Cost-Effective Active Learning for Deep Image Classification

Recent successes in learning-based image classification, however, heavily rely on the large number of annotated training samples, which may require considerable human effort. In this paper, we propose a novel active learning (AL) framework, which is capable of building a competitive classifier with...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 27; no. 12; pp. 2591 - 2600
Main Authors Wang, Keze, Zhang, Dongyu, Li, Ya, Zhang, Ruimao, Lin, Liang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent successes in learning-based image classification, however, heavily rely on the large number of annotated training samples, which may require considerable human effort. In this paper, we propose a novel active learning (AL) framework, which is capable of building a competitive classifier with optimal feature representation via a limited amount of labeled training instances in an incremental learning manner. Our approach advances the existing AL methods in two aspects. First, we incorporate deep convolutional neural networks into AL. Through the properly designed framework, the feature representation and the classifier can be simultaneously updated with progressively annotated informative samples. Second, we present a cost-effective sample selection strategy to improve the classification performance with less manual annotations. Unlike traditional methods focusing on only the uncertain samples of low prediction confidence, we especially discover the large amount of high-confidence samples from the unlabeled set for feature learning. Specifically, these high-confidence samples are automatically selected and iteratively assigned pseudolabels. We thus call our framework cost-effective AL (CEAL) standing for the two advantages. Extensive experiments demonstrate that the proposed CEAL framework can achieve promising results on two challenging image classification data sets, i.e., face recognition on the cross-age celebrity face recognition data set database and object categorization on Caltech-256.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2016.2589879