Merging Observed and Self-Reported Behaviour in Agent-Based Simulation: A Case Study on Photovoltaic Adoption

Designing and evaluating energy policies is a difficult challenge because the energy sector is a complex system that cannot be adequately understood without using models merging economic, social and individual perspectives. Appropriate models allow policy makers to assess the impact of policy measur...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 9; no. 10; p. 2098
Main Authors Borghesi, Andrea, Milano, Michela
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2019
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app9102098

Cover

Abstract Designing and evaluating energy policies is a difficult challenge because the energy sector is a complex system that cannot be adequately understood without using models merging economic, social and individual perspectives. Appropriate models allow policy makers to assess the impact of policy measures, satisfy strategic objectives and develop sustainable policies. Often the implementation of a policy cannot be directly enforced by governments, but falls back to many stakeholders, such as private citizens and enterprises. We propose to integrate two basic cornerstones to devise realistic models: the self-reported behaviour, derived from surveys, and the observed behaviour, from historical data. The self-reported behaviour enables the identification of drivers and barriers pushing or limiting people in their decision making process, while the observed behaviour is used to tune these drivers/barriers in a model. We test our methodology on a case-study: the adoption of photovoltaic panels among private citizens in the Emilia–Romagna region, Italy. We propose an agent-based model devised using self-reported data and then empirically tuned using historical data. The results reveal that our model can predict with great accuracy the photovoltaic (PV) adoption rate and thus support the energy policy-making process.
AbstractList Designing and evaluating energy policies is a difficult challenge because the energy sector is a complex system that cannot be adequately understood without using models merging economic, social and individual perspectives. Appropriate models allow policy makers to assess the impact of policy measures, satisfy strategic objectives and develop sustainable policies. Often the implementation of a policy cannot be directly enforced by governments, but falls back to many stakeholders, such as private citizens and enterprises. We propose to integrate two basic cornerstones to devise realistic models: the self-reported behaviour, derived from surveys, and the observed behaviour, from historical data. The self-reported behaviour enables the identification of drivers and barriers pushing or limiting people in their decision making process, while the observed behaviour is used to tune these drivers/barriers in a model. We test our methodology on a case-study: the adoption of photovoltaic panels among private citizens in the Emilia–Romagna region, Italy. We propose an agent-based model devised using self-reported data and then empirically tuned using historical data. The results reveal that our model can predict with great accuracy the photovoltaic (PV) adoption rate and thus support the energy policy-making process.
Designing and evaluating energy policies is a difficult challenge because the energy sector is a complex system that cannot be adequately understood without using models merging economic, social and individual perspectives. Appropriate models allow policy makers to assess the impact of policy measures, satisfy strategic objectives and develop sustainable policies. Often the implementation of a policy cannot be directly enforced by governments, but falls back to many stakeholders, such as private citizens and enterprises. We propose to integrate two basic cornerstones to devise realistic models: the self-reported behaviour, derived from surveys, and the observed behaviour, from historical data. The self-reported behaviour enables the identification of drivers and barriers pushing or limiting people in their decision making process, while the observed behaviour is used to tune these drivers/barriers in a model. We test our methodology on a case-study: the adoption of photovoltaic panels among private citizens in the Emilia−Romagna region, Italy. We propose an agent-based model devised using self-reported data and then empirically tuned using historical data. The results reveal that our model can predict with great accuracy the photovoltaic (PV) adoption rate and thus support the energy policy-making process.
The path to achieve such a goal passes through an increase up to 20% of the share of renewable energy sources in final energy consumption and a 20% rise in energy efficiency. [...]the decision process of involved agents (i.e., private citizens) is deeply influenced by non-economical motivations, such as social influence, peer pressure, bandwagon effects, lack or wealth of knowledge, risk aversion, etc. [...]Section 8 concludes the paper, summarizing the obtained results and suggesting future research directions. 2. Related Work The adoption of renewable energy sources, such as photovoltaic panels, can be framed as an innovation diffusion problem, an issue that has been the subject of many research works.
Author Milano, Michela
Borghesi, Andrea
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0002-2298-2944
  surname: Borghesi
  fullname: Borghesi, Andrea
– sequence: 2
  givenname: Michela
  surname: Milano
  fullname: Milano, Michela
BookMark eNptkU9rGzEQxUVIIW6aSz6BILfCptJq16vtzTH9E0hIiJOzGGlHtsxa2mplQ759ZLu0pWQuGp5-eiPefCSnPngk5JKzayFa9gWGoeWsZK08IZOSNdNCVLw5_ac_IxfjuGa5Wi4kZxOyuce4dH5JH_SIcYcdBd_RBfa2eMIhxJSVG1zBzoVtpM7T2RJ9Km5gzBcLt9n2kFzwX-mMzrNGF2nbvdLg6eMqpLALfQJn6KwLwx77RD5Y6Ee8-H2ek5fv357nP4u7hx-389ldYcSUp0JqA2CwrqxAzRGZLgUYYypdcstLwVtbcslraMRUYwdGQmOkbKYgNeNQi3Nye_TtAqzVEN0G4qsK4NRBCHGpICZnelRYSStMK1tT11WDUqOUdd1UWlhts2P2ujp6DTH82uKY1DpH4fP3VSkEr6q6FSxTn4-UiWEcI9o_UzlT--2ov9vJMPsPNi4dckwRXP_ekzeB9JRd
CitedBy_id crossref_primary_10_3390_en16010557
crossref_primary_10_1016_j_renene_2021_01_128
crossref_primary_10_3390_en12132460
crossref_primary_10_1016_j_erss_2021_102339
crossref_primary_10_3390_app10155329
crossref_primary_10_1016_j_jclepro_2022_132793
Cites_doi 10.1093/jeg/lbu036
10.1016/j.apenergy.2018.09.176
10.1287/mnsc.36.9.1057
10.1007/s10287-007-0046-z
10.1186/s42162-018-0012-8
10.1016/j.enconman.2018.12.096
10.1007/s10458-016-9326-8
10.1038/30918
10.1016/S0040-1625(00)00076-7
10.1016/j.enpol.2013.11.004
10.1016/j.rser.2014.08.020
10.1016/j.techfore.2008.03.024
10.1016/S0306-4603(02)00300-3
10.1126/science.220.4598.671
10.1115/1.4042343
10.1007/s10462-017-9577-z
10.1007/978-3-319-24309-2_11
10.4135/9781412983259
10.1146/annurev.soc.28.110601.141117
10.2307/2297045
10.1088/1748-9326/9/7/074009
10.1073/pnas.200327197
10.1287/orsc.8.3.289
10.1016/j.renene.2014.10.007
10.1016/j.enpol.2017.02.021
10.1007/978-1-4419-8462-3
10.1145/1367497.1367620
10.1016/j.enpol.2004.12.022
10.1007/s10100-011-0210-y
10.1073/pnas.0503018102
10.1007/s11403-012-0087-4
10.1089/brain.2011.0038
10.1016/j.envsoft.2015.04.014
10.7148/2013-0032
10.1016/j.rser.2011.01.007
10.1016/j.simpat.2011.07.005
10.1016/S0301-4215(00)00041-0
10.1109/ICRERA.2014.7016446
10.1016/j.enpol.2017.07.019
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app9102098
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_e48f3c989c5547e8be885574b3fbf76a
10_3390_app9102098
GroupedDBID .4S
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-8bcaace54f3eb1ee0b23accc4b21f12319f21815a736bedac8a7c8876a8b01a53
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:29:12 EDT 2025
Mon Jun 30 11:19:49 EDT 2025
Tue Jul 01 03:00:49 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-8bcaace54f3eb1ee0b23accc4b21f12319f21815a736bedac8a7c8876a8b01a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2298-2944
OpenAccessLink https://doaj.org/article/e48f3c989c5547e8be885574b3fbf76a
PQID 2331445930
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_e48f3c989c5547e8be885574b3fbf76a
proquest_journals_2331445930
crossref_primary_10_3390_app9102098
crossref_citationtrail_10_3390_app9102098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Vasseur (ref_11) 2015; 41
ref_50
Goldberg (ref_61) 1991; 1
ref_55
Zhao (ref_27) 2011; 19
ref_53
Macy (ref_15) 2002; 28
ref_51
Pegoretti (ref_18) 2012; 7
Zhang (ref_25) 2016; 30
Rogers (ref_52) 2002; 27
ref_16
Amaral (ref_56) 2000; 97
ref_60
Jacobsson (ref_23) 2000; 28
Loulou (ref_6) 2008; 5
ref_24
Davidson (ref_31) 2014; 9
ref_20
Lee (ref_35) 2014; 66
ref_29
Novak (ref_58) 2005; 102
Chatterjee (ref_22) 1990; 36
Sommerfeld (ref_12) 2017; 105
ref_36
Kazhamiaka (ref_14) 2017; 109
ref_33
(ref_4) 2000; 65
ref_32
ref_30
Abrahamson (ref_21) 1997; 8
Graziano (ref_9) 2014; 15
Rai (ref_34) 2015; 70
Palmer (ref_28) 2013; 106
Sinitskaya (ref_38) 2019; 141
Korcaj (ref_10) 2015; 75
Jager (ref_13) 2006; 34
Watts (ref_57) 1998; 393
Dasgupta (ref_3) 1979; 46
Solangi (ref_5) 2011; 15
ref_47
Adepetu (ref_37) 2018; 1
ref_46
ref_45
Telesford (ref_54) 2011; 1
ref_44
ref_43
Lee (ref_8) 2018; 232
ref_42
ref_41
ref_40
ref_1
Schwarz (ref_17) 2009; 76
Kiesling (ref_19) 2012; 20
ref_2
ref_49
ref_48
Alyousef (ref_26) 2017; 32
Kirkpatrick (ref_59) 1983; 220
ref_7
Lee (ref_39) 2019; 183
References_xml – volume: 15
  start-page: 815
  year: 2014
  ident: ref_9
  article-title: Spatial Patterns of Solar Photovoltaic System Adoption: The Influence of Neighbors and the Built Environment
  publication-title: J. Econ. Geogr.
  doi: 10.1093/jeg/lbu036
– ident: ref_49
– volume: 232
  start-page: 640
  year: 2018
  ident: ref_8
  article-title: A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.176
– ident: ref_32
– volume: 36
  start-page: 1057
  year: 1990
  ident: ref_22
  article-title: The innovation diffusion process in a heterogeneous population: A micromodeling approach
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.36.9.1057
– volume: 5
  start-page: 7
  year: 2008
  ident: ref_6
  article-title: ETSAP-TIAM: The TIMES integrated assessment model Part I: Model structure
  publication-title: Comput. Manag. Sci.
  doi: 10.1007/s10287-007-0046-z
– ident: ref_51
– volume: 1
  start-page: 6
  year: 2018
  ident: ref_37
  article-title: Comparing solar photovoltaic and battery adoption in Ontario and Germany: An agent-based approach
  publication-title: Energy Inform.
  doi: 10.1186/s42162-018-0012-8
– volume: 183
  start-page: 266
  year: 2019
  ident: ref_39
  article-title: Hybrid agent-based modeling of rooftop solar photovoltaic adoption by integrating the geographic information system and data mining technique
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.12.096
– volume: 30
  start-page: 1023
  year: 2016
  ident: ref_25
  article-title: Data-driven agent-based modeling, with application to rooftop solar adoption
  publication-title: Auton. Agents Multi-Agent Syst.
  doi: 10.1007/s10458-016-9326-8
– volume: 393
  start-page: 440
  year: 1998
  ident: ref_57
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 65
  start-page: 125
  year: 2000
  ident: ref_4
  article-title: Creating Incentives for Environmentally Enhancing Technological Change: Lessons From 30 Years of U.S. Energy Technology Policy
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/S0040-1625(00)00076-7
– volume: 32
  start-page: 211
  year: 2017
  ident: ref_26
  article-title: Analysis and Model-based Predictions of Solar PV and Battery Adoption in Germany: An Agent-based Approach
  publication-title: Comput. Sci.
– volume: 66
  start-page: 267
  year: 2014
  ident: ref_35
  article-title: An analysis of UK policies for domestic energy reduction using an agent based tool
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2013.11.004
– volume: 41
  start-page: 483
  year: 2015
  ident: ref_11
  article-title: The adoption of PV in the Netherlands: A statistical analysis of adoption factors
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.08.020
– volume: 76
  start-page: 497
  year: 2009
  ident: ref_17
  article-title: Agent-based modeling of the diffusion of environmental innovations—An empirical approach
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2008.03.024
– volume: 27
  start-page: 989
  year: 2002
  ident: ref_52
  article-title: Diffusion of preventive innovations
  publication-title: Addict. Behav.
  doi: 10.1016/S0306-4603(02)00300-3
– ident: ref_1
– volume: 220
  start-page: 671
  year: 1983
  ident: ref_59
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 141
  start-page: 041702
  year: 2019
  ident: ref_38
  article-title: Examining the Influence of Solar Panel Installers on Design Innovation and Market Penetration
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4042343
– ident: ref_20
  doi: 10.1007/s10462-017-9577-z
– ident: ref_43
  doi: 10.1007/978-3-319-24309-2_11
– ident: ref_16
  doi: 10.4135/9781412983259
– volume: 1
  start-page: 69
  year: 1991
  ident: ref_61
  article-title: A comparative analysis of selection schemes used in genetic algorithms
  publication-title: Found. Genet. Algorithms
– ident: ref_48
– volume: 28
  start-page: 143
  year: 2002
  ident: ref_15
  article-title: From factors to factors: Computational sociology and agent-based modeling
  publication-title: Annu. Rev. Sociol.
  doi: 10.1146/annurev.soc.28.110601.141117
– volume: 46
  start-page: 185
  year: 1979
  ident: ref_3
  article-title: The Implementation of Social Choice Rules: Some General Results on Incentive Compatibility
  publication-title: Rev. Econ. Stud.
  doi: 10.2307/2297045
– ident: ref_41
– volume: 9
  start-page: 074009
  year: 2014
  ident: ref_31
  article-title: Modeling photovoltaic diffusion: An analysis of geospatial datasets
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/7/074009
– volume: 97
  start-page: 11149
  year: 2000
  ident: ref_56
  article-title: Classes of small-world networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.200327197
– volume: 8
  start-page: 289
  year: 1997
  ident: ref_21
  article-title: Social network effects on the extent of innovation diffusion: A computer simulation
  publication-title: Organ. Sci.
  doi: 10.1287/orsc.8.3.289
– ident: ref_45
– volume: 75
  start-page: 407
  year: 2015
  ident: ref_10
  article-title: Intentions to adopt photovoltaic systems depend on homeowners’ expected personal gains and behavior of peers
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.10.007
– volume: 105
  start-page: 10
  year: 2017
  ident: ref_12
  article-title: Residential consumers’ experiences in the adoption and use of solar PV
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2017.02.021
– ident: ref_7
– ident: ref_53
  doi: 10.1007/978-1-4419-8462-3
– ident: ref_30
– ident: ref_24
– ident: ref_55
  doi: 10.1145/1367497.1367620
– ident: ref_47
– volume: 34
  start-page: 1935
  year: 2006
  ident: ref_13
  article-title: Stimulating the diffusion of photovoltaic systems: A behavioural perspective
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2004.12.022
– ident: ref_40
– volume: 20
  start-page: 183
  year: 2012
  ident: ref_19
  article-title: Agent-based simulation of innovation diffusion: A review
  publication-title: Central Eur. J. Oper. Res.
  doi: 10.1007/s10100-011-0210-y
– ident: ref_44
– volume: 102
  start-page: 11623
  year: 2005
  ident: ref_58
  article-title: Geographic routing in social networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0503018102
– volume: 7
  start-page: 145
  year: 2012
  ident: ref_18
  article-title: An agent-based model of innovation diffusion: network structure and coexistence under different information regimes
  publication-title: J. Econ. Interact. Coord.
  doi: 10.1007/s11403-012-0087-4
– volume: 1
  start-page: 367
  year: 2011
  ident: ref_54
  article-title: The ubiquity of small-world networks
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0038
– volume: 70
  start-page: 163
  year: 2015
  ident: ref_34
  article-title: Agent-based Modeling of Energy Technology Adoption
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.04.014
– ident: ref_42
  doi: 10.7148/2013-0032
– ident: ref_50
– volume: 15
  start-page: 2149
  year: 2011
  ident: ref_5
  article-title: A review on global solar energy policy
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.01.007
– ident: ref_33
– ident: ref_2
– ident: ref_46
– volume: 19
  start-page: 2189
  year: 2011
  ident: ref_27
  article-title: Hybrid agent-based simulation for policy evaluation of solar power generation systems
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2011.07.005
– volume: 28
  start-page: 625
  year: 2000
  ident: ref_23
  article-title: The diffusion of renewable energy technology: an analytical framework and key issues for research
  publication-title: Energy Policy
  doi: 10.1016/S0301-4215(00)00041-0
– ident: ref_29
  doi: 10.1109/ICRERA.2014.7016446
– ident: ref_36
– volume: 109
  start-page: 428
  year: 2017
  ident: ref_14
  article-title: On the influence of jurisdiction on the profitability of residential photovoltaic-storage systems: A multi-national case study
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2017.07.019
– ident: ref_60
– volume: 106
  start-page: 106
  year: 2013
  ident: ref_28
  article-title: Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation
  publication-title: Technol. Forecast. Soc. Chang.
SSID ssj0000913810
Score 2.1397028
Snippet Designing and evaluating energy policies is a difficult challenge because the energy sector is a complex system that cannot be adequately understood without...
The path to achieve such a goal passes through an increase up to 20% of the share of renewable energy sources in final energy consumption and a 20% rise in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2098
SubjectTerms Accuracy
Alternative energy sources
Decision making
Emissions
Energy efficiency
Energy resources
Innovations
multi-agent systems
parameter fine-tuning
photovoltaic energy
predictive model
self-reported behaviour
Simulation
simulation model
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-QwDI5YuLCHFU8xLKBIcIBDRdv0kXBBA2JASDwkQOJWJW4CI0HLzpTD_nvsNjOAQFxTX1rH_j67yWfGdkClEJUYgBoEFSgyDLRzGYY7VtoqM1ls6L7zxWV2dpec36f3vuE29scqJzmxTdRlDdQj34-FQO6fKhEevvwLaGoU_V31IzR-sbkIkYb2uRycTnsspHkpo7BTJRVY3dNfYcTHOFTyEw61cv1fsnELMYMF9sdzQ97vnLnIZmy1xH5_UAxcYos-Fsd81wtG7y2z5ws7ollD_MpQj9WWXFclv7FPLuj4Na54HcTXER9WvE_3qYIjBDA0Gz77CV4HvM-PcY3T2cL_vK749WPd1Ji_Gj0E3i_rNr2ssLvBye3xWeDHKAQgsqgJpAGtwaaJE5iYrQ1NLDQAJCaOHAJXpBzhfKpzkRlbapA6B8w9mZYmjHQqVtlsVVd2jXGjjbMGWYUkVMudFjbPVZQABm9ZJtBje5OPWoDXGKdRF08F1hrkgOLdAT22PbV96ZQ1vrU6It9MLUgNu12oRw-FD67CJtIJUFIBkqPcSmOlTNM8McIZh-_RYxsTzxY-RMfF-4Za__nxXzaPLEl1pxw32GwzerWbyEQas9VutzdQ297x
  priority: 102
  providerName: ProQuest
Title Merging Observed and Self-Reported Behaviour in Agent-Based Simulation: A Case Study on Photovoltaic Adoption
URI https://www.proquest.com/docview/2331445930
https://doaj.org/article/e48f3c989c5547e8be885574b3fbf76a
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPnF9LAE96KHYbvpIvO2Kqwg-8AHeSjJNcEFbWevBf--kjbqi4MXrMNCSeXwz7eQbgF2UCUYFBaBC7hoUEQbK2pTCnTptmeq0p9195_OL9PQuPrtP7idWfbmZsJYeuD24AxMLy1EKiQR8mRHaCJEkWay51TZLm9IolOFEM9XkYBk56qqWj5RTX-_-BxMykqr4hkANUf-PPNyAy3ARFnxVyPrt2yzBlCmXYX6CK3AZlnwUvrA9TxW9vwJP52bstgyxS-2-rpqCqbJgN-bRBm1lTRLPgPg6ZqOS9d1NqmBA0EVqoye_u-uQ9dkRyZibKnxjVcmuHqq6osxVqxGyflE1iWUV7obHt0engV-gECBPozoQGpVCk8SWU0o2JtQ9rhAx1r3IEmRF0jqET1TGU20KhUJlSFknVUKHkUr4GsyUVWnWgWmlrdFUTwiHZ5lV3GSZjGKksC2KGDuw_3GoOXp2cbfk4jGnLsMZIP8yQAd2PnWfW06NX7UGzjafGo4HuxGQd-TeO_K_vKMDWx-WzX1wvuQ9zqmNTCQPN_7jGZswR1WUbKcgt2CmHr-abapUat2FaTE86cLs4Pji6rrbuOg7x3Hqaw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V2wNwQG0BsbSAJUCih4gkzoeNhNBuabWl3aWCVuottR0bVmqTsrsV6p_iNzKTOFsQiFuvzlzimXkzY3vmAbw0MjVRiQ6oDKcCRYSBci5Dd8dKW2Y6izX1O48n2egk-Xianq7Az64Xhp5VdpjYAHVZGzojfxNzjrl_Knn4_vJ7QKxRdLvaUWi0ZnFgr39gyTZ_t_8B9fsqjvd2j3dGgWcVCAzPokUgtFHK2DRxHHHK2lDHXBljEh1HDnE8ko7CXqpynmlbKiNUbtAVMyV0GCliiUDIX02oo7UHq8PdydHn5akOTdkUUdjOQeVchnQPjRE5DqX4I_I1BAF_4X8T1PbW4L7PRtmgNZ91WLHVBtz7bUbhBqx775-z135E9fYDuBjbGbEbsU-aTnVtyVRVsi_23AVtRo8rfvLi1YxNKzagDq5giCETxaYXnjPsLRuwHVxj9JrxmtUVO_pWL2pEzIWaGjYo6wbQHsLJrWzxI-hVdWUfA9NKO6sxjxEUR3OnuM1zGSUG4aIsE9OH7W5TC-OnmhO5xnmB1Q0poLhRQB9eLGUv21ke_5Qakm6WEjR_u1moZ18L786FTYTjRgppMB3LrdBWiDTNE82ddvgffdjqNFt4UJgXNyb85P-fn8Od0fH4sDjcnxxswl3M0WT7xnILeovZlX2KedBCP_PGx-Dstu39F5taHxM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5NnYTgAW0DRNkAS4DEHqIlcX7YSAi126qNsVIBk_aW2Y4NlbZktJ3Q_jX-Ou4SpwOBeNurcy_x3X13Z5-_A3hpZGqiEh1QGU4FiggD5VyG7o6Vtsx0Fmt673w8zg5Okven6ekK_OzewlBbZYeJDVCXtaEz8p2Yc8z9U8nDHefbIiZ7o3eX3wOaIEU3rd04jdZEjuz1Dyzf5m8P91DXr-J4tP9l9yDwEwYCw7NoEQhtlDI2TRxHzLI21DFXxphEx5FDTI-koxCYqpxn2pbKCJUbdMtMCR1GiiZGIPyv5hgVkx6sDvfHk0_LEx5i3BRR2HKici5DupPG6ByHUvwRBZthAX_FgibAjdbgvs9M2aA1pXVYsdUG3PuNr3AD1j0SzNlrT1e9_QAuju2MJh2xj5pOeG3JVFWyz_bcBW12jyuehfFqxqYVG9BrrmCI4RPFphd-ftgbNmC7uMaos_Ga1RWbfKsXNaLnQk0NG5R1A24P4eRWtvgR9Kq6so-BaaWd1ZjTCIqpuVPc5rmMEoPQUZaJ6cN2t6mF8QznNGjjvMBKhxRQ3CigDy-Wspctr8c_pYakm6UEcXE3C_Xsa-Fdu7CJcNxIIQ2mZrkV2gqRpnmiudMO_6MPW51mCw8Q8-LGnJ_8__NzuIN2Xnw4HB9twl1M12TbbrkFvcXsyj7FlGihn3nbY3B22-b-C3jyIz8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Merging+Observed+and+Self-Reported+Behaviour+in+Agent-Based+Simulation%3A+A+Case+Study+on+Photovoltaic+Adoption&rft.jtitle=Applied+sciences&rft.au=Andrea+Borghesi&rft.au=Michela+Milano&rft.date=2019-05-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=10&rft.spage=2098&rft_id=info:doi/10.3390%2Fapp9102098&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e48f3c989c5547e8be885574b3fbf76a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon