Cost-Effective Active Learning for Deep Image Classification
Recent successes in learning-based image classification, however, heavily rely on the large number of annotated training samples, which may require considerable human effort. In this paper, we propose a novel active learning (AL) framework, which is capable of building a competitive classifier with...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 27; no. 12; pp. 2591 - 2600 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent successes in learning-based image classification, however, heavily rely on the large number of annotated training samples, which may require considerable human effort. In this paper, we propose a novel active learning (AL) framework, which is capable of building a competitive classifier with optimal feature representation via a limited amount of labeled training instances in an incremental learning manner. Our approach advances the existing AL methods in two aspects. First, we incorporate deep convolutional neural networks into AL. Through the properly designed framework, the feature representation and the classifier can be simultaneously updated with progressively annotated informative samples. Second, we present a cost-effective sample selection strategy to improve the classification performance with less manual annotations. Unlike traditional methods focusing on only the uncertain samples of low prediction confidence, we especially discover the large amount of high-confidence samples from the unlabeled set for feature learning. Specifically, these high-confidence samples are automatically selected and iteratively assigned pseudolabels. We thus call our framework cost-effective AL (CEAL) standing for the two advantages. Extensive experiments demonstrate that the proposed CEAL framework can achieve promising results on two challenging image classification data sets, i.e., face recognition on the cross-age celebrity face recognition data set database and object categorization on Caltech-256. |
---|---|
AbstractList | Recent successes in learning-based image classification, however, heavily rely on the large number of annotated training samples, which may require considerable human effort. In this paper, we propose a novel active learning (AL) framework, which is capable of building a competitive classifier with optimal feature representation via a limited amount of labeled training instances in an incremental learning manner. Our approach advances the existing AL methods in two aspects. First, we incorporate deep convolutional neural networks into AL. Through the properly designed framework, the feature representation and the classifier can be simultaneously updated with progressively annotated informative samples. Second, we present a cost-effective sample selection strategy to improve the classification performance with less manual annotations. Unlike traditional methods focusing on only the uncertain samples of low prediction confidence, we especially discover the large amount of high-confidence samples from the unlabeled set for feature learning. Specifically, these high-confidence samples are automatically selected and iteratively assigned pseudolabels. We thus call our framework cost-effective AL (CEAL) standing for the two advantages. Extensive experiments demonstrate that the proposed CEAL framework can achieve promising results on two challenging image classification data sets, i.e., face recognition on the cross-age celebrity face recognition data set database and object categorization on Caltech-256. |
Author | Dongyu Zhang Ruimao Zhang Keze Wang Ya Li Liang Lin |
Author_xml | – sequence: 1 givenname: Keze surname: Wang fullname: Wang, Keze – sequence: 2 givenname: Dongyu orcidid: 0000-0002-7595-0137 surname: Zhang fullname: Zhang, Dongyu – sequence: 3 givenname: Ya surname: Li fullname: Li, Ya – sequence: 4 givenname: Ruimao surname: Zhang fullname: Zhang, Ruimao – sequence: 5 givenname: Liang surname: Lin fullname: Lin, Liang |
BookMark | eNp9UE1LAzEUDFLBVv0DelnwvDUvm2wS8FLWqoWCB6vXkKYvJaXdrclW8N-7_cCDB5nDvMPMm_dmQHp1UyMhN0CHAFTfz6q3j9mQUSiHTCitpD4jfRBC5YxR0etmKiBXDMQFGaS0ohS44rJPHqomtfnYe3Rt-MJsdKQp2liHepn5JmaPiNtssrFLzKq1TSn44GwbmvqKnHu7Tnh94kvy_jSeVS_59PV5Uo2muStKaHNlBXpAJRg4KyWHkoG0HRC5nKMoCyf1woIT3pacWgHKd_f5OVqqNV8Ul-TuuHcbm88dptasml2su0gDWkrWQfFOxY4qF5uUInqzjWFj47cBavYtmUNLZt-SObXUmdQfkwvt4bk22rD-33p7tAZE_M2SgirNWfEDDvx2gA |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1016_j_commatsci_2024_113489 crossref_primary_10_1016_j_ifacol_2021_10_130 crossref_primary_10_1109_TCSVT_2021_3135023 crossref_primary_10_1111_cgf_15261 crossref_primary_10_1016_j_engappai_2024_109239 crossref_primary_10_1016_j_engappai_2023_106805 crossref_primary_10_1016_j_isprsjprs_2020_01_005 crossref_primary_10_1016_j_neucom_2020_01_018 crossref_primary_10_1109_TCSVT_2023_3262739 crossref_primary_10_1002_mp_15856 crossref_primary_10_1109_TSM_2020_2974867 crossref_primary_10_1109_TKDE_2021_3056894 crossref_primary_10_1016_j_knosys_2021_107639 crossref_primary_10_3390_s22145244 crossref_primary_10_1109_TNNLS_2022_3190420 crossref_primary_10_1007_s00521_023_08455_7 crossref_primary_10_1109_MCI_2024_3486680 crossref_primary_10_1039_D1SC02087K crossref_primary_10_1109_TMI_2021_3135002 crossref_primary_10_1002_ett_4212 crossref_primary_10_1016_j_neucom_2017_02_053 crossref_primary_10_1021_acs_jmedchem_1c01683 crossref_primary_10_1049_joe_2019_1197 crossref_primary_10_1109_TCSVT_2020_3032650 crossref_primary_10_1016_j_neunet_2020_10_009 crossref_primary_10_1109_MGRS_2022_3161377 crossref_primary_10_1016_j_future_2023_05_028 crossref_primary_10_1093_jamia_ocad055 crossref_primary_10_1145_3617179 crossref_primary_10_1016_j_bspc_2021_103450 crossref_primary_10_1016_j_neucom_2021_08_091 crossref_primary_10_1109_JIOT_2023_3234600 crossref_primary_10_1109_TCSVT_2021_3100842 crossref_primary_10_1186_s13007_020_00575_8 crossref_primary_10_1109_ACCESS_2021_3130551 crossref_primary_10_1109_TMI_2024_3354673 crossref_primary_10_1007_s10032_023_00429_8 crossref_primary_10_1007_s11263_021_01563_8 crossref_primary_10_1142_S021812662550207X crossref_primary_10_1007_s10462_024_10745_y crossref_primary_10_1016_j_jnca_2018_11_001 crossref_primary_10_1016_j_ailsci_2023_100089 crossref_primary_10_1016_j_media_2023_102958 crossref_primary_10_1109_ACCESS_2022_3216065 crossref_primary_10_1109_TNNLS_2022_3186855 crossref_primary_10_1109_TPDS_2021_3122454 crossref_primary_10_3389_frai_2022_737363 crossref_primary_10_1109_JSTARS_2024_3432976 crossref_primary_10_1109_TITS_2022_3218403 crossref_primary_10_1109_TCSVT_2019_2898899 crossref_primary_10_1109_TMM_2024_3371192 crossref_primary_10_1109_TPAMI_2021_3093590 crossref_primary_10_1109_TCSVT_2017_2736553 crossref_primary_10_1007_s42979_022_01076_2 crossref_primary_10_1016_j_media_2022_102549 crossref_primary_10_1016_j_neucom_2019_10_056 crossref_primary_10_3390_rs13020287 crossref_primary_10_1109_TCSVT_2021_3108772 crossref_primary_10_1109_LRA_2023_3320488 crossref_primary_10_1016_j_patcog_2019_01_035 crossref_primary_10_1109_TGRS_2021_3095292 crossref_primary_10_1016_j_engappai_2023_107204 crossref_primary_10_1016_j_artmed_2020_101805 crossref_primary_10_1016_j_crmeth_2023_100557 crossref_primary_10_1109_TIP_2018_2867913 crossref_primary_10_3390_rs15061691 crossref_primary_10_1109_ACCESS_2024_3449915 crossref_primary_10_1109_TCSVT_2022_3224003 crossref_primary_10_1007_s11517_024_03094_z crossref_primary_10_1016_j_cag_2024_104062 crossref_primary_10_1038_s41598_024_70125_y crossref_primary_10_7717_peerj_cs_1480 crossref_primary_10_1109_TCI_2024_3396700 crossref_primary_10_1109_ACCESS_2022_3162253 crossref_primary_10_1007_s11036_019_01486_2 crossref_primary_10_1007_s41060_024_00605_x crossref_primary_10_1016_j_compscitech_2025_111160 crossref_primary_10_1109_TCYB_2019_2962086 crossref_primary_10_1109_TCSVT_2017_2718188 crossref_primary_10_1109_TIM_2022_3204080 crossref_primary_10_1111_cgf_13844 crossref_primary_10_1007_s11837_021_04805_9 crossref_primary_10_1177_14759217221150376 crossref_primary_10_1016_j_optlastec_2024_111992 crossref_primary_10_3390_e22080901 crossref_primary_10_1016_j_ins_2018_10_056 crossref_primary_10_1007_s11390_020_9487_4 crossref_primary_10_1038_s41598_024_68866_x crossref_primary_10_1145_3610187 crossref_primary_10_1109_TCSVT_2017_2710478 crossref_primary_10_1111_tpj_16176 crossref_primary_10_1007_s11432_019_2759_y crossref_primary_10_1016_j_patcog_2023_110203 crossref_primary_10_1109_TVT_2021_3066210 crossref_primary_10_1016_j_intmar_2020_04_007 crossref_primary_10_1007_s11042_018_5986_5 crossref_primary_10_1109_TCSVT_2023_3234993 crossref_primary_10_1109_TITS_2018_2888698 crossref_primary_10_1088_1674_1056_ad23d8 crossref_primary_10_1109_ACCESS_2022_3141021 crossref_primary_10_1016_j_knosys_2021_107729 crossref_primary_10_1109_TIM_2020_3032190 crossref_primary_10_1016_j_eswa_2024_125266 crossref_primary_10_1109_TCSVT_2023_3343881 crossref_primary_10_1109_TCSVT_2019_2897482 crossref_primary_10_1109_TMM_2024_3521778 crossref_primary_10_3390_app11219783 crossref_primary_10_1007_s11263_025_02372_z crossref_primary_10_1109_ACCESS_2024_3449449 crossref_primary_10_1016_j_comcom_2020_01_003 crossref_primary_10_1016_j_displa_2023_102434 crossref_primary_10_1016_j_neucom_2021_01_074 crossref_primary_10_1109_ACCESS_2020_3015917 crossref_primary_10_1007_s13369_024_09152_w crossref_primary_10_1145_3214269 crossref_primary_10_1109_LGRS_2020_3036585 crossref_primary_10_1186_s13673_020_00219_9 crossref_primary_10_1145_3534932 crossref_primary_10_3390_e26020129 crossref_primary_10_1177_03611981241247046 crossref_primary_10_1007_s11517_022_02633_w crossref_primary_10_1007_s42991_022_00224_8 crossref_primary_10_3390_rs15174136 crossref_primary_10_3390_rs16132507 crossref_primary_10_3390_s22228791 crossref_primary_10_1093_bioinformatics_btac764 crossref_primary_10_1109_COMST_2022_3200740 crossref_primary_10_3390_su141710938 crossref_primary_10_1088_1402_4896_acc0a6 crossref_primary_10_1109_TMI_2019_2907805 crossref_primary_10_1016_j_knosys_2024_112192 crossref_primary_10_1109_TVCG_2021_3114837 crossref_primary_10_1002_ppj2_20020 crossref_primary_10_1007_s11548_024_03098_y crossref_primary_10_1109_TMI_2021_3061724 crossref_primary_10_1109_TGRS_2024_3477423 crossref_primary_10_34133_icomputing_0058 crossref_primary_10_1109_TCSVT_2018_2872957 crossref_primary_10_1109_TMI_2022_3215017 crossref_primary_10_1109_TGRS_2022_3195924 crossref_primary_10_1109_TCSVT_2021_3079991 crossref_primary_10_1177_14759217231183661 crossref_primary_10_1016_j_eswa_2021_115429 crossref_primary_10_1109_JSEN_2023_3279203 crossref_primary_10_1016_j_engappai_2023_106640 crossref_primary_10_34133_2019_1525874 crossref_primary_10_3390_s25051522 crossref_primary_10_3390_math12121898 crossref_primary_10_1109_TNNLS_2022_3152786 crossref_primary_10_1016_j_neunet_2023_02_004 crossref_primary_10_1109_TASLP_2024_3399614 crossref_primary_10_1016_j_knosys_2022_109817 crossref_primary_10_1109_TCAD_2018_2857338 crossref_primary_10_4018_IJRSDA_2019070103 crossref_primary_10_1109_TSMC_2020_3019531 crossref_primary_10_1177_17298814211044930 crossref_primary_10_3390_e22111314 crossref_primary_10_1007_s13218_024_00849_6 crossref_primary_10_1016_j_media_2023_103075 crossref_primary_10_1007_s00521_024_09510_7 crossref_primary_10_1109_TCSVT_2022_3196550 crossref_primary_10_1109_TMM_2021_3066118 crossref_primary_10_3390_rs13030373 crossref_primary_10_23940_ijpe_19_10_p16_27012708 crossref_primary_10_1093_astrogeo_ataa044 crossref_primary_10_1109_ACCESS_2018_2882269 crossref_primary_10_1109_TNNLS_2023_3257333 crossref_primary_10_1016_j_knosys_2019_02_013 crossref_primary_10_1109_TPAMI_2024_3471170 crossref_primary_10_1007_s10489_022_03752_5 crossref_primary_10_1007_s10462_019_09742_3 crossref_primary_10_1016_j_image_2022_116731 crossref_primary_10_1109_ACCESS_2020_3024948 crossref_primary_10_1016_j_jisa_2023_103423 crossref_primary_10_1109_LSP_2021_3072292 crossref_primary_10_1145_3457124 crossref_primary_10_14778_3476249_3476269 crossref_primary_10_1007_s10489_020_02121_4 crossref_primary_10_1007_s11063_022_10855_0 crossref_primary_10_3390_rs14194738 crossref_primary_10_1109_TCSVT_2022_3175762 crossref_primary_10_1016_j_procs_2024_09_491 crossref_primary_10_1155_2020_8826568 crossref_primary_10_1080_09540091_2023_2195596 crossref_primary_10_1145_3607871 crossref_primary_10_1016_j_media_2024_103201 crossref_primary_10_3788_AOS230758 crossref_primary_10_1109_TMM_2024_3453058 crossref_primary_10_1016_j_ins_2021_01_045 crossref_primary_10_1002_mp_15231 crossref_primary_10_1016_j_patrec_2021_05_009 crossref_primary_10_1088_1742_6596_1684_1_012114 crossref_primary_10_3390_electronics13010169 crossref_primary_10_1016_j_sysarc_2023_102978 crossref_primary_10_1177_1369433220924792 crossref_primary_10_1016_j_cmpb_2024_108111 crossref_primary_10_1007_s13218_020_00631_4 crossref_primary_10_1007_s10462_023_10456_w crossref_primary_10_1049_iet_ipr_2019_0716 crossref_primary_10_1038_s41598_024_79249_7 crossref_primary_10_1109_TPAMI_2016_2598340 crossref_primary_10_1145_3472291 crossref_primary_10_1109_TKDE_2020_3045816 crossref_primary_10_1007_s00521_019_04681_0 crossref_primary_10_1109_JSTARS_2024_3385380 crossref_primary_10_1109_TPAMI_2024_3476683 crossref_primary_10_1109_JSAIT_2020_2991518 crossref_primary_10_1093_bioinformatics_btab123 crossref_primary_10_1109_LGRS_2021_3121611 crossref_primary_10_1109_TBME_2018_2889915 crossref_primary_10_3389_frai_2024_1498956 crossref_primary_10_1016_j_media_2025_103542 crossref_primary_10_1109_TKDE_2019_2897307 crossref_primary_10_1080_24725854_2023_2227659 crossref_primary_10_1109_JIOT_2024_3452200 crossref_primary_10_1016_j_isprsjprs_2020_09_003 crossref_primary_10_1016_j_eswa_2023_120391 crossref_primary_10_3390_ijgi7020065 crossref_primary_10_1038_s41598_024_52138_9 crossref_primary_10_32604_cmc_2020_012023 crossref_primary_10_1007_s10489_020_01953_4 crossref_primary_10_3390_fire7060201 crossref_primary_10_1109_ACCESS_2019_2908281 crossref_primary_10_1016_j_media_2020_101913 crossref_primary_10_1109_LRA_2023_3243474 crossref_primary_10_1109_ACCESS_2019_2939347 crossref_primary_10_1109_ACCESS_2021_3101867 crossref_primary_10_1016_j_ins_2022_10_066 crossref_primary_10_1145_3587253 crossref_primary_10_1109_TNNLS_2018_2852783 crossref_primary_10_1016_j_media_2021_102062 crossref_primary_10_1109_TETCI_2022_3217753 crossref_primary_10_1109_TNSE_2024_3483295 crossref_primary_10_1109_TPAMI_2023_3277738 crossref_primary_10_1016_j_earscirev_2025_105070 crossref_primary_10_1109_TCSVT_2024_3479313 crossref_primary_10_1088_1361_6560_ac678a crossref_primary_10_1007_s10489_021_02515_y crossref_primary_10_1109_TCSI_2018_2840092 crossref_primary_10_1109_TIP_2024_3451928 crossref_primary_10_1145_3633779 crossref_primary_10_1186_s12859_021_04047_1 crossref_primary_10_1016_j_neucom_2020_10_115 crossref_primary_10_1016_j_knosys_2022_108871 crossref_primary_10_1109_TNNLS_2019_2947789 crossref_primary_10_1109_JBHI_2022_3167314 crossref_primary_10_3390_electronics10040467 crossref_primary_10_1016_j_neunet_2024_106398 crossref_primary_10_1007_s10278_022_00767_9 crossref_primary_10_1016_j_inffus_2021_07_011 crossref_primary_10_1016_j_ins_2018_07_054 crossref_primary_10_1145_3617999 crossref_primary_10_1016_j_engappai_2020_103589 crossref_primary_10_1109_ACCESS_2022_3146413 crossref_primary_10_1109_TCSVT_2022_3196092 crossref_primary_10_3390_math11040820 crossref_primary_10_3389_fmats_2021_824441 crossref_primary_10_3390_s20174975 crossref_primary_10_3390_jcm10071496 crossref_primary_10_1007_s11760_023_02915_2 crossref_primary_10_1109_TMI_2022_3187170 crossref_primary_10_1016_j_neucom_2024_128131 crossref_primary_10_1016_j_neucom_2021_03_050 |
Cites_doi | 10.1109/CVPR.2013.116 10.1007/978-3-319-10599-4_49 10.1145/2647868.2654889 10.1023/A:1007330508534 10.1007/3-540-44816-0_31 10.1145/1180639.1180721 10.1109/ICCV.2007.4408844 10.1109/TIT.2008.920189 10.1145/1143844.1143897 10.1109/ICCV.2009.5459392 10.1145/584091.584093 10.1109/TGRS.2010.2047352 10.1145/1553374.1553380 10.1109/TPAMI.2012.21 10.1007/978-3-319-14442-9_56 10.1109/ICCV.2013.33 10.1109/TKDE.2014.2365785 10.1109/CVPR.2011.5995430 10.1109/CVPR.2013.75 10.1109/CVPR.2009.5206627 10.1145/219587.219592 10.1007/s11263-015-0816-y 10.1145/2647868.2654918 10.1109/TIP.2014.2302675 10.1109/TGRS.2014.2358804 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2016.2589879 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 2600 |
ExternalDocumentID | 10_1109_TCSVT_2016_2589879 7508942 |
Genre | orig-research |
GrantInformation_xml | – fundername: State Key Development Program grantid: 2016YFB1001000 – fundername: National Natural Science Foundation of China grantid: 61622214 funderid: 10.13039/501100001809 – fundername: NVIDIA Corporation through the Tesla K40 GPU funderid: 10.13039/100007065 – fundername: CCF-Tencent Open Fund – fundername: Special Program through the Applied Research on Super Computation of the Natural Science Foundation of China–Guangdong Joint Fund (the second phase) funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-8a5ef1e8521ca77416217a7a7ee47be563c79da1c5fa640a518f014fbea0994d3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 04:14:20 EDT 2025 Thu Apr 24 22:57:19 EDT 2025 Tue Jul 01 00:41:09 EDT 2025 Tue Aug 26 16:58:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-8a5ef1e8521ca77416217a7a7ee47be563c79da1c5fa640a518f014fbea0994d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7595-0137 |
PQID | 1977272784 |
PQPubID | 85433 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1977272784 crossref_primary_10_1109_TCSVT_2016_2589879 ieee_primary_7508942 crossref_citationtrail_10_1109_TCSVT_2016_2589879 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 donahue (ref41) 2014 ref12 li (ref13) 2014 ref37 ref15 griffin (ref2) 2007 ref36 ref14 ref33 ref11 ref32 ref10 zhao (ref28) 2015 ref1 ref17 jiang (ref29) 2014 ref38 ref16 settles (ref31) 2009 simonyan (ref26) 2015 cire?an (ref24) 2012 nair (ref39) 2010 ref42 ref22 ref21 jiang (ref30) 2014 kumar (ref34) 2010 krizhevsky (ref23) 2012 deng (ref25) 2009 brinker (ref4) 2003 ref8 ref7 ref9 tong (ref18) 2001; 2 mccallum (ref19) 1998 ref3 schohn (ref20) 2000 ref6 ref5 jiang (ref27) 2015 ref40 |
References_xml | – ident: ref10 doi: 10.1109/CVPR.2013.116 – start-page: 3642 year: 2012 ident: ref24 article-title: Multi-column deep neural networks for image classification publication-title: Proc CVPR – ident: ref1 doi: 10.1007/978-3-319-10599-4_49 – start-page: 1189 year: 2010 ident: ref34 article-title: Self-paced learning for latent variable models publication-title: Proc NIPS – volume: 2 start-page: 45 year: 2001 ident: ref18 article-title: Support vector machine active learning with applications to text classification publication-title: J Mach Learn Res – ident: ref42 doi: 10.1145/2647868.2654889 – ident: ref36 doi: 10.1023/A:1007330508534 – ident: ref32 doi: 10.1007/3-540-44816-0_31 – year: 2009 ident: ref31 article-title: Active learning literature survey – ident: ref22 doi: 10.1145/1180639.1180721 – start-page: 21 year: 2014 ident: ref41 article-title: DeCAF: A deep convolutional activation feature for generic visual recognition publication-title: Proc Int Conf Mach Learn (ICML) – start-page: 1 year: 2003 ident: ref4 article-title: Incorporating diversity in active learning with support vector machines publication-title: Proc ICML – start-page: 234 year: 2014 ident: ref13 article-title: Multi-level adaptive active learning for scene classification publication-title: Proc ECCV – start-page: 350 year: 1998 ident: ref19 article-title: Employing EM and pool-based active learning for text classification publication-title: Proc ICML – start-page: 1 year: 2015 ident: ref26 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc ICLR – ident: ref7 doi: 10.1109/ICCV.2007.4408844 – ident: ref9 doi: 10.1109/TIT.2008.920189 – start-page: 3196 year: 2015 ident: ref28 article-title: Self-paced learning for matrix factorization publication-title: Proc AAAI – ident: ref16 doi: 10.1145/1143844.1143897 – ident: ref8 doi: 10.1109/ICCV.2009.5459392 – start-page: 1 year: 2000 ident: ref20 article-title: Less is more: Active learning with support vector machines publication-title: Proc ICML – ident: ref33 doi: 10.1145/584091.584093 – ident: ref17 doi: 10.1109/TGRS.2010.2047352 – ident: ref35 doi: 10.1145/1553374.1553380 – start-page: 1 year: 2015 ident: ref27 article-title: Self-paced curriculum learning publication-title: Proc AAAI – ident: ref37 doi: 10.1109/TPAMI.2012.21 – ident: ref15 doi: 10.1007/978-3-319-14442-9_56 – ident: ref11 doi: 10.1109/ICCV.2013.33 – ident: ref5 doi: 10.1109/TKDE.2014.2365785 – ident: ref21 doi: 10.1109/CVPR.2011.5995430 – ident: ref38 doi: 10.1109/CVPR.2013.75 – ident: ref6 doi: 10.1109/CVPR.2009.5206627 – start-page: 2078 year: 2014 ident: ref30 article-title: Self-paced learning with diversity publication-title: Proc NIPS – start-page: 1097 year: 2012 ident: ref23 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc NIPS – ident: ref12 doi: 10.1145/219587.219592 – ident: ref40 doi: 10.1007/s11263-015-0816-y – start-page: 547 year: 2014 ident: ref29 article-title: Easy samples first: Self-paced reranking for zero-example multimedia search publication-title: Proc 22nd ACM Int Conf Multimedia doi: 10.1145/2647868.2654918 – ident: ref14 doi: 10.1109/TIP.2014.2302675 – start-page: 1 year: 2010 ident: ref39 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc ICML – year: 2007 ident: ref2 article-title: Caltech-256 object category dataset – start-page: 248 year: 2009 ident: ref25 article-title: ImageNet: A large-scale hierarchical image database publication-title: Proc CVPR – ident: ref3 doi: 10.1109/TGRS.2014.2358804 |
SSID | ssj0014847 |
Score | 2.676432 |
Snippet | Recent successes in learning-based image classification, however, heavily rely on the large number of annotated training samples, which may require... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2591 |
SubjectTerms | Active learning Active learning (AL) Annotations Artificial neural networks Classification Classifiers deep neural nets Face recognition Image classification incremental learning Learning Learning systems Machine learning Measurement uncertainty Neural networks Object recognition Representations Training Uncertainty Visualization |
Title | Cost-Effective Active Learning for Deep Image Classification |
URI | https://ieeexplore.ieee.org/document/7508942 https://www.proquest.com/docview/1977272784 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VTjDwVRCFgjKwgdM4sRNHYqkKVUEqCy3qFjmOwwC0FU0Xfj1nJ434EkIZksGWojvn3rv4_A7gnEaBUcVixMuYR1hMGRGKKyI9TJ4N5nq2GHN0Hw4n7G7Kpw24rM_CaK1t8Zl2zaPdy8_mamV-lXUR3UTMMOBuYOJWntWqdwyYsM3EkC5QIhDH1gdkvLg77j88jk0VV-j6XGCSHX8BIdtV5Ucotvgy2IHR-s3KspJnd1Wkrnr_Jtr431ffhe2KaDq9cmXsQUPP9mHrk_xgC67682VBSv1iDHpOr7xVkqtPDvJZ51rrhXP7ilHHsf0zTWWRdeYBTAY34_6QVN0UiApCWhAhuc6pFojXSkaGiGE2IvHSmkWp5mGgojiTVPFchsyTnIoczZqnWiKLZFlwCM3ZfKaPwOFU-n6aY64hbUO_1Bcyi1KfpmEWYohoA12bN1GV1LjpePGS2JTDixPrksS4JKlc0oaLes6iFNr4c3TL2LgeWZm3DZ21F5PqW1wmFCmuH5kN1uPfZ53Apm_A2hapdKBZvK30KVKNIj2za-wDAejMSw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2xHIADO6KsOcAJucSunTgSHFABtWwXCuIWHMfhALSIpkLwLfwK_8bYSSs2cUNCOSQHO4o8TzNv4vEbgA0a1qwqFid-yn3CI8qJ1EIT5WPybGOu74oxT8-CxgU_uhJXQ_A6OAtjjHHFZ6ZqH91eftrRPfurbBujm4w4K0soj83zEyZo3d3mPlpzk7HDg1a9QcoeAkTXApoTqYTJqJEYpbQKLf1ADq7wMoaHiRFBTYdRqqgWmQq4rwSVGWYNWWIUciee1vC9wzCKPEOw4nTYYI-CS9e-DAkKJRIjZ_9Ijh9tt-rnly1bNxZUmZCY1kefwp7r4_LN-buIdjgFb_21KApZbqu9PKnqly8ykf91saZhsqTS3l6B_RkYMu1ZmPggsDgHO_VONyeFQjO6dW-vuJWisjceMnZv35gHr3mPftVzHUJt7ZSD6zxc_MnnL8BIu9M2i-AJqhhLMsymlGtZmDCp0jBhNAnSAJ1gBWjfnLEuxdRtT4-72CVVfhQ7CMQWAnEJgQpsDeY8FFIiv46eszYdjCzNWYGVPmri0tt0Y4oknoV2C3np51nrMNZonZ7EJ82z42UYZ5aauJKcFRjJH3tmFYlVnqw5fHtw_dcYeQc1VyoM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-Effective+Active+Learning+for+Deep+Image+Classification&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Wang%2C+Keze&rft.au=Zhang%2C+Dongyu&rft.au=Li%2C+Ya&rft.au=Zhang%2C+Ruimao&rft.date=2017-12-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=27&rft.issue=12&rft.spage=2591&rft.epage=2600&rft_id=info:doi/10.1109%2FTCSVT.2016.2589879&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2016_2589879 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |