Merging Observed and Self-Reported Behaviour in Agent-Based Simulation: A Case Study on Photovoltaic Adoption
Designing and evaluating energy policies is a difficult challenge because the energy sector is a complex system that cannot be adequately understood without using models merging economic, social and individual perspectives. Appropriate models allow policy makers to assess the impact of policy measur...
Saved in:
Published in | Applied sciences Vol. 9; no. 10; p. 2098 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app9102098 |
Cover
Abstract | Designing and evaluating energy policies is a difficult challenge because the energy sector is a complex system that cannot be adequately understood without using models merging economic, social and individual perspectives. Appropriate models allow policy makers to assess the impact of policy measures, satisfy strategic objectives and develop sustainable policies. Often the implementation of a policy cannot be directly enforced by governments, but falls back to many stakeholders, such as private citizens and enterprises. We propose to integrate two basic cornerstones to devise realistic models: the self-reported behaviour, derived from surveys, and the observed behaviour, from historical data. The self-reported behaviour enables the identification of drivers and barriers pushing or limiting people in their decision making process, while the observed behaviour is used to tune these drivers/barriers in a model. We test our methodology on a case-study: the adoption of photovoltaic panels among private citizens in the Emilia–Romagna region, Italy. We propose an agent-based model devised using self-reported data and then empirically tuned using historical data. The results reveal that our model can predict with great accuracy the photovoltaic (PV) adoption rate and thus support the energy policy-making process. |
---|---|
AbstractList | Designing and evaluating energy policies is a difficult challenge because the energy sector is a complex system that cannot be adequately understood without using models merging economic, social and individual perspectives. Appropriate models allow policy makers to assess the impact of policy measures, satisfy strategic objectives and develop sustainable policies. Often the implementation of a policy cannot be directly enforced by governments, but falls back to many stakeholders, such as private citizens and enterprises. We propose to integrate two basic cornerstones to devise realistic models: the self-reported behaviour, derived from surveys, and the observed behaviour, from historical data. The self-reported behaviour enables the identification of drivers and barriers pushing or limiting people in their decision making process, while the observed behaviour is used to tune these drivers/barriers in a model. We test our methodology on a case-study: the adoption of photovoltaic panels among private citizens in the Emilia–Romagna region, Italy. We propose an agent-based model devised using self-reported data and then empirically tuned using historical data. The results reveal that our model can predict with great accuracy the photovoltaic (PV) adoption rate and thus support the energy policy-making process. Designing and evaluating energy policies is a difficult challenge because the energy sector is a complex system that cannot be adequately understood without using models merging economic, social and individual perspectives. Appropriate models allow policy makers to assess the impact of policy measures, satisfy strategic objectives and develop sustainable policies. Often the implementation of a policy cannot be directly enforced by governments, but falls back to many stakeholders, such as private citizens and enterprises. We propose to integrate two basic cornerstones to devise realistic models: the self-reported behaviour, derived from surveys, and the observed behaviour, from historical data. The self-reported behaviour enables the identification of drivers and barriers pushing or limiting people in their decision making process, while the observed behaviour is used to tune these drivers/barriers in a model. We test our methodology on a case-study: the adoption of photovoltaic panels among private citizens in the Emilia−Romagna region, Italy. We propose an agent-based model devised using self-reported data and then empirically tuned using historical data. The results reveal that our model can predict with great accuracy the photovoltaic (PV) adoption rate and thus support the energy policy-making process. The path to achieve such a goal passes through an increase up to 20% of the share of renewable energy sources in final energy consumption and a 20% rise in energy efficiency. [...]the decision process of involved agents (i.e., private citizens) is deeply influenced by non-economical motivations, such as social influence, peer pressure, bandwagon effects, lack or wealth of knowledge, risk aversion, etc. [...]Section 8 concludes the paper, summarizing the obtained results and suggesting future research directions. 2. Related Work The adoption of renewable energy sources, such as photovoltaic panels, can be framed as an innovation diffusion problem, an issue that has been the subject of many research works. |
Author | Milano, Michela Borghesi, Andrea |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0002-2298-2944 surname: Borghesi fullname: Borghesi, Andrea – sequence: 2 givenname: Michela surname: Milano fullname: Milano, Michela |
BookMark | eNptkU9rGzEQxUVIIW6aSz6BILfCptJq16vtzTH9E0hIiJOzGGlHtsxa2mplQ759ZLu0pWQuGp5-eiPefCSnPngk5JKzayFa9gWGoeWsZK08IZOSNdNCVLw5_ac_IxfjuGa5Wi4kZxOyuce4dH5JH_SIcYcdBd_RBfa2eMIhxJSVG1zBzoVtpM7T2RJ9Km5gzBcLt9n2kFzwX-mMzrNGF2nbvdLg6eMqpLALfQJn6KwLwx77RD5Y6Ee8-H2ek5fv357nP4u7hx-389ldYcSUp0JqA2CwrqxAzRGZLgUYYypdcstLwVtbcslraMRUYwdGQmOkbKYgNeNQi3Nye_TtAqzVEN0G4qsK4NRBCHGpICZnelRYSStMK1tT11WDUqOUdd1UWlhts2P2ujp6DTH82uKY1DpH4fP3VSkEr6q6FSxTn4-UiWEcI9o_UzlT--2ov9vJMPsPNi4dckwRXP_ekzeB9JRd |
CitedBy_id | crossref_primary_10_3390_en16010557 crossref_primary_10_1016_j_renene_2021_01_128 crossref_primary_10_3390_en12132460 crossref_primary_10_1016_j_erss_2021_102339 crossref_primary_10_3390_app10155329 crossref_primary_10_1016_j_jclepro_2022_132793 |
Cites_doi | 10.1093/jeg/lbu036 10.1016/j.apenergy.2018.09.176 10.1287/mnsc.36.9.1057 10.1007/s10287-007-0046-z 10.1186/s42162-018-0012-8 10.1016/j.enconman.2018.12.096 10.1007/s10458-016-9326-8 10.1038/30918 10.1016/S0040-1625(00)00076-7 10.1016/j.enpol.2013.11.004 10.1016/j.rser.2014.08.020 10.1016/j.techfore.2008.03.024 10.1016/S0306-4603(02)00300-3 10.1126/science.220.4598.671 10.1115/1.4042343 10.1007/s10462-017-9577-z 10.1007/978-3-319-24309-2_11 10.4135/9781412983259 10.1146/annurev.soc.28.110601.141117 10.2307/2297045 10.1088/1748-9326/9/7/074009 10.1073/pnas.200327197 10.1287/orsc.8.3.289 10.1016/j.renene.2014.10.007 10.1016/j.enpol.2017.02.021 10.1007/978-1-4419-8462-3 10.1145/1367497.1367620 10.1016/j.enpol.2004.12.022 10.1007/s10100-011-0210-y 10.1073/pnas.0503018102 10.1007/s11403-012-0087-4 10.1089/brain.2011.0038 10.1016/j.envsoft.2015.04.014 10.7148/2013-0032 10.1016/j.rser.2011.01.007 10.1016/j.simpat.2011.07.005 10.1016/S0301-4215(00)00041-0 10.1109/ICRERA.2014.7016446 10.1016/j.enpol.2017.07.019 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app9102098 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_e48f3c989c5547e8be885574b3fbf76a 10_3390_app9102098 |
GroupedDBID | .4S 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-8bcaace54f3eb1ee0b23accc4b21f12319f21815a736bedac8a7c8876a8b01a53 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:29:12 EDT 2025 Mon Jun 30 11:19:49 EDT 2025 Tue Jul 01 03:00:49 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-8bcaace54f3eb1ee0b23accc4b21f12319f21815a736bedac8a7c8876a8b01a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2298-2944 |
OpenAccessLink | https://doaj.org/article/e48f3c989c5547e8be885574b3fbf76a |
PQID | 2331445930 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e48f3c989c5547e8be885574b3fbf76a proquest_journals_2331445930 crossref_primary_10_3390_app9102098 crossref_citationtrail_10_3390_app9102098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Vasseur (ref_11) 2015; 41 ref_50 Goldberg (ref_61) 1991; 1 ref_55 Zhao (ref_27) 2011; 19 ref_53 Macy (ref_15) 2002; 28 ref_51 Pegoretti (ref_18) 2012; 7 Zhang (ref_25) 2016; 30 Rogers (ref_52) 2002; 27 ref_16 Amaral (ref_56) 2000; 97 ref_60 Jacobsson (ref_23) 2000; 28 Loulou (ref_6) 2008; 5 ref_24 Davidson (ref_31) 2014; 9 ref_20 Lee (ref_35) 2014; 66 ref_29 Novak (ref_58) 2005; 102 Chatterjee (ref_22) 1990; 36 Sommerfeld (ref_12) 2017; 105 ref_36 Kazhamiaka (ref_14) 2017; 109 ref_33 (ref_4) 2000; 65 ref_32 ref_30 Abrahamson (ref_21) 1997; 8 Graziano (ref_9) 2014; 15 Rai (ref_34) 2015; 70 Palmer (ref_28) 2013; 106 Sinitskaya (ref_38) 2019; 141 Korcaj (ref_10) 2015; 75 Jager (ref_13) 2006; 34 Watts (ref_57) 1998; 393 Dasgupta (ref_3) 1979; 46 Solangi (ref_5) 2011; 15 ref_47 Adepetu (ref_37) 2018; 1 ref_46 ref_45 Telesford (ref_54) 2011; 1 ref_44 ref_43 Lee (ref_8) 2018; 232 ref_42 ref_41 ref_40 ref_1 Schwarz (ref_17) 2009; 76 Kiesling (ref_19) 2012; 20 ref_2 ref_49 ref_48 Alyousef (ref_26) 2017; 32 Kirkpatrick (ref_59) 1983; 220 ref_7 Lee (ref_39) 2019; 183 |
References_xml | – volume: 15 start-page: 815 year: 2014 ident: ref_9 article-title: Spatial Patterns of Solar Photovoltaic System Adoption: The Influence of Neighbors and the Built Environment publication-title: J. Econ. Geogr. doi: 10.1093/jeg/lbu036 – ident: ref_49 – volume: 232 start-page: 640 year: 2018 ident: ref_8 article-title: A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.176 – ident: ref_32 – volume: 36 start-page: 1057 year: 1990 ident: ref_22 article-title: The innovation diffusion process in a heterogeneous population: A micromodeling approach publication-title: Manag. Sci. doi: 10.1287/mnsc.36.9.1057 – volume: 5 start-page: 7 year: 2008 ident: ref_6 article-title: ETSAP-TIAM: The TIMES integrated assessment model Part I: Model structure publication-title: Comput. Manag. Sci. doi: 10.1007/s10287-007-0046-z – ident: ref_51 – volume: 1 start-page: 6 year: 2018 ident: ref_37 article-title: Comparing solar photovoltaic and battery adoption in Ontario and Germany: An agent-based approach publication-title: Energy Inform. doi: 10.1186/s42162-018-0012-8 – volume: 183 start-page: 266 year: 2019 ident: ref_39 article-title: Hybrid agent-based modeling of rooftop solar photovoltaic adoption by integrating the geographic information system and data mining technique publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.12.096 – volume: 30 start-page: 1023 year: 2016 ident: ref_25 article-title: Data-driven agent-based modeling, with application to rooftop solar adoption publication-title: Auton. Agents Multi-Agent Syst. doi: 10.1007/s10458-016-9326-8 – volume: 393 start-page: 440 year: 1998 ident: ref_57 article-title: Collective dynamics of ‘small-world’ networks publication-title: Nature doi: 10.1038/30918 – volume: 65 start-page: 125 year: 2000 ident: ref_4 article-title: Creating Incentives for Environmentally Enhancing Technological Change: Lessons From 30 Years of U.S. Energy Technology Policy publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/S0040-1625(00)00076-7 – volume: 32 start-page: 211 year: 2017 ident: ref_26 article-title: Analysis and Model-based Predictions of Solar PV and Battery Adoption in Germany: An Agent-based Approach publication-title: Comput. Sci. – volume: 66 start-page: 267 year: 2014 ident: ref_35 article-title: An analysis of UK policies for domestic energy reduction using an agent based tool publication-title: Energy Policy doi: 10.1016/j.enpol.2013.11.004 – volume: 41 start-page: 483 year: 2015 ident: ref_11 article-title: The adoption of PV in the Netherlands: A statistical analysis of adoption factors publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.08.020 – volume: 76 start-page: 497 year: 2009 ident: ref_17 article-title: Agent-based modeling of the diffusion of environmental innovations—An empirical approach publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2008.03.024 – volume: 27 start-page: 989 year: 2002 ident: ref_52 article-title: Diffusion of preventive innovations publication-title: Addict. Behav. doi: 10.1016/S0306-4603(02)00300-3 – ident: ref_1 – volume: 220 start-page: 671 year: 1983 ident: ref_59 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 141 start-page: 041702 year: 2019 ident: ref_38 article-title: Examining the Influence of Solar Panel Installers on Design Innovation and Market Penetration publication-title: J. Mech. Des. doi: 10.1115/1.4042343 – ident: ref_20 doi: 10.1007/s10462-017-9577-z – ident: ref_43 doi: 10.1007/978-3-319-24309-2_11 – ident: ref_16 doi: 10.4135/9781412983259 – volume: 1 start-page: 69 year: 1991 ident: ref_61 article-title: A comparative analysis of selection schemes used in genetic algorithms publication-title: Found. Genet. Algorithms – ident: ref_48 – volume: 28 start-page: 143 year: 2002 ident: ref_15 article-title: From factors to factors: Computational sociology and agent-based modeling publication-title: Annu. Rev. Sociol. doi: 10.1146/annurev.soc.28.110601.141117 – volume: 46 start-page: 185 year: 1979 ident: ref_3 article-title: The Implementation of Social Choice Rules: Some General Results on Incentive Compatibility publication-title: Rev. Econ. Stud. doi: 10.2307/2297045 – ident: ref_41 – volume: 9 start-page: 074009 year: 2014 ident: ref_31 article-title: Modeling photovoltaic diffusion: An analysis of geospatial datasets publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/7/074009 – volume: 97 start-page: 11149 year: 2000 ident: ref_56 article-title: Classes of small-world networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.200327197 – volume: 8 start-page: 289 year: 1997 ident: ref_21 article-title: Social network effects on the extent of innovation diffusion: A computer simulation publication-title: Organ. Sci. doi: 10.1287/orsc.8.3.289 – ident: ref_45 – volume: 75 start-page: 407 year: 2015 ident: ref_10 article-title: Intentions to adopt photovoltaic systems depend on homeowners’ expected personal gains and behavior of peers publication-title: Renew. Energy doi: 10.1016/j.renene.2014.10.007 – volume: 105 start-page: 10 year: 2017 ident: ref_12 article-title: Residential consumers’ experiences in the adoption and use of solar PV publication-title: Energy Policy doi: 10.1016/j.enpol.2017.02.021 – ident: ref_7 – ident: ref_53 doi: 10.1007/978-1-4419-8462-3 – ident: ref_30 – ident: ref_24 – ident: ref_55 doi: 10.1145/1367497.1367620 – ident: ref_47 – volume: 34 start-page: 1935 year: 2006 ident: ref_13 article-title: Stimulating the diffusion of photovoltaic systems: A behavioural perspective publication-title: Energy Policy doi: 10.1016/j.enpol.2004.12.022 – ident: ref_40 – volume: 20 start-page: 183 year: 2012 ident: ref_19 article-title: Agent-based simulation of innovation diffusion: A review publication-title: Central Eur. J. Oper. Res. doi: 10.1007/s10100-011-0210-y – ident: ref_44 – volume: 102 start-page: 11623 year: 2005 ident: ref_58 article-title: Geographic routing in social networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0503018102 – volume: 7 start-page: 145 year: 2012 ident: ref_18 article-title: An agent-based model of innovation diffusion: network structure and coexistence under different information regimes publication-title: J. Econ. Interact. Coord. doi: 10.1007/s11403-012-0087-4 – volume: 1 start-page: 367 year: 2011 ident: ref_54 article-title: The ubiquity of small-world networks publication-title: Brain Connect. doi: 10.1089/brain.2011.0038 – volume: 70 start-page: 163 year: 2015 ident: ref_34 article-title: Agent-based Modeling of Energy Technology Adoption publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.04.014 – ident: ref_42 doi: 10.7148/2013-0032 – ident: ref_50 – volume: 15 start-page: 2149 year: 2011 ident: ref_5 article-title: A review on global solar energy policy publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.01.007 – ident: ref_33 – ident: ref_2 – ident: ref_46 – volume: 19 start-page: 2189 year: 2011 ident: ref_27 article-title: Hybrid agent-based simulation for policy evaluation of solar power generation systems publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2011.07.005 – volume: 28 start-page: 625 year: 2000 ident: ref_23 article-title: The diffusion of renewable energy technology: an analytical framework and key issues for research publication-title: Energy Policy doi: 10.1016/S0301-4215(00)00041-0 – ident: ref_29 doi: 10.1109/ICRERA.2014.7016446 – ident: ref_36 – volume: 109 start-page: 428 year: 2017 ident: ref_14 article-title: On the influence of jurisdiction on the profitability of residential photovoltaic-storage systems: A multi-national case study publication-title: Energy Policy doi: 10.1016/j.enpol.2017.07.019 – ident: ref_60 – volume: 106 start-page: 106 year: 2013 ident: ref_28 article-title: Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation publication-title: Technol. Forecast. Soc. Chang. |
SSID | ssj0000913810 |
Score | 2.1397028 |
Snippet | Designing and evaluating energy policies is a difficult challenge because the energy sector is a complex system that cannot be adequately understood without... The path to achieve such a goal passes through an increase up to 20% of the share of renewable energy sources in final energy consumption and a 20% rise in... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2098 |
SubjectTerms | Accuracy Alternative energy sources Decision making Emissions Energy efficiency Energy resources Innovations multi-agent systems parameter fine-tuning photovoltaic energy predictive model self-reported behaviour Simulation simulation model |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-QwDI5YuLCHFU8xLKBIcIBDRdv0kXBBA2JASDwkQOJWJW4CI0HLzpTD_nvsNjOAQFxTX1rH_j67yWfGdkClEJUYgBoEFSgyDLRzGYY7VtoqM1ls6L7zxWV2dpec36f3vuE29scqJzmxTdRlDdQj34-FQO6fKhEevvwLaGoU_V31IzR-sbkIkYb2uRycTnsspHkpo7BTJRVY3dNfYcTHOFTyEw61cv1fsnELMYMF9sdzQ97vnLnIZmy1xH5_UAxcYos-Fsd81wtG7y2z5ws7ollD_MpQj9WWXFclv7FPLuj4Na54HcTXER9WvE_3qYIjBDA0Gz77CV4HvM-PcY3T2cL_vK749WPd1Ji_Gj0E3i_rNr2ssLvBye3xWeDHKAQgsqgJpAGtwaaJE5iYrQ1NLDQAJCaOHAJXpBzhfKpzkRlbapA6B8w9mZYmjHQqVtlsVVd2jXGjjbMGWYUkVMudFjbPVZQABm9ZJtBje5OPWoDXGKdRF08F1hrkgOLdAT22PbV96ZQ1vrU6It9MLUgNu12oRw-FD67CJtIJUFIBkqPcSmOlTNM8McIZh-_RYxsTzxY-RMfF-4Za__nxXzaPLEl1pxw32GwzerWbyEQas9VutzdQ297x priority: 102 providerName: ProQuest |
Title | Merging Observed and Self-Reported Behaviour in Agent-Based Simulation: A Case Study on Photovoltaic Adoption |
URI | https://www.proquest.com/docview/2331445930 https://doaj.org/article/e48f3c989c5547e8be885574b3fbf76a |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPnF9LAE96KHYbvpIvO2Kqwg-8AHeSjJNcEFbWevBf--kjbqi4MXrMNCSeXwz7eQbgF2UCUYFBaBC7hoUEQbK2pTCnTptmeq0p9195_OL9PQuPrtP7idWfbmZsJYeuD24AxMLy1EKiQR8mRHaCJEkWay51TZLm9IolOFEM9XkYBk56qqWj5RTX-_-BxMykqr4hkANUf-PPNyAy3ARFnxVyPrt2yzBlCmXYX6CK3AZlnwUvrA9TxW9vwJP52bstgyxS-2-rpqCqbJgN-bRBm1lTRLPgPg6ZqOS9d1NqmBA0EVqoye_u-uQ9dkRyZibKnxjVcmuHqq6osxVqxGyflE1iWUV7obHt0engV-gECBPozoQGpVCk8SWU0o2JtQ9rhAx1r3IEmRF0jqET1TGU20KhUJlSFknVUKHkUr4GsyUVWnWgWmlrdFUTwiHZ5lV3GSZjGKksC2KGDuw_3GoOXp2cbfk4jGnLsMZIP8yQAd2PnWfW06NX7UGzjafGo4HuxGQd-TeO_K_vKMDWx-WzX1wvuQ9zqmNTCQPN_7jGZswR1WUbKcgt2CmHr-abapUat2FaTE86cLs4Pji6rrbuOg7x3Hqaw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V2wNwQG0BsbSAJUCih4gkzoeNhNBuabWl3aWCVuottR0bVmqTsrsV6p_iNzKTOFsQiFuvzlzimXkzY3vmAbw0MjVRiQ6oDKcCRYSBci5Dd8dKW2Y6izX1O48n2egk-Xianq7Az64Xhp5VdpjYAHVZGzojfxNzjrl_Knn4_vJ7QKxRdLvaUWi0ZnFgr39gyTZ_t_8B9fsqjvd2j3dGgWcVCAzPokUgtFHK2DRxHHHK2lDHXBljEh1HDnE8ko7CXqpynmlbKiNUbtAVMyV0GCliiUDIX02oo7UHq8PdydHn5akOTdkUUdjOQeVchnQPjRE5DqX4I_I1BAF_4X8T1PbW4L7PRtmgNZ91WLHVBtz7bUbhBqx775-z135E9fYDuBjbGbEbsU-aTnVtyVRVsi_23AVtRo8rfvLi1YxNKzagDq5giCETxaYXnjPsLRuwHVxj9JrxmtUVO_pWL2pEzIWaGjYo6wbQHsLJrWzxI-hVdWUfA9NKO6sxjxEUR3OnuM1zGSUG4aIsE9OH7W5TC-OnmhO5xnmB1Q0poLhRQB9eLGUv21ke_5Qakm6WEjR_u1moZ18L786FTYTjRgppMB3LrdBWiDTNE82ddvgffdjqNFt4UJgXNyb85P-fn8Od0fH4sDjcnxxswl3M0WT7xnILeovZlX2KedBCP_PGx-Dstu39F5taHxM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5NnYTgAW0DRNkAS4DEHqIlcX7YSAi126qNsVIBk_aW2Y4NlbZktJ3Q_jX-Ou4SpwOBeNurcy_x3X13Z5-_A3hpZGqiEh1QGU4FiggD5VyG7o6Vtsx0Fmt673w8zg5Okven6ekK_OzewlBbZYeJDVCXtaEz8p2Yc8z9U8nDHefbIiZ7o3eX3wOaIEU3rd04jdZEjuz1Dyzf5m8P91DXr-J4tP9l9yDwEwYCw7NoEQhtlDI2TRxHzLI21DFXxphEx5FDTI-koxCYqpxn2pbKCJUbdMtMCR1GiiZGIPyv5hgVkx6sDvfHk0_LEx5i3BRR2HKici5DupPG6ByHUvwRBZthAX_FgibAjdbgvs9M2aA1pXVYsdUG3PuNr3AD1j0SzNlrT1e9_QAuju2MJh2xj5pOeG3JVFWyz_bcBW12jyuehfFqxqYVG9BrrmCI4RPFphd-ftgbNmC7uMaos_Ga1RWbfKsXNaLnQk0NG5R1A24P4eRWtvgR9Kq6so-BaaWd1ZjTCIqpuVPc5rmMEoPQUZaJ6cN2t6mF8QznNGjjvMBKhxRQ3CigDy-Wspctr8c_pYakm6UEcXE3C_Xsa-Fdu7CJcNxIIQ2mZrkV2gqRpnmiudMO_6MPW51mCw8Q8-LGnJ_8__NzuIN2Xnw4HB9twl1M12TbbrkFvcXsyj7FlGihn3nbY3B22-b-C3jyIz8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Merging+Observed+and+Self-Reported+Behaviour+in+Agent-Based+Simulation%3A+A+Case+Study+on+Photovoltaic+Adoption&rft.jtitle=Applied+sciences&rft.au=Andrea+Borghesi&rft.au=Michela+Milano&rft.date=2019-05-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=10&rft.spage=2098&rft_id=info:doi/10.3390%2Fapp9102098&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e48f3c989c5547e8be885574b3fbf76a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |