A Distributionally Robust Optimization Model for Unit Commitment Considering Uncertain Wind Power Generation

This paper proposes a distributionally robust optimization model for solving unit commitment (UC) problems considering volatile wind power generation. The uncertainty of wind power is captured by an ambiguity set that defines a family of wind power distributions, and the expected total cost under th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 32; no. 1; pp. 39 - 49
Main Authors Peng Xiong, Jirutitijaroen, Panida, Singh, Chanan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a distributionally robust optimization model for solving unit commitment (UC) problems considering volatile wind power generation. The uncertainty of wind power is captured by an ambiguity set that defines a family of wind power distributions, and the expected total cost under the worst-case distribution is minimized. Compared with stochastic programming, this method may have less dependence on the data of exact probability distributions. It should also outperform the conventional robust optimization methods because some distribution information can be incorporated into the ambiguity sets to generate less conservative results. In this paper, the UC model is formulated based on the typical two-stage framework, where the UC decisions are determined in a here-and-now manner, and the economic dispatch decisions are assumed to be wait-and-see, made after the observation of wind power outcomes. For computational tractability, the wait-and-see decisions are addressed by linear decision rule approximation, assuming that the economic dispatch decisions affinely depend on uncertain parameters as well as auxiliary random variables introduced to describe distributional characteristics of wind power generation. It is shown in case studies that this decision rule model tends to provide a tight approximation to the original two-stage problem, and the performance of UC solutions may be greatly improved by incorporating information on wind power distributions into the robust model.
AbstractList This paper proposes a distributionally robust optimization model for solving unit commitment (UC) problems considering volatile wind power generation. The uncertainty of wind power is captured by an ambiguity set that defines a family of wind power distributions, and the expected total cost under the worst-case distribution is minimized. Compared with stochastic programming, this method may have less dependence on the data of exact probability distributions. It should also outperform the conventional robust optimization methods because some distribution information can be incorporated into the ambiguity sets to generate less conservative results. In this paper, the UC model is formulated based on the typical two-stage framework, where the UC decisions are determined in a here-and-now manner, and the economic dispatch decisions are assumed to be wait-and-see , made after the observation of wind power outcomes. For computational tractability, the wait-and-see decisions are addressed by linear decision rule approximation, assuming that the economic dispatch decisions affinely depend on uncertain parameters as well as auxiliary random variables introduced to describe distributional characteristics of wind power generation. It is shown in case studies that this decision rule model tends to provide a tight approximation to the original two-stage problem, and the performance of UC solutions may be greatly improved by incorporating information on wind power distributions into the robust model.
Author Singh, Chanan
Jirutitijaroen, Panida
Peng Xiong
Author_xml – sequence: 1
  surname: Peng Xiong
  fullname: Peng Xiong
  email: xiongpengnus@gmail.com
  organization: Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA
– sequence: 2
  givenname: Panida
  surname: Jirutitijaroen
  fullname: Jirutitijaroen, Panida
  email: elejp@nus.edu.sg
  organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore
– sequence: 3
  givenname: Chanan
  surname: Singh
  fullname: Singh, Chanan
  email: singh@ece.tamu.edu
  organization: Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA
BookMark eNp9kE9Lw0AQxRepYFv9AnpZ8Jy6m2T_5FiqVkFRtKXHkGQnsiXZrbtbpH56k7Z48OBphnnze8y8ERoYawChS0omlJLsZvG6enufxITySczSVGTsBA0pYzIiXGQDNCRSskhmjJyhkfdrQgjvhCFqpvhW--B0uQ3amqJpdvjNllsf8Msm6FZ_F_0cP1sFDa6tw0ujA57ZttWhBdO3xmsFTpuPTqvAhUIbvNJG4Vf7BQ7PwYDbu5yj07poPFwc6xgt7-8Ws4fo6WX-OJs-RVXCaYikSJVKRCmyipQVKzPOU5VCzWLGk6pUTBZEFrVQTBGoFY8pp2Va05JBUiVMJWN0ffDdOPu5BR_ytd267jmfU9l5SE7SrNuSh63KWe8d1Hmlw_7O4Ard5JTkfbb5Ptu8zzY_Ztuh8R9043RbuN3_0NUB0gDwC4iUiSQWyQ-iSon4
CODEN ITPSEG
CitedBy_id crossref_primary_10_1109_TPWRS_2016_2633299
crossref_primary_10_1016_j_rser_2018_07_056
crossref_primary_10_1109_TPWRS_2023_3252502
crossref_primary_10_1016_j_energy_2020_118723
crossref_primary_10_1109_TPWRS_2019_2891057
crossref_primary_10_1109_TPWRS_2019_2954710
crossref_primary_10_3390_jmse12112087
crossref_primary_10_1049_iet_rpg_2019_1489
crossref_primary_10_1109_TPWRS_2017_2725581
crossref_primary_10_1109_TSTE_2021_3063473
crossref_primary_10_1109_TPWRS_2021_3060427
crossref_primary_10_1109_TSTE_2016_2610948
crossref_primary_10_1016_j_ijepes_2018_07_048
crossref_primary_10_1049_rpg2_70003
crossref_primary_10_1016_j_esr_2023_101255
crossref_primary_10_1088_1742_6596_2215_1_012001
crossref_primary_10_1109_TSG_2023_3236019
crossref_primary_10_3390_en11082124
crossref_primary_10_1109_TPWRS_2024_3351435
crossref_primary_10_3390_en10040535
crossref_primary_10_1109_TPWRS_2019_2907170
crossref_primary_10_1049_iet_gtd_2018_6331
crossref_primary_10_3390_su151511840
crossref_primary_10_1016_j_epsr_2023_109710
crossref_primary_10_1016_j_epsr_2023_109833
crossref_primary_10_1049_iet_gtd_2019_1402
crossref_primary_10_1109_TITS_2023_3315955
crossref_primary_10_1109_TCOMM_2024_3397809
crossref_primary_10_1109_TPWRS_2019_2958850
crossref_primary_10_1109_TPWRS_2022_3147104
crossref_primary_10_3390_electronics13010211
crossref_primary_10_1109_TSTE_2018_2825361
crossref_primary_10_1016_j_orl_2021_01_012
crossref_primary_10_1016_j_energy_2021_122041
crossref_primary_10_1016_j_rser_2020_110098
crossref_primary_10_1109_TPWRS_2019_2960389
crossref_primary_10_1016_j_epsr_2019_105986
crossref_primary_10_1016_j_ijepes_2019_05_054
crossref_primary_10_1049_rpg2_12037
crossref_primary_10_3934_jimo_2020038
crossref_primary_10_1109_TPWRS_2018_2889942
crossref_primary_10_1109_TSTE_2024_3411577
crossref_primary_10_1109_TPWRS_2022_3230320
crossref_primary_10_1049_rpg2_12836
crossref_primary_10_1109_TSTE_2020_3039758
crossref_primary_10_3390_su13052526
crossref_primary_10_1049_iet_rpg_2019_0964
crossref_primary_10_3390_su11082218
crossref_primary_10_1007_s11356_023_27913_2
crossref_primary_10_1109_TPWRS_2019_2941635
crossref_primary_10_1109_TSTE_2020_2989793
crossref_primary_10_3390_en15030825
crossref_primary_10_3389_fenrg_2023_1137305
crossref_primary_10_1016_j_epsr_2020_106745
crossref_primary_10_1016_j_jclepro_2019_118393
crossref_primary_10_3390_en16227636
crossref_primary_10_3390_math9212686
crossref_primary_10_1109_TPWRS_2022_3149506
crossref_primary_10_1109_TSG_2018_2803783
crossref_primary_10_3390_en14175246
crossref_primary_10_1049_iet_rpg_2018_6169
crossref_primary_10_3390_fractalfract5040140
crossref_primary_10_1109_ACCESS_2019_2922619
crossref_primary_10_1049_iet_gtd_2020_0849
crossref_primary_10_1016_j_trc_2023_104143
crossref_primary_10_1109_TPWRS_2020_2979118
crossref_primary_10_1109_TPWRS_2017_2695002
crossref_primary_10_1109_TSTE_2024_3374212
crossref_primary_10_1016_j_egyr_2022_09_086
crossref_primary_10_1016_j_egyai_2024_100389
crossref_primary_10_1109_ACCESS_2022_3151922
crossref_primary_10_1049_iet_gtd_2019_1895
crossref_primary_10_1007_s11630_020_1397_9
crossref_primary_10_1016_j_jclepro_2021_129954
crossref_primary_10_1109_TPWRS_2018_2807623
crossref_primary_10_1109_ACCESS_2021_3131163
crossref_primary_10_1007_s12667_017_0265_5
crossref_primary_10_1109_TPWRS_2024_3391920
crossref_primary_10_3390_pr13010113
crossref_primary_10_1109_TPWRS_2017_2741506
crossref_primary_10_1109_ACCESS_2021_3123792
crossref_primary_10_1049_joe_2018_8926
crossref_primary_10_3390_en14185618
crossref_primary_10_1016_j_apenergy_2022_118813
crossref_primary_10_1049_iet_gtd_2020_0861
crossref_primary_10_1109_TPWRS_2018_2867226
crossref_primary_10_1109_ACCESS_2022_3145973
crossref_primary_10_1016_j_egyr_2022_08_021
crossref_primary_10_1016_j_energy_2019_116827
crossref_primary_10_1109_TCYB_2021_3064556
crossref_primary_10_1016_j_apenergy_2020_115509
crossref_primary_10_1155_2022_1994063
crossref_primary_10_1007_s40565_019_0558_x
crossref_primary_10_1109_TPWRS_2020_2973596
crossref_primary_10_1016_j_ifacol_2020_12_801
crossref_primary_10_1109_TSG_2020_2987009
crossref_primary_10_1016_j_compchemeng_2017_12_002
crossref_primary_10_3390_su141711002
crossref_primary_10_1049_rpg2_12073
crossref_primary_10_1016_j_asoc_2019_105732
crossref_primary_10_1016_j_scs_2024_105649
crossref_primary_10_1109_TPWRS_2020_2985572
crossref_primary_10_1109_TPWRS_2018_2844356
crossref_primary_10_1177_0142331218823858
crossref_primary_10_1016_j_cie_2021_107797
crossref_primary_10_1109_ACCESS_2021_3101569
crossref_primary_10_1109_TII_2019_2938444
crossref_primary_10_1109_TSTE_2018_2828421
crossref_primary_10_1016_j_energy_2020_119171
crossref_primary_10_1016_j_trb_2023_02_004
crossref_primary_10_1016_j_segan_2025_101664
crossref_primary_10_1109_TPWRS_2022_3145907
crossref_primary_10_1016_j_gloei_2021_01_004
crossref_primary_10_1016_j_renene_2018_11_094
crossref_primary_10_1016_j_ijepes_2020_106161
crossref_primary_10_1049_iet_gtd_2019_1344
crossref_primary_10_1111_risa_13995
crossref_primary_10_1109_TPWRS_2017_2699121
crossref_primary_10_1109_TPWRS_2022_3171515
crossref_primary_10_1016_j_energy_2018_01_078
crossref_primary_10_1109_TSG_2021_3113573
crossref_primary_10_1016_j_epsr_2024_111015
crossref_primary_10_1002_ese3_1530
crossref_primary_10_1109_ACCESS_2021_3108905
crossref_primary_10_1016_j_energy_2022_123113
crossref_primary_10_1016_j_est_2024_110770
crossref_primary_10_1016_j_rser_2022_112428
crossref_primary_10_1016_j_ijepes_2023_109643
crossref_primary_10_1016_j_eneco_2017_03_022
crossref_primary_10_1016_j_asoc_2023_110957
crossref_primary_10_1016_j_ijepes_2021_107463
crossref_primary_10_1007_s40998_020_00341_5
crossref_primary_10_1016_j_apenergy_2019_113918
crossref_primary_10_1109_TSTE_2023_3240203
crossref_primary_10_1007_s10479_018_3003_z
crossref_primary_10_1109_TSTE_2022_3160842
crossref_primary_10_1109_ACCESS_2021_3134872
crossref_primary_10_1016_j_heliyon_2024_e27615
crossref_primary_10_1016_j_ijepes_2020_106427
crossref_primary_10_1016_j_est_2023_107080
crossref_primary_10_1109_TSG_2019_2911023
crossref_primary_10_1287_ijoc_2022_1243
crossref_primary_10_1016_j_isatra_2019_05_029
crossref_primary_10_1016_j_segan_2022_100698
crossref_primary_10_1109_TPWRS_2022_3224142
crossref_primary_10_1016_j_ejor_2018_08_031
crossref_primary_10_1109_TII_2023_3296869
crossref_primary_10_1016_j_epsr_2023_109437
crossref_primary_10_1109_TPWRS_2019_2893296
crossref_primary_10_3390_electronics13030667
crossref_primary_10_1016_j_energy_2022_125434
crossref_primary_10_1109_JSYST_2023_3290775
crossref_primary_10_1109_ACCESS_2021_3070592
crossref_primary_10_1016_j_segan_2023_101250
crossref_primary_10_1109_TPWRS_2024_3406504
crossref_primary_10_1109_TTE_2024_3365525
crossref_primary_10_1109_TII_2022_3152815
crossref_primary_10_1109_TII_2021_3079364
crossref_primary_10_1109_TPWRS_2019_2950987
crossref_primary_10_1016_j_epsr_2025_111427
crossref_primary_10_1088_1742_6596_1972_1_012017
crossref_primary_10_1109_TPWRS_2018_2797069
crossref_primary_10_1016_j_ejor_2021_03_003
crossref_primary_10_1109_TPWRS_2020_3001235
crossref_primary_10_1109_JSYST_2021_3135295
crossref_primary_10_1016_j_ejor_2025_03_001
crossref_primary_10_1109_TPWRS_2023_3303313
crossref_primary_10_1016_j_epsr_2023_109671
crossref_primary_10_1109_TPWRS_2021_3049717
crossref_primary_10_1109_TSG_2023_3263273
crossref_primary_10_1016_j_epsr_2023_109776
crossref_primary_10_1007_s11356_022_20118_z
crossref_primary_10_3390_en18020297
crossref_primary_10_1016_j_apenergy_2020_115005
crossref_primary_10_1109_TSG_2018_2834564
crossref_primary_10_1109_TSG_2022_3154023
crossref_primary_10_1109_TSTE_2019_2936581
crossref_primary_10_1007_s40518_019_00132_5
crossref_primary_10_3390_en12122412
crossref_primary_10_1016_j_apenergy_2022_120392
crossref_primary_10_1049_iet_gtd_2018_5335
crossref_primary_10_32604_ee_2022_020011
crossref_primary_10_32604_ee_2022_021342
crossref_primary_10_1109_TPWRD_2020_3021702
crossref_primary_10_1109_TII_2021_3125964
crossref_primary_10_1287_ijoc_2020_1041
crossref_primary_10_1109_TSG_2018_2792322
crossref_primary_10_1109_TSTE_2019_2894693
crossref_primary_10_1007_s13369_021_05549_z
crossref_primary_10_1016_j_epsr_2025_111605
crossref_primary_10_1002_wat2_1756
crossref_primary_10_1051_e3sconf_202125701050
crossref_primary_10_1016_j_renene_2020_10_131
crossref_primary_10_3390_en11112981
crossref_primary_10_1016_j_apenergy_2024_123148
crossref_primary_10_1016_j_trb_2021_05_015
crossref_primary_10_1016_j_energy_2022_125107
crossref_primary_10_1007_s12667_021_00486_0
crossref_primary_10_1016_j_epsr_2021_107758
crossref_primary_10_1109_TPWRS_2021_3081557
crossref_primary_10_1287_opre_2021_0211
crossref_primary_10_1016_j_ijepes_2023_109396
crossref_primary_10_1109_TPWRS_2022_3227178
crossref_primary_10_48084_etasr_3508
crossref_primary_10_1109_TSTE_2020_3026370
crossref_primary_10_3390_app11093987
crossref_primary_10_3390_su15032835
crossref_primary_10_1016_j_compchemeng_2019_03_034
crossref_primary_10_1049_iet_gtd_2020_0469
crossref_primary_10_1016_j_eswa_2022_117590
crossref_primary_10_3390_en11113142
crossref_primary_10_1109_TPWRS_2018_2792938
crossref_primary_10_1016_j_energy_2021_120182
crossref_primary_10_1049_iet_gtd_2018_5552
crossref_primary_10_1007_s11708_020_0665_4
crossref_primary_10_1109_TPWRS_2023_3283472
crossref_primary_10_1109_TPWRS_2018_2890714
crossref_primary_10_1016_j_ijepes_2020_106321
crossref_primary_10_23919_IEN_2023_0010
crossref_primary_10_1109_TSTE_2017_2788041
crossref_primary_10_1016_j_ynexs_2025_100057
crossref_primary_10_1109_JSYST_2018_2837224
crossref_primary_10_1109_TPWRS_2020_3045223
crossref_primary_10_1016_j_enconman_2022_115338
crossref_primary_10_1109_TPWRS_2021_3096144
crossref_primary_10_1109_TPWRS_2023_3262789
crossref_primary_10_1080_15435075_2024_2324344
crossref_primary_10_3390_su15129769
crossref_primary_10_1109_ACCESS_2019_2942178
crossref_primary_10_1049_iet_gtd_2017_2062
crossref_primary_10_1109_TSG_2017_2677481
crossref_primary_10_1016_j_ijepes_2023_109494
crossref_primary_10_1016_j_omega_2024_103110
crossref_primary_10_3390_en12132534
Cites_doi 10.1007/s10107-003-0454-y
10.1109/TPWRS.2008.919318
10.1109/TPWRS.2013.2251916
10.1109/TPWRS.2008.922526
10.1109/TPWRS.2013.2244231
10.1109/TPWRS.2006.876672
10.1287/opre.1090.0741
10.1137/1.9781611970524
10.1287/opre.1070.0457
10.1109/TPWRS.2009.2016470
10.1023/A:1021805924152
10.1109/PCT.2007.4538517
10.1109/TPWRS.2011.2121095
10.1109/PSCC.2014.7038414
10.1109/59.466524
10.1109/PESGM.2012.6345297
10.1287/opre.1090.0795
10.1049/iet-gtd.2012.0660
10.1016/S0167-6377(99)00016-4
10.1007/BF01585511
10.1515/9781400831050
10.1080/02331930801954177
10.1137/130910312
10.1109/TPWRS.2012.2205021
10.1109/PES.2011.6039516
10.1287/opre.1110.1011
10.1287/opre.2013.1174
10.1109/TPWRS.2010.2087367
10.1109/PMAPS.2006.360195
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2016.2544795
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 49
ExternalDocumentID 10_1109_TPWRS_2016_2544795
7457327
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c361t-874dd37b79c0bc5b9664d4ef52563cbd58a08af7d5d0efd62161b4f1b5e3c35d3
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Fri Jul 25 05:59:08 EDT 2025
Tue Jul 01 01:35:35 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Wed Aug 27 02:51:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-874dd37b79c0bc5b9664d4ef52563cbd58a08af7d5d0efd62161b4f1b5e3c35d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1856386049
PQPubID 85441
PageCount 11
ParticipantIDs proquest_journals_1856386049
crossref_citationtrail_10_1109_TPWRS_2016_2544795
ieee_primary_7457327
crossref_primary_10_1109_TPWRS_2016_2544795
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Jan.
2017-1-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-Jan.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
zhao (ref13) 2010
ref37
ref15
hodge (ref28) 2012
ref31
ref30
ref33
ref11
ref32
ref10
jiang (ref14) 2011
ref1
ref39
ref17
ref16
ref19
(ref36) 2015
lorca (ref18) 2014
bertsimas (ref26) 2013
scarf (ref21) 1958
ref24
ref23
ref25
ref20
ref22
ref27
ref29
birge (ref2) 1997
ref8
ref7
ref9
ref4
ref3
ref6
ref5
thiele (ref38) 2010
References_xml – year: 2011
  ident: ref14
– ident: ref31
  doi: 10.1007/s10107-003-0454-y
– ident: ref1
  doi: 10.1109/TPWRS.2008.919318
– ident: ref20
  doi: 10.1109/TPWRS.2013.2251916
– year: 2013
  ident: ref26
– ident: ref37
  doi: 10.1109/TPWRS.2008.922526
– year: 2014
  ident: ref18
– ident: ref16
  doi: 10.1109/TPWRS.2013.2244231
– ident: ref30
  doi: 10.1109/TPWRS.2006.876672
– ident: ref25
  doi: 10.1287/opre.1090.0741
– ident: ref39
  doi: 10.1137/1.9781611970524
– ident: ref32
  doi: 10.1287/opre.1070.0457
– ident: ref5
  doi: 10.1109/TPWRS.2009.2016470
– ident: ref8
  doi: 10.1023/A:1021805924152
– ident: ref22
  doi: 10.1287/opre.1090.0741
– ident: ref4
  doi: 10.1109/PCT.2007.4538517
– ident: ref7
  doi: 10.1109/TPWRS.2011.2121095
– ident: ref17
  doi: 10.1109/PSCC.2014.7038414
– ident: ref29
  doi: 10.1109/59.466524
– ident: ref12
  doi: 10.1109/PESGM.2012.6345297
– ident: ref24
  doi: 10.1287/opre.1090.0795
– ident: ref19
  doi: 10.1049/iet-gtd.2012.0660
– year: 2010
  ident: ref38
– ident: ref34
  doi: 10.1016/S0167-6377(99)00016-4
– ident: ref33
  doi: 10.1007/BF01585511
– ident: ref10
  doi: 10.1515/9781400831050
– ident: ref35
  doi: 10.1080/02331930801954177
– year: 2012
  ident: ref28
– ident: ref27
  doi: 10.1137/130910312
– ident: ref15
  doi: 10.1109/TPWRS.2012.2205021
– ident: ref9
  doi: 10.1109/PES.2011.6039516
– start-page: 201
  year: 1958
  ident: ref21
  article-title: A min-max solution of an inventory problem
  publication-title: Studies in the Mathematical Theory of Inventory and Production
– ident: ref23
  doi: 10.1287/opre.1110.1011
– ident: ref6
  doi: 10.1287/opre.2013.1174
– ident: ref11
  doi: 10.1109/TPWRS.2010.2087367
– year: 2015
  ident: ref36
– year: 1997
  ident: ref2
  publication-title: Introduction to Stochastic Programming
– ident: ref3
  doi: 10.1109/PMAPS.2006.360195
– year: 2010
  ident: ref13
SSID ssj0006679
Score 2.629125
Snippet This paper proposes a distributionally robust optimization model for solving unit commitment (UC) problems considering volatile wind power generation. The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Ambiguity
Approximation
Decisions
Distributionally robust optimization
Electric power generation
generalized decision rule
Optimization
Optimization models
Parameter uncertainty
Power dispatch
Random variables
Robustness
Stochastic processes
Uncertainty
Unit commitment
Wind forecasting
Wind power
Wind power generation
Title A Distributionally Robust Optimization Model for Unit Commitment Considering Uncertain Wind Power Generation
URI https://ieeexplore.ieee.org/document/7457327
https://www.proquest.com/docview/1856386049
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6lOcGhtBTUQFvtgRvY2Xgfto9VS1UhtVSlVXKzvA9LCJNUjXNofz0z64ciQIibJe-uLX3rmW_WM_MBfECvnSROJBFXhgIUmUUlEucoy41PE2GFMiFB9lpf3ssvC7UYwaehFsZ7H5LPfEyX4V--W9kNHZVNU6lSkaQ7sIOBW1urNVhdrdu-elmm8EGK9wUyPJ_e3cxvv1EWl46pIVdKWhJbTiioqvxhioN_uXgFV_2btWklP-JNY2L7_FvTxv999T3Y7YgmO213xj6M_PI1vNxqP3gA9Sk7p765neRVWddP7HZlNuuGfUVL8rMr0WSkl1YzZLeMGCqjmpLvITmd9XKfuBzes216AZtjnM9uSH6NtV2taZU3cH_x-e7sMurUFyIr9KxBMymdE6lJc8uNRci0lk76SiFJEtY4lZU8K6vUKcd95XSC3NHIamaUJ4ideAvj5WrpD4EpUXHFK5-5ykpe2tzluVRlIn1WCavVBGY9HIXtWpOTQkZdhBCF50WAsCAIiw7CCXwc5jy0jTn-OfqAMBlGdnBM4KhHvei-3XWBDAaNksbQ6d3fZ72HFwk593AQcwTj5nHjj5GaNOYk7MlfzDDhDw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V9gAcoKVUXSjFBzihbL1-JTlwqCjVlj6oylbtLY0fkSrS3YrNCpXfwl_hvzF2nFVFEbdK3CIldmJ7PPONM_MNwBu02oxZzhIqtXdQRJaUCJyTLNcuZdxwqUOA7JEanopP5_J8AX7Oc2GccyH4zPX9ZfiXbydm5o_KtlIhU87SGEK5726-o4M2fb-3g6v5lrHdj6MPwyTWEEgMV4MGN7uwlqc6zQ3VBl-slLDCVRJNPTfayqykWVmlVlrqKqsYIiAtqoGWzn-o5djvA1hCnCFZmx021_NKtUx-WSZxaJJ2KTk03xodn5188XFjqu8pwFJfveKW2Qt1XO4o_2DRdp_Cr24u2kCWr_1Zo_vmxx80kf_rZC3DkwilyXYr-yuw4MbP4PEtgsVVqLfJjmcGjkW9yrq-IScTPZs25DPqyquYhEp8RbiaIH4nHoMTnzVzGcLvSVfQFLvDe6YNoCBnl2NLjn2BOdLydvtensPpvQx3DRbHk7FbByJ5RSWtXGYrI2hpcpvnQpZMuKziRskeDLrlL0wkX_c1QOoiOGE0L4LIFF5kiigyPXg3b3PdUo_88-lVLwPzJ-Py92Cjk7IiaqdpgRgN1a5C5_DF31u9hofD0eFBcbB3tP8SHjEPZcKx0wYsNt9m7hUCsUZvhv1A4OK-Zeo3TrVABQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distributionally+Robust+Optimization+Model+for+Unit+Commitment+Considering+Uncertain+Wind+Power+Generation&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Peng+Xiong&rft.au=Jirutitijaroen%2C+Panida&rft.au=Singh%2C+Chanan&rft.date=2017-01-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=32&rft.issue=1&rft.spage=39&rft.epage=49&rft_id=info:doi/10.1109%2FTPWRS.2016.2544795&rft.externalDocID=7457327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon