrzGkrQq0VVKqSFuVj-Doqdttl03jtQ5iWAH1jC0UavzXuh4OK6aQ9OEeRNeuuW8VR8yaCpmN4HO3kP_8CxMhAdHe_3_2EDZml7_P1fnpxa992IxZHoL3Cz-A9cXdvfuCGGZRfo08-ghyYea6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Importance+of+glycosidases+in+mammalian+glycoprotein+biosynthesis&rft.jtitle=BBA+-+General+Subjects&rft.au=Herscovics%2C+Annette&rft.date=1999-12-06&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1473&rft.issue=1&rft.spage=96&rft.epage=107&rft_id=info:doi/10.1016%2FS0304-4165%2899%2900171-3&rft.externalDocID=S0304416599001713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |