Contour Detection for Fibre of Preserved Szechuan Pickle Based on Dilated Convolution
Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the products, and thus the contour method of fibre detection, as a core algorithm of the automatic peeling device, is studied. The fibre contour...
Saved in:
Published in | Applied sciences Vol. 9; no. 13; p. 2684 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app9132684 |
Cover
Loading…
Abstract | Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the products, and thus the contour method of fibre detection, as a core algorithm of the automatic peeling device, is studied. The fibre contour is a kind of non-salient contour, characterized by big intra-class differences and small inter-class differences, meaning that the feature of the contour is not discriminative. The method called dilated-holistically-nested edge detection (Dilated-HED) is proposed to detect the fibre contour, which is built based on the HED network and dilated convolution. The experimental results for our dataset show that the Pixel Accuracy (PA) is 99.52% and the Mean Intersection over Union (MIoU) is 49.99%, achieving state-of-the-art performance. |
---|---|
AbstractList | Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the products, and thus the contour method of fibre detection, as a core algorithm of the automatic peeling device, is studied. The fibre contour is a kind of non-salient contour, characterized by big intra-class differences and small inter-class differences, meaning that the feature of the contour is not discriminative. The method called dilated-holistically-nested edge detection (Dilated-HED) is proposed to detect the fibre contour, which is built based on the HED network and dilated convolution. The experimental results for our dataset show that the Pixel Accuracy (PA) is 99.52% and the Mean Intersection over Union (MIoU) is 49.99%, achieving state-of-the-art performance. [...]the Pixel Accuracy (PA) of our method [2] is 99.52% and the mean intersection over union (MIoU) [2] is 49.99%. Sobel [6] is a typical edge detection operator based on first derivative. Because it introduces a local average operation and has a smooth effect on noise and can eliminate the influence of noise very well. With the development of contour detection technology, it is no longer difficult to recognize the general contour. Because of the non-saliency of the contour, many technical means cannot achieve the expected results. According to the position of side-outputs, the structure of HED can be divided into five stages. |
Author | Liu, Lizhuang Zhao, Dan Li, Hongyang Han, Zhenqi |
Author_xml | – sequence: 1 givenname: Hongyang orcidid: 0000-0003-3270-5534 surname: Li fullname: Li, Hongyang – sequence: 2 givenname: Lizhuang surname: Liu fullname: Liu, Lizhuang – sequence: 3 givenname: Zhenqi surname: Han fullname: Han, Zhenqi – sequence: 4 givenname: Dan surname: Zhao fullname: Zhao, Dan |
BookMark | eNptkU1LAzEQhoNUUKsXf8GCN6GabLIfOWprVRAUtOcwSWY1dd3UbFrQX29qFUWcywwv7zyZyeyRQec7JOSQ0RPOJT2FxUIynpe12CK7Oa3KEResGvyqd8hB389pimSsGd0ls7Hvol-GbIIRTXS-yxofsqnTATPfZHcBewwrtNn9O5qnJXTZnTPPLWbn0Cc1-SeuhZjKRFr5drlm7JPtBtoeD77ykMymFw_jq9HN7eX1-OxmZHjJ4qhqSgbaFFZTIbW0uamEtjTtAqzkDDjwwhaSaURgVJS0QltbmXTaWJ5zPiTXG671MFeL4F4gvCkPTn0KPjwqCNGZFhUXudQaZXqqFrwStbRguRClrbU0dZ1YRxvWIvjXJfZRzdO_dGl8lfO8KgomeZFcdOMywfd9wEYZF2G9cwzgWsWoWt9C_dwitRz_afke9B_zB81uitw |
CitedBy_id | crossref_primary_10_3390_app9204323 |
Cites_doi | 10.1007/978-1-4842-2766-4 10.1109/TPAMI.2005.173 10.1016/S0031-3203(00)00023-6 10.1109/TPAMI.2017.2699184 10.1109/CVPR.2014.49 10.1152/jn.2001.86.4.2011 10.1016/0734-189X(89)90131-X 10.1007/s11263-017-1004-z 10.1109/TPAMI.2016.2572683 10.1007/s11633-018-1117-z 10.1109/4.996 10.1007/s11263-007-0090-8 10.1109/TPAMI.2018.2878849 10.1109/TPAMI.2004.1273918 10.1109/CVPRW.2009.5206707 10.1109/CVPR.2015.7298594 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app9132684 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals (ODIN) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_3429bbe9b048437489dad3446d8b9c88 10_3390_app9132684 |
GroupedDBID | .4S 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-7f61abc5db049b9d2c74bd0390a1631a3a35d591beea104607ed8d9a3a0fd3233 |
IEDL.DBID | 8FG |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:26:59 EDT 2025 Mon Jun 30 11:19:25 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 Tue Jul 01 03:00:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-7f61abc5db049b9d2c74bd0390a1631a3a35d591beea104607ed8d9a3a0fd3233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3270-5534 |
OpenAccessLink | https://www.proquest.com/docview/2327551935?pq-origsite=%requestingapplication% |
PQID | 2327551935 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3429bbe9b048437489dad3446d8b9c88 proquest_journals_2327551935 crossref_citationtrail_10_3390_app9132684 crossref_primary_10_3390_app9132684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bao (ref_9) 2005; 27 ref_14 Gong (ref_1) 2018; 15 Martin (ref_10) 2004; 26 ref_12 Russell (ref_21) 2008; 77 ref_23 ref_11 Chen (ref_20) 2018; 40 ref_22 Kanopoulos (ref_6) 2002; 23 Jones (ref_13) 2001; 86 Xie (ref_3) 2017; 125 Long (ref_2) 2017; 39 ref_19 ref_18 ref_17 ref_16 ref_15 Ding (ref_8) 2001; 34 Young (ref_7) 1989; 45 ref_5 ref_4 |
References_xml | – ident: ref_23 doi: 10.1007/978-1-4842-2766-4 – volume: 27 start-page: 1485 year: 2005 ident: ref_9 article-title: Canny Edge Detection Enhancement by Scale Multiplication publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.173 – volume: 34 start-page: 721 year: 2001 ident: ref_8 article-title: On the Canny edge detector publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(00)00023-6 – volume: 40 start-page: 834 year: 2018 ident: ref_20 article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: ref_5 – ident: ref_12 doi: 10.1109/CVPR.2014.49 – volume: 86 start-page: 2011 year: 2001 ident: ref_13 article-title: Sillito. Surround suppression in primate V1 publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.86.4.2011 – volume: 45 start-page: 167 year: 1989 ident: ref_7 article-title: A nonlinear laplace operator as edge detector in noisy images publication-title: Comput. Vis. Gr. Image Process. doi: 10.1016/0734-189X(89)90131-X – ident: ref_11 – volume: 125 start-page: 3 year: 2017 ident: ref_3 article-title: Holistically-Nested Edge Detection publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-017-1004-z – volume: 39 start-page: 640 year: 2017 ident: ref_2 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2572683 – ident: ref_16 – volume: 15 start-page: 656 year: 2018 ident: ref_1 article-title: An Overview of Contour Detection Approaches publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-018-1117-z – volume: 23 start-page: 358 year: 2002 ident: ref_6 article-title: Design of an image edge detection filter using the Sobel operator publication-title: IEEE J. Solid-State Circuits doi: 10.1109/4.996 – volume: 77 start-page: 157 year: 2008 ident: ref_21 article-title: LabelMe: A Database and Web-Based Tool for Image Annotation publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-007-0090-8 – ident: ref_4 doi: 10.1109/TPAMI.2018.2878849 – volume: 26 start-page: 530 year: 2004 ident: ref_10 article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1273918 – ident: ref_14 – ident: ref_15 doi: 10.1109/CVPRW.2009.5206707 – ident: ref_17 – ident: ref_19 – ident: ref_22 – ident: ref_18 doi: 10.1109/CVPR.2015.7298594 |
SSID | ssj0000913810 |
Score | 2.1109655 |
Snippet | Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the... [...]the Pixel Accuracy (PA) of our method [2] is 99.52% and the mean intersection over union (MIoU) [2] is 49.99%. Sobel [6] is a typical edge detection... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2684 |
SubjectTerms | contour detection dilated convolutions fibre of preserved Szechuan pickle HED Methods Neural networks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (ODIN) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EVsVqlYAe7GFxN9lXjtZaiqAIWuhtSTJZLJSt2NaDv95JNq0VBS9ew2x2dzKPb8jkCyEXiqlIa5YHGVNZEDOsWSUCiSAHlWgDTKTCnh2-f0iHo_hunIw3rvqyPWE1PXCtuCuOAVMpIxSaWuy4UkACxyIGciV07o75Ys7bKKZcDBaRpa6q-Ug51vV2PxjHLLfJtwzkiPp_xGGXXAZ7ZNejQnpdf02TbJmqRXY2uAJbpOm9cE4vPVV0d5-MLLkUPkz7ZuF6qiqKIJQOsAY2dFZS22BhWxqBPn0Y_bKUFX2c2M1c2sPsBRTl-5Mpwk2gONO7N8MDMhrcPt8MA39RQqB5Gi2CrEwjqXQCqCShBDCdxQpC_G2JcCuSXPIEEhEpY6Td0w0zAzkIHA9L4IzzQ9KoZpU5IpQBQBknkQbGYxPnUpQ5Oj0PTapw5rBNuivlFdqziNvLLKYFVhNW0cWXotvkfC37WnNn_CrVs2uwlrB8124AraDwVlD8ZQVt0lmtYOGdcF4gWMwSi1CT4_94xwnZRrQk6l7dDmks3pbmFBHJQp054_sExijdlA priority: 102 providerName: Directory of Open Access Journals |
Title | Contour Detection for Fibre of Preserved Szechuan Pickle Based on Dilated Convolution |
URI | https://www.proquest.com/docview/2327551935 https://doaj.org/article/3429bbe9b048437489dad3446d8b9c88 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB214UIPFVCqpoTIUnsohxW79n7YJ0QKAVUqQm0jcVvZHi9FQhtKAof--s5snFAE4uqdtbT2jOeNZ_YNwGcnXea91EklXZXkkmJWS0Ai0egKH1Ca0vC_w9_PytNJ_u2iuIgXbrNYVrk8E7uDGqee78j3yfNXBcON4uDmT8Jdozi7GltovIa1jDwNa7gen6zuWJjzUmfpgpVUUXTPWWEaY4aTR36oo-t_chp3Lma8AW8jNhSHi83chFeh3YI3_zEGbsFmtMWZ-BIJo_fewYQppuhlcRTmXWVVKwiKijFFwkFMG8FlFlzYiOLn3-B_39lWnF9xSleMyIehIPmjq2sCnShopvuojNswGR__-nqaxHYJiVdlNk-qpsys8wU6Qv3OoPRV7jClz7YEujKrrCqwMJkLwXJmN60CajQ0njaopFLvoddO2_ABhETEJi8yj1LlIdfWNJpMX6WhdDRz2oe95eLVPnKJc0uL65piCl7o-mGh-_BpJXuzYNB4VmrEe7CSYNbrbmB6e1lHI6oVOU_ngqEP1HnHm4MWFQW0qJ3xWvdhsNzBOprirH5QnI8vP96BdUJDZlGLO4De_PYu7BLimLthp1ZDWBsdn53_GHZx-z8i89gb |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLaq9gAcqraA2FIgEiDRw4iZZB7JASHKsmzpQ0h0pd6GJM5ApWq2dLet4EfxG7HnsQWBuPWaZCJN4tifY-czwDMnXeK91FEhXRGlknxWS0Ai0ugyH1Ca3PDb4YPDfDxJPxxnx0vws38Lw2mVvU5sFDVOPd-RvyTLX2QMN7LXZ98irhrF0dW-hEYrFnvh-xW5bLNXu0Pa3-dSjt4dvR1HXVWByKs8mUdFlSfW-QwdgWNnUPoidRiT728JmyRWWZVhZhIXguUAaFwE1GioPa5QSb4AJZW_kiplOIVQj94v7nSYY1MnccuCSv0xR6GpjRlV_rB7TXmAv7R_Y9JGa7DaYVHxphWedVgK9Qbc-Y2hcAPWu7M_Ey86gurtuzBhSiv6WAzDvMnkqgVBXzEizzuIaSU4rYMTKVF8-hH81wtbi48nHEIWO2QzUdD44ckpgVwUNNNlJ_z3YHIjC3kflutpHR6AkIhYpVniUao0pNqaSpOqUXHIHc0cD2C7X7zSd9zlXELjtCQfhhe6vF7oATxdjD1rGTv-OWqH92Axglm2m4bp-ZeyO7SlImPtXDD0gzpteHrQoiIHGrUzXusBbPU7WHZHf1ZeC-rm_7ufwK3x0cF-ub97uPcQbhMSM20e8BYsz88vwiNCO3P3uBExAZ9vWqZ_ATiDEr8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9KBdEHsVXxtNqACvZh6W6yH8mDFNtzba2Wgh70bU0y2Vooe7V3Veyf5l_nzH5cFcW3vmZnA5vMzvwmM_kNwHMnXeK91FEhXRGlkmJWS0Ai0ugyH1Ca3PDd4Q8H-e4kfXeUHS3Bz-EuDJdVDjaxNdQ49XxGvkmev8gYbmSbdV8WcTgut86-RtxBijOtQzuNTkX2w4_vFL7NXu2Naa9fSFm--bSzG_UdBiKv8mQeFXWeWOczdASUnUHpi9RhrExsCackVlmVYWYSF4LlZGhcBNRoaDyuUUk-DCXzf6NQOubuCbp8uzjfYb5NncQdI6qiGTkjTWPMrvKHD2xbBfzlCVr3Vt6FOz0uFa87RVqBpdCswu3f2ApXYaW3AzPxsier3rgHE6a3opfFOMzbqq5GEAwWJUXhQUxrwSUeXFSJ4uNl8F8ubCMOTzidLLbJf6Ig-fHJKQFeFDTTt_5HuA-Ta1nIB7DcTJvwEIRExDrNEo9SpSHV1tSazI6KQ-5o5ngEG8PiVb7nMed2GqcVxTO80NXVQo_g2UL2rGPv-KfUNu_BQoIZt9uB6flx1f_AlSLH7Vww9IE6bTl70KKiYBq1M17rEawNO1j1ZmBWXSnto_8_XoebpM3V-72D_cdwi0CZ6UqC12B5fn4RnhDwmbunrYYJ-HzdKv0LqJwW7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contour+Detection+for+Fibre+of+Preserved+Szechuan+Pickle+Based+on+Dilated+Convolution&rft.jtitle=Applied+sciences&rft.au=Li%2C+Hongyang&rft.au=Liu%2C+Lizhuang&rft.au=Han%2C+Zhenqi&rft.au=Zhao%2C+Dan&rft.date=2019-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=13&rft_id=info:doi/10.3390%2Fapp9132684&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |