Contour Detection for Fibre of Preserved Szechuan Pickle Based on Dilated Convolution

Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the products, and thus the contour method of fibre detection, as a core algorithm of the automatic peeling device, is studied. The fibre contour...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 9; no. 13; p. 2684
Main Authors Li, Hongyang, Liu, Lizhuang, Han, Zhenqi, Zhao, Dan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2019
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app9132684

Cover

Loading…
Abstract Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the products, and thus the contour method of fibre detection, as a core algorithm of the automatic peeling device, is studied. The fibre contour is a kind of non-salient contour, characterized by big intra-class differences and small inter-class differences, meaning that the feature of the contour is not discriminative. The method called dilated-holistically-nested edge detection (Dilated-HED) is proposed to detect the fibre contour, which is built based on the HED network and dilated convolution. The experimental results for our dataset show that the Pixel Accuracy (PA) is 99.52% and the Mean Intersection over Union (MIoU) is 49.99%, achieving state-of-the-art performance.
AbstractList Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the products, and thus the contour method of fibre detection, as a core algorithm of the automatic peeling device, is studied. The fibre contour is a kind of non-salient contour, characterized by big intra-class differences and small inter-class differences, meaning that the feature of the contour is not discriminative. The method called dilated-holistically-nested edge detection (Dilated-HED) is proposed to detect the fibre contour, which is built based on the HED network and dilated convolution. The experimental results for our dataset show that the Pixel Accuracy (PA) is 99.52% and the Mean Intersection over Union (MIoU) is 49.99%, achieving state-of-the-art performance.
[...]the Pixel Accuracy (PA) of our method [2] is 99.52% and the mean intersection over union (MIoU) [2] is 49.99%. Sobel [6] is a typical edge detection operator based on first derivative. Because it introduces a local average operation and has a smooth effect on noise and can eliminate the influence of noise very well. With the development of contour detection technology, it is no longer difficult to recognize the general contour. Because of the non-saliency of the contour, many technical means cannot achieve the expected results. According to the position of side-outputs, the structure of HED can be divided into five stages.
Author Liu, Lizhuang
Zhao, Dan
Li, Hongyang
Han, Zhenqi
Author_xml – sequence: 1
  givenname: Hongyang
  orcidid: 0000-0003-3270-5534
  surname: Li
  fullname: Li, Hongyang
– sequence: 2
  givenname: Lizhuang
  surname: Liu
  fullname: Liu, Lizhuang
– sequence: 3
  givenname: Zhenqi
  surname: Han
  fullname: Han, Zhenqi
– sequence: 4
  givenname: Dan
  surname: Zhao
  fullname: Zhao, Dan
BookMark eNptkU1LAzEQhoNUUKsXf8GCN6GabLIfOWprVRAUtOcwSWY1dd3UbFrQX29qFUWcywwv7zyZyeyRQec7JOSQ0RPOJT2FxUIynpe12CK7Oa3KEResGvyqd8hB389pimSsGd0ls7Hvol-GbIIRTXS-yxofsqnTATPfZHcBewwrtNn9O5qnJXTZnTPPLWbn0Cc1-SeuhZjKRFr5drlm7JPtBtoeD77ykMymFw_jq9HN7eX1-OxmZHjJ4qhqSgbaFFZTIbW0uamEtjTtAqzkDDjwwhaSaURgVJS0QltbmXTaWJ5zPiTXG671MFeL4F4gvCkPTn0KPjwqCNGZFhUXudQaZXqqFrwStbRguRClrbU0dZ1YRxvWIvjXJfZRzdO_dGl8lfO8KgomeZFcdOMywfd9wEYZF2G9cwzgWsWoWt9C_dwitRz_afke9B_zB81uitw
CitedBy_id crossref_primary_10_3390_app9204323
Cites_doi 10.1007/978-1-4842-2766-4
10.1109/TPAMI.2005.173
10.1016/S0031-3203(00)00023-6
10.1109/TPAMI.2017.2699184
10.1109/CVPR.2014.49
10.1152/jn.2001.86.4.2011
10.1016/0734-189X(89)90131-X
10.1007/s11263-017-1004-z
10.1109/TPAMI.2016.2572683
10.1007/s11633-018-1117-z
10.1109/4.996
10.1007/s11263-007-0090-8
10.1109/TPAMI.2018.2878849
10.1109/TPAMI.2004.1273918
10.1109/CVPRW.2009.5206707
10.1109/CVPR.2015.7298594
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app9132684
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_3429bbe9b048437489dad3446d8b9c88
10_3390_app9132684
GroupedDBID .4S
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-7f61abc5db049b9d2c74bd0390a1631a3a35d591beea104607ed8d9a3a0fd3233
IEDL.DBID 8FG
ISSN 2076-3417
IngestDate Wed Aug 27 01:26:59 EDT 2025
Mon Jun 30 11:19:25 EDT 2025
Thu Apr 24 23:01:07 EDT 2025
Tue Jul 01 03:00:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-7f61abc5db049b9d2c74bd0390a1631a3a35d591beea104607ed8d9a3a0fd3233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3270-5534
OpenAccessLink https://www.proquest.com/docview/2327551935?pq-origsite=%requestingapplication%
PQID 2327551935
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_3429bbe9b048437489dad3446d8b9c88
proquest_journals_2327551935
crossref_citationtrail_10_3390_app9132684
crossref_primary_10_3390_app9132684
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bao (ref_9) 2005; 27
ref_14
Gong (ref_1) 2018; 15
Martin (ref_10) 2004; 26
ref_12
Russell (ref_21) 2008; 77
ref_23
ref_11
Chen (ref_20) 2018; 40
ref_22
Kanopoulos (ref_6) 2002; 23
Jones (ref_13) 2001; 86
Xie (ref_3) 2017; 125
Long (ref_2) 2017; 39
ref_19
ref_18
ref_17
ref_16
ref_15
Ding (ref_8) 2001; 34
Young (ref_7) 1989; 45
ref_5
ref_4
References_xml – ident: ref_23
  doi: 10.1007/978-1-4842-2766-4
– volume: 27
  start-page: 1485
  year: 2005
  ident: ref_9
  article-title: Canny Edge Detection Enhancement by Scale Multiplication
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.173
– volume: 34
  start-page: 721
  year: 2001
  ident: ref_8
  article-title: On the Canny edge detector
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(00)00023-6
– volume: 40
  start-page: 834
  year: 2018
  ident: ref_20
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref_5
– ident: ref_12
  doi: 10.1109/CVPR.2014.49
– volume: 86
  start-page: 2011
  year: 2001
  ident: ref_13
  article-title: Sillito. Surround suppression in primate V1
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.86.4.2011
– volume: 45
  start-page: 167
  year: 1989
  ident: ref_7
  article-title: A nonlinear laplace operator as edge detector in noisy images
  publication-title: Comput. Vis. Gr. Image Process.
  doi: 10.1016/0734-189X(89)90131-X
– ident: ref_11
– volume: 125
  start-page: 3
  year: 2017
  ident: ref_3
  article-title: Holistically-Nested Edge Detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-017-1004-z
– volume: 39
  start-page: 640
  year: 2017
  ident: ref_2
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref_16
– volume: 15
  start-page: 656
  year: 2018
  ident: ref_1
  article-title: An Overview of Contour Detection Approaches
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-018-1117-z
– volume: 23
  start-page: 358
  year: 2002
  ident: ref_6
  article-title: Design of an image edge detection filter using the Sobel operator
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/4.996
– volume: 77
  start-page: 157
  year: 2008
  ident: ref_21
  article-title: LabelMe: A Database and Web-Based Tool for Image Annotation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0090-8
– ident: ref_4
  doi: 10.1109/TPAMI.2018.2878849
– volume: 26
  start-page: 530
  year: 2004
  ident: ref_10
  article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1273918
– ident: ref_14
– ident: ref_15
  doi: 10.1109/CVPRW.2009.5206707
– ident: ref_17
– ident: ref_19
– ident: ref_22
– ident: ref_18
  doi: 10.1109/CVPR.2015.7298594
SSID ssj0000913810
Score 2.1109655
Snippet Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the...
[...]the Pixel Accuracy (PA) of our method [2] is 99.52% and the mean intersection over union (MIoU) [2] is 49.99%. Sobel [6] is a typical edge detection...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2684
SubjectTerms contour detection
dilated convolutions
fibre of preserved Szechuan pickle
HED
Methods
Neural networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ODIN)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EVsVqlYAe7GFxN9lXjtZaiqAIWuhtSTJZLJSt2NaDv95JNq0VBS9ew2x2dzKPb8jkCyEXiqlIa5YHGVNZEDOsWSUCiSAHlWgDTKTCnh2-f0iHo_hunIw3rvqyPWE1PXCtuCuOAVMpIxSaWuy4UkACxyIGciV07o75Ys7bKKZcDBaRpa6q-Ug51vV2PxjHLLfJtwzkiPp_xGGXXAZ7ZNejQnpdf02TbJmqRXY2uAJbpOm9cE4vPVV0d5-MLLkUPkz7ZuF6qiqKIJQOsAY2dFZS22BhWxqBPn0Y_bKUFX2c2M1c2sPsBRTl-5Mpwk2gONO7N8MDMhrcPt8MA39RQqB5Gi2CrEwjqXQCqCShBDCdxQpC_G2JcCuSXPIEEhEpY6Td0w0zAzkIHA9L4IzzQ9KoZpU5IpQBQBknkQbGYxPnUpQ5Oj0PTapw5rBNuivlFdqziNvLLKYFVhNW0cWXotvkfC37WnNn_CrVs2uwlrB8124AraDwVlD8ZQVt0lmtYOGdcF4gWMwSi1CT4_94xwnZRrQk6l7dDmks3pbmFBHJQp054_sExijdlA
  priority: 102
  providerName: Directory of Open Access Journals
Title Contour Detection for Fibre of Preserved Szechuan Pickle Based on Dilated Convolution
URI https://www.proquest.com/docview/2327551935
https://doaj.org/article/3429bbe9b048437489dad3446d8b9c88
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB214UIPFVCqpoTIUnsohxW79n7YJ0QKAVUqQm0jcVvZHi9FQhtKAof--s5snFAE4uqdtbT2jOeNZ_YNwGcnXea91EklXZXkkmJWS0Ai0egKH1Ca0vC_w9_PytNJ_u2iuIgXbrNYVrk8E7uDGqee78j3yfNXBcON4uDmT8Jdozi7GltovIa1jDwNa7gen6zuWJjzUmfpgpVUUXTPWWEaY4aTR36oo-t_chp3Lma8AW8jNhSHi83chFeh3YI3_zEGbsFmtMWZ-BIJo_fewYQppuhlcRTmXWVVKwiKijFFwkFMG8FlFlzYiOLn3-B_39lWnF9xSleMyIehIPmjq2sCnShopvuojNswGR__-nqaxHYJiVdlNk-qpsys8wU6Qv3OoPRV7jClz7YEujKrrCqwMJkLwXJmN60CajQ0njaopFLvoddO2_ABhETEJi8yj1LlIdfWNJpMX6WhdDRz2oe95eLVPnKJc0uL65piCl7o-mGh-_BpJXuzYNB4VmrEe7CSYNbrbmB6e1lHI6oVOU_ngqEP1HnHm4MWFQW0qJ3xWvdhsNzBOprirH5QnI8vP96BdUJDZlGLO4De_PYu7BLimLthp1ZDWBsdn53_GHZx-z8i89gb
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLaq9gAcqraA2FIgEiDRw4iZZB7JASHKsmzpQ0h0pd6GJM5ApWq2dLet4EfxG7HnsQWBuPWaZCJN4tifY-czwDMnXeK91FEhXRGlknxWS0Ai0ugyH1Ca3PDb4YPDfDxJPxxnx0vws38Lw2mVvU5sFDVOPd-RvyTLX2QMN7LXZ98irhrF0dW-hEYrFnvh-xW5bLNXu0Pa3-dSjt4dvR1HXVWByKs8mUdFlSfW-QwdgWNnUPoidRiT728JmyRWWZVhZhIXguUAaFwE1GioPa5QSb4AJZW_kiplOIVQj94v7nSYY1MnccuCSv0xR6GpjRlV_rB7TXmAv7R_Y9JGa7DaYVHxphWedVgK9Qbc-Y2hcAPWu7M_Ey86gurtuzBhSiv6WAzDvMnkqgVBXzEizzuIaSU4rYMTKVF8-hH81wtbi48nHEIWO2QzUdD44ckpgVwUNNNlJ_z3YHIjC3kflutpHR6AkIhYpVniUao0pNqaSpOqUXHIHc0cD2C7X7zSd9zlXELjtCQfhhe6vF7oATxdjD1rGTv-OWqH92Axglm2m4bp-ZeyO7SlImPtXDD0gzpteHrQoiIHGrUzXusBbPU7WHZHf1ZeC-rm_7ufwK3x0cF-ub97uPcQbhMSM20e8BYsz88vwiNCO3P3uBExAZ9vWqZ_ATiDEr8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9KBdEHsVXxtNqACvZh6W6yH8mDFNtzba2Wgh70bU0y2Vooe7V3Veyf5l_nzH5cFcW3vmZnA5vMzvwmM_kNwHMnXeK91FEhXRGlkmJWS0Ai0ugyH1Ca3PDd4Q8H-e4kfXeUHS3Bz-EuDJdVDjaxNdQ49XxGvkmev8gYbmSbdV8WcTgut86-RtxBijOtQzuNTkX2w4_vFL7NXu2Naa9fSFm--bSzG_UdBiKv8mQeFXWeWOczdASUnUHpi9RhrExsCackVlmVYWYSF4LlZGhcBNRoaDyuUUk-DCXzf6NQOubuCbp8uzjfYb5NncQdI6qiGTkjTWPMrvKHD2xbBfzlCVr3Vt6FOz0uFa87RVqBpdCswu3f2ApXYaW3AzPxsier3rgHE6a3opfFOMzbqq5GEAwWJUXhQUxrwSUeXFSJ4uNl8F8ubCMOTzidLLbJf6Ig-fHJKQFeFDTTt_5HuA-Ta1nIB7DcTJvwEIRExDrNEo9SpSHV1tSazI6KQ-5o5ngEG8PiVb7nMed2GqcVxTO80NXVQo_g2UL2rGPv-KfUNu_BQoIZt9uB6flx1f_AlSLH7Vww9IE6bTl70KKiYBq1M17rEawNO1j1ZmBWXSnto_8_XoebpM3V-72D_cdwi0CZ6UqC12B5fn4RnhDwmbunrYYJ-HzdKv0LqJwW7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contour+Detection+for+Fibre+of+Preserved+Szechuan+Pickle+Based+on+Dilated+Convolution&rft.jtitle=Applied+sciences&rft.au=Li%2C+Hongyang&rft.au=Liu%2C+Lizhuang&rft.au=Han%2C+Zhenqi&rft.au=Zhao%2C+Dan&rft.date=2019-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=13&rft_id=info:doi/10.3390%2Fapp9132684&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon