A Distributionally Robust Optimization Model for Unit Commitment Considering Uncertain Wind Power Generation
This paper proposes a distributionally robust optimization model for solving unit commitment (UC) problems considering volatile wind power generation. The uncertainty of wind power is captured by an ambiguity set that defines a family of wind power distributions, and the expected total cost under th...
Saved in:
Published in | IEEE transactions on power systems Vol. 32; no. 1; pp. 39 - 49 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a distributionally robust optimization model for solving unit commitment (UC) problems considering volatile wind power generation. The uncertainty of wind power is captured by an ambiguity set that defines a family of wind power distributions, and the expected total cost under the worst-case distribution is minimized. Compared with stochastic programming, this method may have less dependence on the data of exact probability distributions. It should also outperform the conventional robust optimization methods because some distribution information can be incorporated into the ambiguity sets to generate less conservative results. In this paper, the UC model is formulated based on the typical two-stage framework, where the UC decisions are determined in a here-and-now manner, and the economic dispatch decisions are assumed to be wait-and-see, made after the observation of wind power outcomes. For computational tractability, the wait-and-see decisions are addressed by linear decision rule approximation, assuming that the economic dispatch decisions affinely depend on uncertain parameters as well as auxiliary random variables introduced to describe distributional characteristics of wind power generation. It is shown in case studies that this decision rule model tends to provide a tight approximation to the original two-stage problem, and the performance of UC solutions may be greatly improved by incorporating information on wind power distributions into the robust model. |
---|---|
AbstractList | This paper proposes a distributionally robust optimization model for solving unit commitment (UC) problems considering volatile wind power generation. The uncertainty of wind power is captured by an ambiguity set that defines a family of wind power distributions, and the expected total cost under the worst-case distribution is minimized. Compared with stochastic programming, this method may have less dependence on the data of exact probability distributions. It should also outperform the conventional robust optimization methods because some distribution information can be incorporated into the ambiguity sets to generate less conservative results. In this paper, the UC model is formulated based on the typical two-stage framework, where the UC decisions are determined in a here-and-now manner, and the economic dispatch decisions are assumed to be wait-and-see , made after the observation of wind power outcomes. For computational tractability, the wait-and-see decisions are addressed by linear decision rule approximation, assuming that the economic dispatch decisions affinely depend on uncertain parameters as well as auxiliary random variables introduced to describe distributional characteristics of wind power generation. It is shown in case studies that this decision rule model tends to provide a tight approximation to the original two-stage problem, and the performance of UC solutions may be greatly improved by incorporating information on wind power distributions into the robust model. |
Author | Singh, Chanan Jirutitijaroen, Panida Peng Xiong |
Author_xml | – sequence: 1 surname: Peng Xiong fullname: Peng Xiong email: xiongpengnus@gmail.com organization: Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA – sequence: 2 givenname: Panida surname: Jirutitijaroen fullname: Jirutitijaroen, Panida email: elejp@nus.edu.sg organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore – sequence: 3 givenname: Chanan surname: Singh fullname: Singh, Chanan email: singh@ece.tamu.edu organization: Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA |
BookMark | eNp9kE9Lw0AQxRepYFv9AnpZ8Jy6m2T_5FiqVkFRtKXHkGQnsiXZrbtbpH56k7Z48OBphnnze8y8ERoYawChS0omlJLsZvG6enufxITySczSVGTsBA0pYzIiXGQDNCRSskhmjJyhkfdrQgjvhCFqpvhW--B0uQ3amqJpdvjNllsf8Msm6FZ_F_0cP1sFDa6tw0ujA57ZttWhBdO3xmsFTpuPTqvAhUIbvNJG4Vf7BQ7PwYDbu5yj07poPFwc6xgt7-8Ws4fo6WX-OJs-RVXCaYikSJVKRCmyipQVKzPOU5VCzWLGk6pUTBZEFrVQTBGoFY8pp2Va05JBUiVMJWN0ffDdOPu5BR_ytd267jmfU9l5SE7SrNuSh63KWe8d1Hmlw_7O4Ard5JTkfbb5Ptu8zzY_Ztuh8R9043RbuN3_0NUB0gDwC4iUiSQWyQ-iSon4 |
CODEN | ITPSEG |
CitedBy_id | crossref_primary_10_1109_TPWRS_2016_2633299 crossref_primary_10_1016_j_rser_2018_07_056 crossref_primary_10_1109_TPWRS_2023_3252502 crossref_primary_10_1016_j_energy_2020_118723 crossref_primary_10_1109_TPWRS_2019_2891057 crossref_primary_10_1109_TPWRS_2019_2954710 crossref_primary_10_3390_jmse12112087 crossref_primary_10_1049_iet_rpg_2019_1489 crossref_primary_10_1109_TPWRS_2017_2725581 crossref_primary_10_1109_TSTE_2021_3063473 crossref_primary_10_1109_TPWRS_2021_3060427 crossref_primary_10_1109_TSTE_2016_2610948 crossref_primary_10_1016_j_ijepes_2018_07_048 crossref_primary_10_1049_rpg2_70003 crossref_primary_10_1016_j_esr_2023_101255 crossref_primary_10_1088_1742_6596_2215_1_012001 crossref_primary_10_1109_TSG_2023_3236019 crossref_primary_10_3390_en11082124 crossref_primary_10_1109_TPWRS_2024_3351435 crossref_primary_10_3390_en10040535 crossref_primary_10_1109_TPWRS_2019_2907170 crossref_primary_10_1049_iet_gtd_2018_6331 crossref_primary_10_3390_su151511840 crossref_primary_10_1016_j_epsr_2023_109710 crossref_primary_10_1016_j_epsr_2023_109833 crossref_primary_10_1049_iet_gtd_2019_1402 crossref_primary_10_1109_TITS_2023_3315955 crossref_primary_10_1109_TCOMM_2024_3397809 crossref_primary_10_1109_TPWRS_2019_2958850 crossref_primary_10_1109_TPWRS_2022_3147104 crossref_primary_10_3390_electronics13010211 crossref_primary_10_1109_TSTE_2018_2825361 crossref_primary_10_1016_j_orl_2021_01_012 crossref_primary_10_1016_j_energy_2021_122041 crossref_primary_10_1016_j_rser_2020_110098 crossref_primary_10_1109_TPWRS_2019_2960389 crossref_primary_10_1016_j_epsr_2019_105986 crossref_primary_10_1016_j_ijepes_2019_05_054 crossref_primary_10_1049_rpg2_12037 crossref_primary_10_3934_jimo_2020038 crossref_primary_10_1109_TPWRS_2018_2889942 crossref_primary_10_1109_TSTE_2024_3411577 crossref_primary_10_1109_TPWRS_2022_3230320 crossref_primary_10_1049_rpg2_12836 crossref_primary_10_1109_TSTE_2020_3039758 crossref_primary_10_3390_su13052526 crossref_primary_10_1049_iet_rpg_2019_0964 crossref_primary_10_3390_su11082218 crossref_primary_10_1007_s11356_023_27913_2 crossref_primary_10_1109_TPWRS_2019_2941635 crossref_primary_10_1109_TSTE_2020_2989793 crossref_primary_10_3390_en15030825 crossref_primary_10_3389_fenrg_2023_1137305 crossref_primary_10_1016_j_epsr_2020_106745 crossref_primary_10_1016_j_jclepro_2019_118393 crossref_primary_10_3390_en16227636 crossref_primary_10_3390_math9212686 crossref_primary_10_1109_TPWRS_2022_3149506 crossref_primary_10_1109_TSG_2018_2803783 crossref_primary_10_3390_en14175246 crossref_primary_10_1049_iet_rpg_2018_6169 crossref_primary_10_3390_fractalfract5040140 crossref_primary_10_1109_ACCESS_2019_2922619 crossref_primary_10_1049_iet_gtd_2020_0849 crossref_primary_10_1016_j_trc_2023_104143 crossref_primary_10_1109_TPWRS_2020_2979118 crossref_primary_10_1109_TPWRS_2017_2695002 crossref_primary_10_1109_TSTE_2024_3374212 crossref_primary_10_1016_j_egyr_2022_09_086 crossref_primary_10_1016_j_egyai_2024_100389 crossref_primary_10_1109_ACCESS_2022_3151922 crossref_primary_10_1049_iet_gtd_2019_1895 crossref_primary_10_1007_s11630_020_1397_9 crossref_primary_10_1016_j_jclepro_2021_129954 crossref_primary_10_1109_TPWRS_2018_2807623 crossref_primary_10_1109_ACCESS_2021_3131163 crossref_primary_10_1007_s12667_017_0265_5 crossref_primary_10_1109_TPWRS_2024_3391920 crossref_primary_10_3390_pr13010113 crossref_primary_10_1109_TPWRS_2017_2741506 crossref_primary_10_1109_ACCESS_2021_3123792 crossref_primary_10_1049_joe_2018_8926 crossref_primary_10_3390_en14185618 crossref_primary_10_1016_j_apenergy_2022_118813 crossref_primary_10_1049_iet_gtd_2020_0861 crossref_primary_10_1109_TPWRS_2018_2867226 crossref_primary_10_1109_ACCESS_2022_3145973 crossref_primary_10_1016_j_egyr_2022_08_021 crossref_primary_10_1016_j_energy_2019_116827 crossref_primary_10_1109_TCYB_2021_3064556 crossref_primary_10_1016_j_apenergy_2020_115509 crossref_primary_10_1155_2022_1994063 crossref_primary_10_1007_s40565_019_0558_x crossref_primary_10_1109_TPWRS_2020_2973596 crossref_primary_10_1016_j_ifacol_2020_12_801 crossref_primary_10_1109_TSG_2020_2987009 crossref_primary_10_1016_j_compchemeng_2017_12_002 crossref_primary_10_3390_su141711002 crossref_primary_10_1049_rpg2_12073 crossref_primary_10_1016_j_asoc_2019_105732 crossref_primary_10_1016_j_scs_2024_105649 crossref_primary_10_1109_TPWRS_2020_2985572 crossref_primary_10_1109_TPWRS_2018_2844356 crossref_primary_10_1177_0142331218823858 crossref_primary_10_1016_j_cie_2021_107797 crossref_primary_10_1109_ACCESS_2021_3101569 crossref_primary_10_1109_TII_2019_2938444 crossref_primary_10_1109_TSTE_2018_2828421 crossref_primary_10_1016_j_energy_2020_119171 crossref_primary_10_1016_j_trb_2023_02_004 crossref_primary_10_1016_j_segan_2025_101664 crossref_primary_10_1109_TPWRS_2022_3145907 crossref_primary_10_1016_j_gloei_2021_01_004 crossref_primary_10_1016_j_renene_2018_11_094 crossref_primary_10_1016_j_ijepes_2020_106161 crossref_primary_10_1049_iet_gtd_2019_1344 crossref_primary_10_1111_risa_13995 crossref_primary_10_1109_TPWRS_2017_2699121 crossref_primary_10_1109_TPWRS_2022_3171515 crossref_primary_10_1016_j_energy_2018_01_078 crossref_primary_10_1109_TSG_2021_3113573 crossref_primary_10_1016_j_epsr_2024_111015 crossref_primary_10_1002_ese3_1530 crossref_primary_10_1109_ACCESS_2021_3108905 crossref_primary_10_1016_j_energy_2022_123113 crossref_primary_10_1016_j_est_2024_110770 crossref_primary_10_1016_j_rser_2022_112428 crossref_primary_10_1016_j_ijepes_2023_109643 crossref_primary_10_1016_j_eneco_2017_03_022 crossref_primary_10_1016_j_asoc_2023_110957 crossref_primary_10_1016_j_ijepes_2021_107463 crossref_primary_10_1007_s40998_020_00341_5 crossref_primary_10_1016_j_apenergy_2019_113918 crossref_primary_10_1109_TSTE_2023_3240203 crossref_primary_10_1007_s10479_018_3003_z crossref_primary_10_1109_TSTE_2022_3160842 crossref_primary_10_1109_ACCESS_2021_3134872 crossref_primary_10_1016_j_heliyon_2024_e27615 crossref_primary_10_1016_j_ijepes_2020_106427 crossref_primary_10_1016_j_est_2023_107080 crossref_primary_10_1109_TSG_2019_2911023 crossref_primary_10_1287_ijoc_2022_1243 crossref_primary_10_1016_j_isatra_2019_05_029 crossref_primary_10_1016_j_segan_2022_100698 crossref_primary_10_1109_TPWRS_2022_3224142 crossref_primary_10_1016_j_ejor_2018_08_031 crossref_primary_10_1109_TII_2023_3296869 crossref_primary_10_1016_j_epsr_2023_109437 crossref_primary_10_1109_TPWRS_2019_2893296 crossref_primary_10_3390_electronics13030667 crossref_primary_10_1016_j_energy_2022_125434 crossref_primary_10_1109_JSYST_2023_3290775 crossref_primary_10_1109_ACCESS_2021_3070592 crossref_primary_10_1016_j_segan_2023_101250 crossref_primary_10_1109_TPWRS_2024_3406504 crossref_primary_10_1109_TTE_2024_3365525 crossref_primary_10_1109_TII_2022_3152815 crossref_primary_10_1109_TII_2021_3079364 crossref_primary_10_1109_TPWRS_2019_2950987 crossref_primary_10_1016_j_epsr_2025_111427 crossref_primary_10_1088_1742_6596_1972_1_012017 crossref_primary_10_1109_TPWRS_2018_2797069 crossref_primary_10_1016_j_ejor_2021_03_003 crossref_primary_10_1109_TPWRS_2020_3001235 crossref_primary_10_1109_JSYST_2021_3135295 crossref_primary_10_1016_j_ejor_2025_03_001 crossref_primary_10_1109_TPWRS_2023_3303313 crossref_primary_10_1016_j_epsr_2023_109671 crossref_primary_10_1109_TPWRS_2021_3049717 crossref_primary_10_1109_TSG_2023_3263273 crossref_primary_10_1016_j_epsr_2023_109776 crossref_primary_10_1007_s11356_022_20118_z crossref_primary_10_3390_en18020297 crossref_primary_10_1016_j_apenergy_2020_115005 crossref_primary_10_1109_TSG_2018_2834564 crossref_primary_10_1109_TSG_2022_3154023 crossref_primary_10_1109_TSTE_2019_2936581 crossref_primary_10_1007_s40518_019_00132_5 crossref_primary_10_3390_en12122412 crossref_primary_10_1016_j_apenergy_2022_120392 crossref_primary_10_1049_iet_gtd_2018_5335 crossref_primary_10_32604_ee_2022_020011 crossref_primary_10_32604_ee_2022_021342 crossref_primary_10_1109_TPWRD_2020_3021702 crossref_primary_10_1109_TII_2021_3125964 crossref_primary_10_1287_ijoc_2020_1041 crossref_primary_10_1109_TSG_2018_2792322 crossref_primary_10_1109_TSTE_2019_2894693 crossref_primary_10_1007_s13369_021_05549_z crossref_primary_10_1016_j_epsr_2025_111605 crossref_primary_10_1002_wat2_1756 crossref_primary_10_1051_e3sconf_202125701050 crossref_primary_10_1016_j_renene_2020_10_131 crossref_primary_10_3390_en11112981 crossref_primary_10_1016_j_apenergy_2024_123148 crossref_primary_10_1016_j_trb_2021_05_015 crossref_primary_10_1016_j_energy_2022_125107 crossref_primary_10_1007_s12667_021_00486_0 crossref_primary_10_1016_j_epsr_2021_107758 crossref_primary_10_1109_TPWRS_2021_3081557 crossref_primary_10_1287_opre_2021_0211 crossref_primary_10_1016_j_ijepes_2023_109396 crossref_primary_10_1109_TPWRS_2022_3227178 crossref_primary_10_48084_etasr_3508 crossref_primary_10_1109_TSTE_2020_3026370 crossref_primary_10_3390_app11093987 crossref_primary_10_3390_su15032835 crossref_primary_10_1016_j_compchemeng_2019_03_034 crossref_primary_10_1049_iet_gtd_2020_0469 crossref_primary_10_1016_j_eswa_2022_117590 crossref_primary_10_3390_en11113142 crossref_primary_10_1109_TPWRS_2018_2792938 crossref_primary_10_1016_j_energy_2021_120182 crossref_primary_10_1049_iet_gtd_2018_5552 crossref_primary_10_1007_s11708_020_0665_4 crossref_primary_10_1109_TPWRS_2023_3283472 crossref_primary_10_1109_TPWRS_2018_2890714 crossref_primary_10_1016_j_ijepes_2020_106321 crossref_primary_10_23919_IEN_2023_0010 crossref_primary_10_1109_TSTE_2017_2788041 crossref_primary_10_1016_j_ynexs_2025_100057 crossref_primary_10_1109_JSYST_2018_2837224 crossref_primary_10_1109_TPWRS_2020_3045223 crossref_primary_10_1016_j_enconman_2022_115338 crossref_primary_10_1109_TPWRS_2021_3096144 crossref_primary_10_1109_TPWRS_2023_3262789 crossref_primary_10_1080_15435075_2024_2324344 crossref_primary_10_3390_su15129769 crossref_primary_10_1109_ACCESS_2019_2942178 crossref_primary_10_1049_iet_gtd_2017_2062 crossref_primary_10_1109_TSG_2017_2677481 crossref_primary_10_1016_j_ijepes_2023_109494 crossref_primary_10_1016_j_omega_2024_103110 crossref_primary_10_3390_en12132534 |
Cites_doi | 10.1007/s10107-003-0454-y 10.1109/TPWRS.2008.919318 10.1109/TPWRS.2013.2251916 10.1109/TPWRS.2008.922526 10.1109/TPWRS.2013.2244231 10.1109/TPWRS.2006.876672 10.1287/opre.1090.0741 10.1137/1.9781611970524 10.1287/opre.1070.0457 10.1109/TPWRS.2009.2016470 10.1023/A:1021805924152 10.1109/PCT.2007.4538517 10.1109/TPWRS.2011.2121095 10.1109/PSCC.2014.7038414 10.1109/59.466524 10.1109/PESGM.2012.6345297 10.1287/opre.1090.0795 10.1049/iet-gtd.2012.0660 10.1016/S0167-6377(99)00016-4 10.1007/BF01585511 10.1515/9781400831050 10.1080/02331930801954177 10.1137/130910312 10.1109/TPWRS.2012.2205021 10.1109/PES.2011.6039516 10.1287/opre.1110.1011 10.1287/opre.2013.1174 10.1109/TPWRS.2010.2087367 10.1109/PMAPS.2006.360195 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TPWRS.2016.2544795 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0679 |
EndPage | 49 |
ExternalDocumentID | 10_1109_TPWRS_2016_2544795 7457327 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c361t-874dd37b79c0bc5b9664d4ef52563cbd58a08af7d5d0efd62161b4f1b5e3c35d3 |
IEDL.DBID | RIE |
ISSN | 0885-8950 |
IngestDate | Fri Jul 25 05:59:08 EDT 2025 Tue Jul 01 01:35:35 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Wed Aug 27 02:51:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-874dd37b79c0bc5b9664d4ef52563cbd58a08af7d5d0efd62161b4f1b5e3c35d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1856386049 |
PQPubID | 85441 |
PageCount | 11 |
ParticipantIDs | proquest_journals_1856386049 crossref_citationtrail_10_1109_TPWRS_2016_2544795 ieee_primary_7457327 crossref_primary_10_1109_TPWRS_2016_2544795 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Jan. 2017-1-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-Jan. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power systems |
PublicationTitleAbbrev | TPWRS |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 zhao (ref13) 2010 ref37 ref15 hodge (ref28) 2012 ref31 ref30 ref33 ref11 ref32 ref10 jiang (ref14) 2011 ref1 ref39 ref17 ref16 ref19 (ref36) 2015 lorca (ref18) 2014 bertsimas (ref26) 2013 scarf (ref21) 1958 ref24 ref23 ref25 ref20 ref22 ref27 ref29 birge (ref2) 1997 ref8 ref7 ref9 ref4 ref3 ref6 ref5 thiele (ref38) 2010 |
References_xml | – year: 2011 ident: ref14 – ident: ref31 doi: 10.1007/s10107-003-0454-y – ident: ref1 doi: 10.1109/TPWRS.2008.919318 – ident: ref20 doi: 10.1109/TPWRS.2013.2251916 – year: 2013 ident: ref26 – ident: ref37 doi: 10.1109/TPWRS.2008.922526 – year: 2014 ident: ref18 – ident: ref16 doi: 10.1109/TPWRS.2013.2244231 – ident: ref30 doi: 10.1109/TPWRS.2006.876672 – ident: ref25 doi: 10.1287/opre.1090.0741 – ident: ref39 doi: 10.1137/1.9781611970524 – ident: ref32 doi: 10.1287/opre.1070.0457 – ident: ref5 doi: 10.1109/TPWRS.2009.2016470 – ident: ref8 doi: 10.1023/A:1021805924152 – ident: ref22 doi: 10.1287/opre.1090.0741 – ident: ref4 doi: 10.1109/PCT.2007.4538517 – ident: ref7 doi: 10.1109/TPWRS.2011.2121095 – ident: ref17 doi: 10.1109/PSCC.2014.7038414 – ident: ref29 doi: 10.1109/59.466524 – ident: ref12 doi: 10.1109/PESGM.2012.6345297 – ident: ref24 doi: 10.1287/opre.1090.0795 – ident: ref19 doi: 10.1049/iet-gtd.2012.0660 – year: 2010 ident: ref38 – ident: ref34 doi: 10.1016/S0167-6377(99)00016-4 – ident: ref33 doi: 10.1007/BF01585511 – ident: ref10 doi: 10.1515/9781400831050 – ident: ref35 doi: 10.1080/02331930801954177 – year: 2012 ident: ref28 – ident: ref27 doi: 10.1137/130910312 – ident: ref15 doi: 10.1109/TPWRS.2012.2205021 – ident: ref9 doi: 10.1109/PES.2011.6039516 – start-page: 201 year: 1958 ident: ref21 article-title: A min-max solution of an inventory problem publication-title: Studies in the Mathematical Theory of Inventory and Production – ident: ref23 doi: 10.1287/opre.1110.1011 – ident: ref6 doi: 10.1287/opre.2013.1174 – ident: ref11 doi: 10.1109/TPWRS.2010.2087367 – year: 2015 ident: ref36 – year: 1997 ident: ref2 publication-title: Introduction to Stochastic Programming – ident: ref3 doi: 10.1109/PMAPS.2006.360195 – year: 2010 ident: ref13 |
SSID | ssj0006679 |
Score | 2.629125 |
Snippet | This paper proposes a distributionally robust optimization model for solving unit commitment (UC) problems considering volatile wind power generation. The... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 39 |
SubjectTerms | Ambiguity Approximation Decisions Distributionally robust optimization Electric power generation generalized decision rule Optimization Optimization models Parameter uncertainty Power dispatch Random variables Robustness Stochastic processes Uncertainty Unit commitment Wind forecasting Wind power Wind power generation |
Title | A Distributionally Robust Optimization Model for Unit Commitment Considering Uncertain Wind Power Generation |
URI | https://ieeexplore.ieee.org/document/7457327 https://www.proquest.com/docview/1856386049 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6lOcGhtBTUQFvtgRvY2Xgfto9VS1UhtVSlVXKzvA9LCJNUjXNofz0z64ciQIibJe-uLX3rmW_WM_MBfECvnSROJBFXhgIUmUUlEucoy41PE2GFMiFB9lpf3ssvC7UYwaehFsZ7H5LPfEyX4V--W9kNHZVNU6lSkaQ7sIOBW1urNVhdrdu-elmm8EGK9wUyPJ_e3cxvv1EWl46pIVdKWhJbTiioqvxhioN_uXgFV_2btWklP-JNY2L7_FvTxv999T3Y7YgmO213xj6M_PI1vNxqP3gA9Sk7p765neRVWddP7HZlNuuGfUVL8rMr0WSkl1YzZLeMGCqjmpLvITmd9XKfuBzes216AZtjnM9uSH6NtV2taZU3cH_x-e7sMurUFyIr9KxBMymdE6lJc8uNRci0lk76SiFJEtY4lZU8K6vUKcd95XSC3NHIamaUJ4ideAvj5WrpD4EpUXHFK5-5ykpe2tzluVRlIn1WCavVBGY9HIXtWpOTQkZdhBCF50WAsCAIiw7CCXwc5jy0jTn-OfqAMBlGdnBM4KhHvei-3XWBDAaNksbQ6d3fZ72HFwk593AQcwTj5nHjj5GaNOYk7MlfzDDhDw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V9gAcoKVUXSjFBzihbL1-JTlwqCjVlj6oylbtLY0fkSrS3YrNCpXfwl_hvzF2nFVFEbdK3CIldmJ7PPONM_MNwBu02oxZzhIqtXdQRJaUCJyTLNcuZdxwqUOA7JEanopP5_J8AX7Oc2GccyH4zPX9ZfiXbydm5o_KtlIhU87SGEK5726-o4M2fb-3g6v5lrHdj6MPwyTWEEgMV4MGN7uwlqc6zQ3VBl-slLDCVRJNPTfayqykWVmlVlrqKqsYIiAtqoGWzn-o5djvA1hCnCFZmx021_NKtUx-WSZxaJJ2KTk03xodn5188XFjqu8pwFJfveKW2Qt1XO4o_2DRdp_Cr24u2kCWr_1Zo_vmxx80kf_rZC3DkwilyXYr-yuw4MbP4PEtgsVVqLfJjmcGjkW9yrq-IScTPZs25DPqyquYhEp8RbiaIH4nHoMTnzVzGcLvSVfQFLvDe6YNoCBnl2NLjn2BOdLydvtensPpvQx3DRbHk7FbByJ5RSWtXGYrI2hpcpvnQpZMuKziRskeDLrlL0wkX_c1QOoiOGE0L4LIFF5kiigyPXg3b3PdUo_88-lVLwPzJ-Py92Cjk7IiaqdpgRgN1a5C5_DF31u9hofD0eFBcbB3tP8SHjEPZcKx0wYsNt9m7hUCsUZvhv1A4OK-Zeo3TrVABQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distributionally+Robust+Optimization+Model+for+Unit+Commitment+Considering+Uncertain+Wind+Power+Generation&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Peng+Xiong&rft.au=Jirutitijaroen%2C+Panida&rft.au=Singh%2C+Chanan&rft.date=2017-01-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=32&rft.issue=1&rft.spage=39&rft.epage=49&rft_id=info:doi/10.1109%2FTPWRS.2016.2544795&rft.externalDocID=7457327 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |