Machine Learning Methods for Pipeline Surveillance Systems Based on Distributed Acoustic Sensing: A Review

There is an increasing interest in researchers and companies on the combination of Distributed Acoustic Sensing (DAS) and a Pattern Recognition System (PRS) to detect and classify potentially dangerous events that occur in areas above fiber optic cables deployed along active pipelines, aiming to con...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 7; no. 8; p. 841
Main Authors Tejedor, Javier, Macias-Guarasa, Javier, Martins, Hugo, Pastor-Graells, Juan, Corredera, Pedro, Martin-Lopez, Sonia
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 16.08.2017
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app7080841

Cover

Abstract There is an increasing interest in researchers and companies on the combination of Distributed Acoustic Sensing (DAS) and a Pattern Recognition System (PRS) to detect and classify potentially dangerous events that occur in areas above fiber optic cables deployed along active pipelines, aiming to construct pipeline surveillance systems. This paper presents a review of the literature in what respect to machine learning techniques applied to pipeline surveillance systems based on DAS+PRS (although its scope can also be extended to any other environment in which DAS+PRS strategies are to be used). To do so, we describe the fundamentals of the machine learning approaches when applied to DAS systems, and also do a detailed literature review of the main contributions on this topic. Additionally, this paper addresses the most common issues related to real field deployment and evaluation of DAS+PRS for pipeline threat monitoring, and intends to provide useful insights and recommendations in what respect to the design of such systems. The literature review concludes that a real field deployment of a PRS based on DAS technology is still a challenging area of research, far from being fully solved.
AbstractList There is an increasing interest in researchers and companies on the combination of Distributed Acoustic Sensing (DAS) and a Pattern Recognition System (PRS) to detect and classify potentially dangerous events that occur in areas above fiber optic cables deployed along active pipelines, aiming to construct pipeline surveillance systems. This paper presents a review of the literature in what respect to machine learning techniques applied to pipeline surveillance systems based on DAS+PRS (although its scope can also be extended to any other environment in which DAS+PRS strategies are to be used). To do so, we describe the fundamentals of the machine learning approaches when applied to DAS systems, and also do a detailed literature review of the main contributions on this topic. Additionally, this paper addresses the most common issues related to real field deployment and evaluation of DAS+PRS for pipeline threat monitoring, and intends to provide useful insights and recommendations in what respect to the design of such systems. The literature review concludes that a real field deployment of a PRS based on DAS technology is still a challenging area of research, far from being fully solved.
Author Martins, Hugo
Macias-Guarasa, Javier
Tejedor, Javier
Pastor-Graells, Juan
Corredera, Pedro
Martin-Lopez, Sonia
Author_xml – sequence: 1
  givenname: Javier
  surname: Tejedor
  fullname: Tejedor, Javier
– sequence: 2
  givenname: Javier
  orcidid: 0000-0002-3303-3963
  surname: Macias-Guarasa
  fullname: Macias-Guarasa, Javier
– sequence: 3
  givenname: Hugo
  surname: Martins
  fullname: Martins, Hugo
– sequence: 4
  givenname: Juan
  surname: Pastor-Graells
  fullname: Pastor-Graells, Juan
– sequence: 5
  givenname: Pedro
  surname: Corredera
  fullname: Corredera, Pedro
– sequence: 6
  givenname: Sonia
  surname: Martin-Lopez
  fullname: Martin-Lopez, Sonia
BookMark eNptUclqHDEQFcYBL_ElXyDwzTCx1OpF7dt4zcAMCXFyFtXqkq2hR2pLagf_vTWZ4ITgOtT66tWDOiL7zjsk5BNnn4Vo2TmMY8MkkyXfI4cFa-qZKHmz_09-QE5iXLNsLReSs0OyXoF-tA7pEiE46x7oCtOj7yM1PtBvdsRhO72fwjPaYQCnc_ESE24ivYSIPfWOXtuYgu2mlMu59lNMVtN7dDHzXdA5_Y7PFn99JB8MDBFP_sRj8vP25sfVl9ny693iar6caVHzNJMlE5XGBqqyErKVAkQhWdOB6YrSaMF0a_pWtI3osQXRsyYb73pTyRILieKYLHa8vYe1GoPdQHhRHqz63fDhQUHICgdUpi5q02GtJRSlLLqOVz2atuKsZFxjl7lOd1xj8E8TxqTWfgouy1c8a5B19k1Gne1QOvgYA5q3q5yp7WvU39dkMPsPrG2CZL1LAezw3sorIMiSvg
CitedBy_id crossref_primary_10_1109_JLT_2019_2919713
crossref_primary_10_29026_oes_2023_220025
crossref_primary_10_3390_machines12030180
crossref_primary_10_1109_JSEN_2021_3066037
crossref_primary_10_3390_s23125410
crossref_primary_10_1109_JSEN_2020_3040987
crossref_primary_10_1088_1555_6611_ab9119
crossref_primary_10_3390_opt4020024
crossref_primary_10_1016_j_autcon_2021_103687
crossref_primary_10_1016_j_buildenv_2023_111005
crossref_primary_10_1109_TIM_2023_3284932
crossref_primary_10_20965_ijat_2024_p0545
crossref_primary_10_3390_s22031033
crossref_primary_10_1364_OE_27_007685
crossref_primary_10_2139_ssrn_4091309
crossref_primary_10_3390_s22207810
crossref_primary_10_1109_JLT_2020_2966413
crossref_primary_10_1109_JLT_2021_3059771
crossref_primary_10_1364_OE_27_007405
crossref_primary_10_1364_OE_542663
crossref_primary_10_3390_app14135560
crossref_primary_10_1088_2515_7647_adb9ac
crossref_primary_10_1155_2021_6673325
crossref_primary_10_3390_photonics10060694
crossref_primary_10_1364_OE_463179
crossref_primary_10_3390_s23084094
crossref_primary_10_1109_JLT_2023_3263795
crossref_primary_10_3390_s21227527
crossref_primary_10_1785_0220240292
crossref_primary_10_1016_j_jneumeth_2021_109073
crossref_primary_10_4031_MTSJ_59_1_12
crossref_primary_10_1364_AO_58_004933
crossref_primary_10_3390_app142210147
crossref_primary_10_3390_s23167116
crossref_primary_10_1109_ACCESS_2020_2997941
crossref_primary_10_3390_s19153421
crossref_primary_10_1016_j_yofte_2020_102184
crossref_primary_10_1109_JSEN_2024_3408140
crossref_primary_10_3390_s22197550
crossref_primary_10_1016_j_yofte_2020_102182
crossref_primary_10_1016_j_measurement_2022_112340
crossref_primary_10_1016_j_yofte_2024_103911
crossref_primary_10_1364_OE_28_002925
crossref_primary_10_1016_j_yofte_2020_102149
crossref_primary_10_3390_electronics10060712
crossref_primary_10_1016_j_jfranklin_2023_06_029
crossref_primary_10_1016_j_measurement_2023_112628
crossref_primary_10_3390_joitmc6040149
crossref_primary_10_1364_OE_402789
crossref_primary_10_3390_rs15133282
crossref_primary_10_1364_OE_397509
crossref_primary_10_1038_s41598_023_31779_2
crossref_primary_10_1364_AO_444811
crossref_primary_10_1061_JMENEA_MEENG_6229
crossref_primary_10_3390_s18092841
crossref_primary_10_1109_JLT_2020_3036450
crossref_primary_10_1109_JLT_2024_3365741
crossref_primary_10_1016_j_jappgeo_2024_105378
crossref_primary_10_1109_JLT_2021_3138724
crossref_primary_10_1109_JLT_2017_2780126
crossref_primary_10_1109_JLT_2024_3401244
crossref_primary_10_1364_OE_439646
crossref_primary_10_1109_TIM_2021_3092518
crossref_primary_10_3390_s18072268
crossref_primary_10_1109_JLT_2021_3135653
crossref_primary_10_1177_14759217241280904
crossref_primary_10_1016_j_yofte_2022_102854
crossref_primary_10_1007_s00502_024_01284_z
crossref_primary_10_1016_j_petrol_2021_109690
crossref_primary_10_3390_s21082801
crossref_primary_10_1109_ACCESS_2020_3009524
crossref_primary_10_1016_j_neucom_2021_01_104
crossref_primary_10_1063_1_5144123
crossref_primary_10_1051_e3sconf_202560100028
crossref_primary_10_1364_AO_59_000579
crossref_primary_10_1016_j_procs_2022_09_164
crossref_primary_10_1177_0361198120960134
crossref_primary_10_1109_JLT_2024_3388458
crossref_primary_10_3390_s24051570
crossref_primary_10_1109_JSEN_2023_3261985
crossref_primary_10_3390_s19153322
Cites_doi 10.1364/ACPC.2015.ASu2A.145
10.1109/OFC.2007.4348619
10.1109/LPT.2011.2182643
10.1117/12.2192075
10.1109/JLT.2014.2308354
10.1016/S0924-0136(02)00160-7
10.1109/JLT.2015.2421953
10.1016/j.measurement.2009.12.022
10.1364/OL.30.003284
10.1364/OE.24.000853
10.1016/j.engstruct.2004.05.018
10.1364/OE.20.020459
10.1109/JLT.2013.2273553
10.1117/12.754927
10.1364/AO.46.001968
10.1364/OE.24.022303
10.1364/FIO.2015.FTh4E.1
10.1016/j.sna.2007.02.012
10.3390/s17020355
10.1109/JLT.2015.2396359
10.1117/12.607175
10.1109/JLT.2005.849924
10.1201/b16868
10.1109/JLT.2016.2542981
10.1364/OE.22.013804
10.21437/Interspeech.2004-337
10.1016/j.sna.2004.02.034
10.1364/OL.39.004313
10.1016/j.sna.2004.03.068
10.1109/ICIRT.2016.7588715
10.3390/s150715179
10.1109/CISE.2009.5365100
10.1109/WGEC.2009.117
10.1006/mssp.2001.1462
10.1016/S0304-3894(03)00199-7
10.1109/79.985674
10.3390/s130708534
10.1016/j.optlaseng.2008.07.002
10.1117/12.484911
10.1109/ICIECS.2009.5364602
10.1093/oso/9780199214655.003.0001
10.1109/ICIEA.2006.257218
10.1364/OL.39.005866
10.1109/JLT.2013.2286223
10.1109/JPROC.2003.814923
10.1364/OE.24.013121
10.1016/S0263-2241(03)00048-4
10.1109/ICSPCom.2013.6719846
10.1109/70.760356
10.1093/ietcom/e91-b.11.3544
10.3390/s150921957
10.1016/j.compind.2007.09.001
10.1109/79.127284
ContentType Journal Article
Copyright Copyright MDPI AG 2017
Copyright_xml – notice: Copyright MDPI AG 2017
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app7080841
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_f626fbe6c8a2482bb15def9510401ceb
10_3390_app7080841
GroupedDBID .4S
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IPNFZ
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
RIG
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c361t-84035ce7a54538983a32807bafb24fc30c9fd93973de9a3d077771bdf584e28e3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:28:31 EDT 2025
Mon Jun 30 11:16:43 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Tue Jul 01 02:58:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-84035ce7a54538983a32807bafb24fc30c9fd93973de9a3d077771bdf584e28e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3303-3963
OpenAccessLink https://doaj.org/article/f626fbe6c8a2482bb15def9510401ceb
PQID 1939861937
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_f626fbe6c8a2482bb15def9510401ceb
proquest_journals_1939861937
crossref_primary_10_3390_app7080841
crossref_citationtrail_10_3390_app7080841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-16
PublicationDateYYYYMMDD 2017-08-16
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-16
  day: 16
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Lyons (ref_13) 2003; 34
Quin (ref_33) 2012; 24
ref_58
ref_56
ref_11
ref_55
Wu (ref_27) 2015; 33
ref_53
ref_51
Samanta (ref_62) 2003; 17
Lyons (ref_12) 2002; 127
ref_59
Wang (ref_73) 2016; 24
Wang (ref_5) 2014; 39
Lewis (ref_16) 2007; 136
Wang (ref_37) 2014; 9157
Lyons (ref_14) 2004; 114
ref_61
Sun (ref_21) 2015; 15
Huang (ref_52) 2013; 13
Buerck (ref_9) 2003; 102
ref_25
ref_69
ref_24
Kim (ref_47) 2008; E91-B
ref_67
Wu (ref_19) 2014; 9157
ref_22
Rao (ref_30) 2009; 7503
ref_66
ref_65
Martins (ref_72) 2016; 24
Peng (ref_35) 2014; 22
Pan (ref_38) 2014; 9157
Juarez (ref_29) 2007; 46
ref_28
Wang (ref_34) 2014; 39
Quin (ref_41) 2012; 20
Martins (ref_44) 2013; 31
Martins (ref_4) 2014; 32
King (ref_15) 2004; 115
Shi (ref_39) 2015; 15
Martins (ref_40) 2015; 33
ref_71
ref_70
ref_32
ref_75
Kreucher (ref_63) 1999; 15
Juarez (ref_31) 2005; 30
Tejedor (ref_23) 2016; 34
Hlawatsch (ref_64) 1992; 9
Zhang (ref_54) 2012; 8
Zhu (ref_18) 2014; 9062
Babic (ref_68) 2008; 59
Zhu (ref_42) 2013; 31
Li (ref_10) 2004; 26
Juarez (ref_3) 2005; 23
Martins (ref_74) 2016; 24
Li (ref_36) 2014; 9157
ref_46
ref_45
Li (ref_57) 2002; 19
Qu (ref_20) 2010; 43
ref_43
Guo (ref_8) 2009; 47
ref_1
Wu (ref_26) 2014; 91579
ref_2
Brooks (ref_60) 2003; 91
Madsen (ref_17) 2007; 6770
ref_49
ref_48
ref_7
ref_6
References_xml – ident: ref_46
  doi: 10.1364/ACPC.2015.ASu2A.145
– volume: 9157
  start-page: 91575Z-1
  year: 2014
  ident: ref_36
  article-title: 124km Phase-sensitive OTDR with Brillouin Amplification
  publication-title: Proc. SPIE
– ident: ref_6
  doi: 10.1109/OFC.2007.4348619
– volume: 24
  start-page: 542
  year: 2012
  ident: ref_33
  article-title: Wavelet denoising method for improving detection performance of distributed vibration sensor
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2011.2182643
– ident: ref_25
  doi: 10.1117/12.2192075
– ident: ref_32
– ident: ref_55
– volume: 32
  start-page: 1510
  year: 2014
  ident: ref_4
  article-title: Phase-sensitive Optical Time Domain Reflectometer Assisted by First-order Raman Amplification for Distributed Vibration Sensing Over >100 km
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2014.2308354
– volume: 127
  start-page: 23
  year: 2002
  ident: ref_12
  article-title: An optical fibre distributed sensor based on pattern recognition
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(02)00160-7
– volume: 33
  start-page: 3156
  year: 2015
  ident: ref_27
  article-title: Separation and Determination of the Disturbing Signals in Phase-Sensitive Optical Time Domain Reflectometry (ϕ-OTDR)
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2421953
– volume: 43
  start-page: 513
  year: 2010
  ident: ref_20
  article-title: A SVM-based pipeline leakage detection and pre-warning system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2009.12.022
– volume: 30
  start-page: 3284
  year: 2005
  ident: ref_31
  article-title: Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.003284
– volume: 24
  start-page: 853
  year: 2016
  ident: ref_73
  article-title: Coherent ϕ-OTDR based on I/Q demodulation and homodyne detection
  publication-title: Opt. Express
  doi: 10.1364/OE.24.000853
– ident: ref_65
– ident: ref_61
– ident: ref_1
– volume: 26
  start-page: 1647
  year: 2004
  ident: ref_10
  article-title: Recent applications of fiber optic sensors to health monitoring in civil engineering
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2004.05.018
– ident: ref_71
– volume: 20
  start-page: 20459
  year: 2012
  ident: ref_41
  article-title: Continuous wavelet transform for nonstationary vibration detection with phase-OTDR
  publication-title: Opt. Express
  doi: 10.1364/OE.20.020459
– volume: 31
  start-page: 2851
  year: 2013
  ident: ref_42
  article-title: Enhancement of SNR and Spatial Resolution in ψ-OTDR System by Using Two-Dimensional Edge Detection Method
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2013.2273553
– ident: ref_58
  doi: 10.1117/12.754927
– volume: 91579
  start-page: 915790-1
  year: 2014
  ident: ref_26
  article-title: Field test of a fully distributed fiber optic intrusion detection system for long-distance security monitoring of national borderline
  publication-title: Proc. SPIE
– volume: 46
  start-page: 1968
  year: 2007
  ident: ref_29
  article-title: Field test of a distributed fiber-optic intrusion sensor system for long perimeters
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.001968
– volume: 24
  start-page: 22303
  year: 2016
  ident: ref_74
  article-title: Real time dynamic strain monitoring of optical links using the backreflection of live PSK data
  publication-title: Opt. Express
  doi: 10.1364/OE.24.022303
– ident: ref_11
  doi: 10.1364/FIO.2015.FTh4E.1
– volume: 136
  start-page: 28
  year: 2007
  ident: ref_16
  article-title: Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals
  publication-title: Sens. Actuators
  doi: 10.1016/j.sna.2007.02.012
– ident: ref_24
  doi: 10.3390/s17020355
– ident: ref_69
– volume: 33
  start-page: 2628
  year: 2015
  ident: ref_40
  article-title: Distributed vibration sensing over 125 km with enhanced SNR using ϕ-OTDR over a URFL cavity
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2396359
– ident: ref_56
  doi: 10.1117/12.607175
– volume: 23
  start-page: 2081
  year: 2005
  ident: ref_3
  article-title: Distributed Fiber-Optic Intrusion Sensor System
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2005.849924
– ident: ref_22
  doi: 10.1117/12.2192075
– ident: ref_75
  doi: 10.1201/b16868
– volume: 9157
  start-page: 9157D5-1
  year: 2014
  ident: ref_37
  article-title: 175km Phase-sensitive OTDR with Hybrid Distributed Amplification
  publication-title: Proc. SPIE
– volume: 34
  start-page: 4445
  year: 2016
  ident: ref_23
  article-title: Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2542981
– volume: 22
  start-page: 13804
  year: 2014
  ident: ref_35
  article-title: Ultra-long high-sensitivity ϕ-OTDR for high spatial resolution intrusion detection of pipelines
  publication-title: Opt. Express
  doi: 10.1364/OE.22.013804
– ident: ref_70
  doi: 10.21437/Interspeech.2004-337
– volume: 9157
  start-page: 91576X-1
  year: 2014
  ident: ref_38
  article-title: High sampling rate multi-pulse phase-sensitive OTDR employing frequency division multiplexing
  publication-title: Proc. SPIE
– ident: ref_7
– ident: ref_53
– volume: 114
  start-page: 7
  year: 2004
  ident: ref_14
  article-title: Interrogation of multipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques
  publication-title: Sens. Actuators
  doi: 10.1016/j.sna.2004.02.034
– volume: 39
  start-page: 4313
  year: 2014
  ident: ref_34
  article-title: Phase-sensitive optical time-domain reflectometry with Brillouin amplification
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.004313
– volume: 115
  start-page: 293
  year: 2004
  ident: ref_15
  article-title: A multipoint optical fibre sensor system for use in process water systems based on artificial neural network pattern recognition techniques
  publication-title: Sens. Actuators
  doi: 10.1016/j.sna.2004.03.068
– ident: ref_45
  doi: 10.1109/ICIRT.2016.7588715
– volume: 15
  start-page: 15179
  year: 2015
  ident: ref_21
  article-title: Recognition of a Phase-Sensitivity OTDR Sensing System Based on Morphologic Feature Extraction
  publication-title: Sensors
  doi: 10.3390/s150715179
– ident: ref_49
  doi: 10.1109/CISE.2009.5365100
– ident: ref_50
  doi: 10.1109/WGEC.2009.117
– volume: 17
  start-page: 317
  year: 2003
  ident: ref_62
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1006/mssp.2001.1462
– volume: 102
  start-page: 13
  year: 2003
  ident: ref_9
  article-title: OTDR fiber-optical chemical sensor system for detection and location of hydrocarbon leakage
  publication-title: J. Hazard. Mater.
  doi: 10.1016/S0304-3894(03)00199-7
– volume: 9157
  start-page: 9157O-1
  year: 2014
  ident: ref_19
  article-title: A novel intrusion signal processing method for phase-sensitive optical time-domain reflectometry (ϕ-OTDR)
  publication-title: Proc. SPIE
– volume: 19
  start-page: 17
  year: 2002
  ident: ref_57
  article-title: Detection, Classification and Tracking of Targets in Distributed Sensor Networks
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.985674
– ident: ref_67
– volume: 7503
  start-page: 75031O-1
  year: 2009
  ident: ref_30
  article-title: Long-distance fiber-optic ψ-OTDR intrusion sensing system
  publication-title: Proc. SPIE
– volume: 13
  start-page: 8534
  year: 2013
  ident: ref_52
  article-title: Seismic Target Classification Using a Wavelet Packet Manifold in Unattended Ground Sensors Systems
  publication-title: Sensors
  doi: 10.3390/s130708534
– volume: 47
  start-page: 156
  year: 2009
  ident: ref_8
  article-title: Experimental research on distributed fiber sensor for sliding damage monitoring
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2008.07.002
– volume: 9062
  start-page: 906205-1
  year: 2014
  ident: ref_18
  article-title: Vibration Pattern Recognition and Classification in OTDR Based Distributed Optical-Fiber Vibration Sensing System
  publication-title: Proc. SPIE
– ident: ref_28
  doi: 10.1117/12.484911
– ident: ref_59
  doi: 10.1109/ICIECS.2009.5364602
– ident: ref_66
  doi: 10.1093/oso/9780199214655.003.0001
– ident: ref_51
  doi: 10.1109/ICIEA.2006.257218
– volume: 39
  start-page: 5866
  year: 2014
  ident: ref_5
  article-title: Ultra-long phase-sensitive OTDR with hybrid distributed amplification
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.005866
– volume: 31
  start-page: 3631
  year: 2013
  ident: ref_44
  article-title: Coherent noise reduction in high visibility phase sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2013.2286223
– ident: ref_2
– volume: 8
  start-page: 2789
  year: 2012
  ident: ref_54
  article-title: A Distance Segmented Classification Algorithm for Ground Moving Targets Based on Seismic-acoustic Sensor Arrays and Parallel Fuzzy Classifier
  publication-title: J. Comput. Inf. Syst.
– volume: 91
  start-page: 1163
  year: 2003
  ident: ref_60
  article-title: Distributed Target Classification and Tracking in Sensor Networks
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2003.814923
– volume: 24
  start-page: 13121
  year: 2016
  ident: ref_72
  article-title: Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses
  publication-title: Opt. Express
  doi: 10.1364/OE.24.013121
– volume: 34
  start-page: 301
  year: 2003
  ident: ref_13
  article-title: A multi-point optical fibre sensor for condition monitoring in process water systems based on pattern recognition
  publication-title: Measurement
  doi: 10.1016/S0263-2241(03)00048-4
– ident: ref_48
  doi: 10.1109/ICSPCom.2013.6719846
– volume: 15
  start-page: 343
  year: 1999
  ident: ref_63
  article-title: LANA: A Lane Extraction Algorithm that Uses Frequency Domain Features
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.760356
– volume: E91-B
  start-page: 3544
  year: 2008
  ident: ref_47
  article-title: A GMM-based Target Classification Scheme for a Node in Wireless Sensor Networks
  publication-title: IEICE Trans. Commun.
  doi: 10.1093/ietcom/e91-b.11.3544
– volume: 15
  start-page: 21957
  year: 2015
  ident: ref_39
  article-title: A Long Distance Phase-Sensitive Optical Time Domain Reflectometer with Simple Structure and High Locating Accuracy
  publication-title: Sensors
  doi: 10.3390/s150921957
– volume: 6770
  start-page: 67700K-1
  year: 2007
  ident: ref_17
  article-title: Intruder Signature Analysis from a Phase-sensitive Distributed Fiber-optic Perimeter Sensor
  publication-title: Proc. SPIE
– ident: ref_43
– volume: 59
  start-page: 321
  year: 2008
  ident: ref_68
  article-title: A review of automated feature recognition with rule-based pattern recognition
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2007.09.001
– volume: 9
  start-page: 21
  year: 1992
  ident: ref_64
  article-title: Linear and quadratic time-frequency signal representations
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.127284
SSID ssj0000913810
Score 2.434171
Snippet There is an increasing interest in researchers and companies on the combination of Distributed Acoustic Sensing (DAS) and a Pattern Recognition System (PRS) to...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 841
SubjectTerms Artificial intelligence
distributed acoustic sensing
fiber optic systems
Literature reviews
Pattern recognition systems
pipeline integrity threat monitoring
review
Surveillance
ϕ-OTDR
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYLnBArKJssgQHOETEsZu4XFBZCkIqQgIkbpHXCoSS0ha-nxnXLSAQuSVxLjNjz5ux8x4hB4DAvXY6TTRPbSJcKhKZOZZILZrMeCaL0HDr3ubXj-LmqfkUG27DeKxysiaGhdrWBnvkxwA0WhLQPi9O-28Jqkbh7mqU0Jgl8wwyDca57FxNeyzIeSlZOmYl5VDd465wARhJCvYjDwW6_l-rcUgxnWWyFLEhbY-duUJmXLVKFr8xBq6SlTgXh_QwEkYfrZGXbjgR6WgkS-3RbtCFHlJApPTuuY__nDt6_z74cCgyBN_TyFROzyCLWVpX9AIZdFH8Cm7bpg4iX_Qej7dXvRPapuNNhHXy2Ll8OL9OooZCYnjORgnUb7xpXKEAKQE2kVxx5L_RyutMeMNT0_IWTFtw61qK27SAi2nrAZi4TDq-QeaqunKbhGqT8dwol-fKCK-syq3y4BQlhGbGthrkaGLR0kSCcdS5eC2h0EDrl1_Wb5D96dj-mFbjz1Fn6JjpCKTCDg_qQa-MM6v0UJJBuOVGqkzITGvWtM4jcITS0TjdIDsTt5Zxfg7Lr2ja-v_1NlnIMJEjCW6-Q-ZGg3e3CzBkpPdCrH0Cs7HeQA
  priority: 102
  providerName: ProQuest
Title Machine Learning Methods for Pipeline Surveillance Systems Based on Distributed Acoustic Sensing: A Review
URI https://www.proquest.com/docview/1939861937
https://doaj.org/article/f626fbe6c8a2482bb15def9510401ceb
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NT9wwEIZHhV7KARUoYoGuLJUDHCLi2Js4ve0WtqjSIlSKxC3yJwKhLGIXfj8zjoGtisSluSVyPjSeeN6JnWcA9lCBB-NNnhmRu0z6XGaq8DxTRg64DVxV8YPb5LQ8uZC_LgeXC6W-aE1YhwfuDHcYUHHj1UqrdCFVYQwfOB9IF2BmYL2h0Tev84VkKo7BNSd0VccjFZjX03xwhepISf5XBIqg_n_G4Rhcxp9hNalCNuyeZg0--HYdVhZYgeuwlt7CGdtPqOiDDbiZxLWQniVM6hWbxIrQM4ZalJ1d39Hf5p6dP9w_eiovhOezxChnI4xfjk1bdkTsXCp7hbtDO43lvdg5LWxvr76zIeumD77Axfj4z4-TLFVPyKwo-TzDzE0MrK80aiRUJUpoQeQbo4MpZLAit3VwNcoR4Xythcsr3LhxASWJL5QXm7DcTlu_BczYQpRW-7LUVgbtdOl0ELXSUhpuXd2Dg2eLNjahxanCxW2DKQZZv3m1fg--vbS964Aab7YaUce8tCAIdjyArtEk12jec40e7D53a5PezFmDgrVWmDWKavt_3GMHPhUU6AmSW-7C8vz-wX9FmTI3fVhS4599-Dg6Pj373Y_--QRmn-nw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9AAcEC0gUgqsBEj0YGF7N_YaCaGEtkppE1W0lXpz9zMCVXZIUhB_it_IjL1JQSBu9c322pZmxzNv9uM9gJeIwL12Oo40j20kXCwimbokklr0EuMTmTcDbqNxNjwTH89752vwc7kXhpZVLmNiE6htbWiM_A0CjUIi2uf5--nXiFSjaHZ1KaHRusWh-_EdS7b5u4Nd7N9Xabq_d_phGAVVgcjwLFlEWNHwnnG5QuyA2VpyxYkRRiuvU-ENj03hLX4s59YVits4xyPR1mOqdql0HN97C9YF7WjtwPpgb3z8aTWqQyybMolbHlTOi5jmoXNEZVIkf2S-RiDgr_jfJLX9-3AvoFHWb91nA9ZctQl3f-Mo3ISN8PfP2etAUb3zAL6MmjWYjgV61gkbNUrUc4YYmB1_ntIud8dOrmbfHMka4fMscKOzAeZNy-qK7RJnL8lt4Wnf1I2sGDuhBfXV5C3rs3ba4iGc3Yh9H0Gnqiv3GJg2Kc-MclmmjPDKqswqj26ghNCJsUUXdpYWLU2gNCdljcsSSxuyfnlt_S68WLWdtkQe_2w1oI5ZtSDy7eZCPZuU4V8uPRaB6OCZkSoVMtU66VnnCapisWqc7sL2slvLEBHm5bX_bv3_9nO4PTwdHZVHB-PDJ3AnJRhBFLzZNnQWsyv3FEHQQj8Lnsfg4qad_Rf-gxva
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB5qBbEPYqvi1aoLKtiH0CS7l2wEkavn2VqvFGqhb3F_Hi0lud5dFf81_zpnks1VUXxr3pJsEtidzHyzO_t9AC8RgXvtdBxpHttIuFhEMnVJJLXoJ8YnMm8m3MaH2d6J-HTaP12Bn91eGCqr7Hxi46htbWiOfAeBRiER7fN8x4eyiKPh6N30MiIFKVpp7eQ0WhM5cD--Y_o2f7s_xLF-laajD1_e70VBYSAyPEsWEWY3vG9crhBHYOSWXHFih9HK61R4w2NTeIsfzrl1heI2zvFItPUYtl0qHcf33oLbOc8LSvzk6ONyfof4NmUSt4yonBcxrUjniM-kSP6IgY1UwF-RoAlvo_twL-BSNmgNaR1WXLUBa7-xFW7AevADc_Y6kFVvP4DzcVON6Vggap2wcaNJPWeIhtnR2ZT2uzt2fDX75kjgCJ9ngSWd7WIEtayu2JDYe0l4C08Hpm4ExtgxldZXkzdswNoFjIdwciO9-whWq7pyj4Fpk_LMKJdlygivrMqs8mgQSgidGFv0YLvr0dIEcnPS2LgoMcmh3i-ve78HL5Ztpy2lxz9b7dLALFsQDXdzoZ5NyvBXlx7TQTT1zEiVCplqnfSt8wRaMW01TvdgqxvWMviGeXltyZv_v_0c7qCJl5_3Dw-ewN2U8ARx8WZbsLqYXbmniIYW-lljdgy-3rSd_wINox6q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Methods+for+Pipeline+Surveillance+Systems+Based+on+Distributed+Acoustic+Sensing%3A+A+Review&rft.jtitle=Applied+sciences&rft.au=Tejedor%2C+Javier&rft.au=Macias-Guarasa%2C+Javier&rft.au=Martins%2C+Hugo&rft.au=Pastor-Graells%2C+Juan&rft.date=2017-08-16&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=7&rft.issue=8&rft.spage=841&rft_id=info:doi/10.3390%2Fapp7080841&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app7080841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon