Visual Commonsense Causal Reasoning From a Still Image

Even from a still image, humans exhibit the ability to ratiocinate diverse visual cause-and-effect relationships of events preceding, succeeding, and extending beyond the given image scope. Previous work on commonsense causal reasoning (CCR) aimed at understanding general causal dependencies among c...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 85084 - 85097
Main Authors Wu, Xiaojing, Guo, Rui, Li, Qin, Zhu, Ning
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Even from a still image, humans exhibit the ability to ratiocinate diverse visual cause-and-effect relationships of events preceding, succeeding, and extending beyond the given image scope. Previous work on commonsense causal reasoning (CCR) aimed at understanding general causal dependencies among common events in natural language descriptions. However, in real-world scenarios, CCR is fundamentally a multisensory task and is more susceptible to spurious correlations, given that commonsense causal relationships manifest in various modalities and involve multiple sources of confounders. In this work, to the best of our knowledge, we present the first comprehensive study focusing on visual commonsense causal reasoning (VCCR) within the potential outcomes framework. By drawing parallels between vision-language data and human subjects in the observational study, we tailor a foundational framework, VCC-Reasoner, for detecting implicit visual commonsense causation. It combines inverse propensity score weighting and outcome regression, offering dual robust estimates of the average treatment effect. Empirical evidence underscores the efficacy and superiority of VCC-Reasoner, showcasing its outstanding VCCR capabilities.
AbstractList Even from a still image, humans exhibit the ability to ratiocinate diverse visual cause-and-effect relationships of events preceding, succeeding, and extending beyond the given image scope. Previous work on commonsense causal reasoning (CCR) aimed at understanding general causal dependencies among common events in natural language descriptions. However, in real-world scenarios, CCR is fundamentally a multisensory task and is more susceptible to spurious correlations, given that commonsense causal relationships manifest in various modalities and involve multiple sources of confounders. In this work, to the best of our knowledge, we present the first comprehensive study focusing on visual commonsense causal reasoning (VCCR) within the potential outcomes framework. By drawing parallels between vision-language data and human subjects in the observational study, we tailor a foundational framework, VCC-Reasoner, for detecting implicit visual commonsense causation. It combines inverse propensity score weighting and outcome regression, offering dual robust estimates of the average treatment effect. Empirical evidence underscores the efficacy and superiority of VCC-Reasoner, showcasing its outstanding VCCR capabilities.
Author Zhu, Ning
Wu, Xiaojing
Guo, Rui
Li, Qin
Author_xml – sequence: 1
  givenname: Xiaojing
  orcidid: 0009-0002-4064-9720
  surname: Wu
  fullname: Wu, Xiaojing
  organization: School of Undergraduate Education, Shenzhen Polytechnic University, Shenzhen, China
– sequence: 2
  givenname: Rui
  surname: Guo
  fullname: Guo, Rui
  email: grui@bgy.edu.cn
  organization: School of Information Engineering, Beijing Polytechnic College, Beijing, China
– sequence: 3
  givenname: Qin
  surname: Li
  fullname: Li, Qin
  organization: School of Information Engineering, Weifang Engineering Vocational College, Qingzhou, Shandong, China
– sequence: 4
  givenname: Ning
  surname: Zhu
  fullname: Zhu, Ning
  organization: Shangyu Technology (Beijing) Company Ltd., Beijing, China
BookMark eNpNUE1Lw0AQXaSCtfYX6CHgOXW_kz2W0GqhIFj1umyS2ZKSZOtuc_DfuzUiHQZmeLz3Zni3aNK7HhC6J3hBCFZPy6JY7XYLiqlYMCFyTtUVmlIiVcoEk5OL_QbNQzjgWHmERDZF8rMJg2mTwnWd6wPETgozhAi9gQmub_p9svauS0yyOzVtm2w6s4c7dG1NG2D-N2foY716L17S7evzplhu04pJckozLoBbICXI2lZU4jIjohYS50xxVVpSVrkUDAjDtgLgNcmqktZc5spYoxiboc3oWztz0EffdMZ_a2ca_Qs4v9fGn5qqBa0UlpwKUttacs5VnguRkZoqajm31Eavx9Hr6N3XAOGkD27wfXxfM4olwxkWNLLYyKq8C8GD_b9KsD7nrce89Tlv_Zd3VD2MqgYALhRKYMIx-wGy0nsU
CODEN IAECCG
Cites_doi 10.18653/v1/2022.findings-emnlp.399
10.1145/582415.582418
10.18653/v1/2024.findings-acl.640
10.1017/CBO9781107587991
10.1145/3474085.3475328
10.1007/978-3-319-46475-6_5
10.1007/978-3-319-10602-1_48
10.1007/s10516-023-09671-5
10.1177/1536867X0400400307
10.1023/B:BTTJ.0000047600.45421.6d
10.18653/v1/P18-1043
10.1109/ICCV.2017.322
10.1109/ICCV.2015.303
10.1109/CVPR.2019.00688
10.1109/CVPR.2016.9
10.1162/tacl_a_00511
10.1111/j.1467-6419.2007.00527.x
10.1037/rev0000281
10.1017/CBO9781139025751
10.1080/01621459.1984.10478078
10.18653/v1/2020.acl-tutorials.7
10.1002/sim.6207
10.2307/2289069
10.18653/v1/P16-1135
10.1111/rssb.12027
10.18653/v1/2021.acl-long.523
10.1093/aje/kwq439
10.1080/01621459.1994.10476818
10.1080/01621459.2016.1260466
10.1093/biomet/82.4.669
10.1007/s11263-016-0981-7
10.1109/WACV.2018.00048
10.1017/CBO9780511803161
10.18653/v1/2020.acl-main.474
10.18653/v1/P18-1212
10.4324/9781315081656
10.1111/j.1541-0420.2005.00377.x
10.1080/01621459.1987.10478441
10.1016/j.knosys.2021.107347
10.1002/sim.1903
10.18653/v1/2021.acl-short.20
10.1037/h0037350
10.1109/CVPR.2018.00387
10.1109/CVPR42600.2020.01077
10.4135/9781412952637.n77
10.1109/WACVW60836.2024.00102
10.1214/09-STS313
10.18653/v1/D19-6004
10.18653/v1/2023.acl-long.288
10.18653/v1/2020.acl-main.357
10.1007/978-3-030-58558-7_30
10.1093/biomet/70.1.41
10.1093/pan/mpj004
10.1198/016214504000001880
10.2307/2981697
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3558429
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 85097
ExternalDocumentID oai_doaj_org_article_99064251dfd64449885571d292f44f2f
10_1109_ACCESS_2025_3558429
10950140
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-745e4fe1be6dfc260b715d56083949bf1bc8653e130fcee4d17cb2d4689afa933
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 00:18:40 EDT 2025
Mon Jun 30 07:44:24 EDT 2025
Sun Jul 06 05:04:24 EDT 2025
Wed Aug 27 01:53:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-745e4fe1be6dfc260b715d56083949bf1bc8653e130fcee4d17cb2d4689afa933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-4064-9720
OpenAccessLink https://doaj.org/article/99064251dfd64449885571d292f44f2f
PQID 3206307052
PQPubID 4845423
PageCount 14
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3558429
ieee_primary_10950140
proquest_journals_3206307052
doaj_primary_oai_doaj_org_article_99064251dfd64449885571d292f44f2f
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref15
ref59
ref14
ref58
ref11
ref54
ref17
Bian (ref55) 2023
ref19
ref18
Zhang (ref65) 2023
Do (ref45)
Won Chung (ref77) 2022
ref46
Zecevic (ref12) 2023; 8
Pearl (ref16) 2000; 19
ref47
ref42
OpenAI (ref78) 2023
ref41
Pan (ref32) 2015
Zeng (ref56)
Guo (ref31) 2014; 11
Chiang (ref51) 2023
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref80
Touvron (ref52) 2023
Zhang (ref8)
ref35
ref79
ref34
ref37
ref36
ref30
ref74
ref33
ref76
Jin (ref43) 2023
ref2
ref1
ref39
ref38
Gupta (ref62) 2015
Radford (ref49)
Tsiatis (ref71) 2007
Yeo (ref27)
ref70
ref73
ref72
ref24
ref23
ref67
Luo (ref10)
ref26
ref25
ref69
ref20
ref64
ref63
ref22
Zhang (ref48)
ref66
ref21
Liu (ref53) 2023
Mirza (ref44)
ref28
Tsimpoukelli (ref75); 34
ref29
Pearl (ref68) 2018
Liu (ref50) 2023
ref60
ref61
References_xml – start-page: 1026
  volume-title: Proc. Conf. Causal Learn. Reasoning
  ident: ref48
  article-title: Some reflections on drawing causal inference using textual data: Parallels between human subjects and organized texts
– ident: ref63
  doi: 10.18653/v1/2022.findings-emnlp.399
– ident: ref79
  doi: 10.1145/582415.582418
– ident: ref30
  doi: 10.18653/v1/2024.findings-acl.640
– ident: ref20
  doi: 10.1017/CBO9781107587991
– ident: ref29
  doi: 10.1145/3474085.3475328
– year: 2023
  ident: ref50
  article-title: Visual instruction tuning
  publication-title: arXiv:2304.08485
– ident: ref58
  doi: 10.1007/978-3-319-46475-6_5
– volume: 19
  start-page: 3
  issue: 2
  volume-title: Models, Reasoning and Inference
  year: 2000
  ident: ref16
– ident: ref57
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref13
  doi: 10.1007/s10516-023-09671-5
– ident: ref36
  doi: 10.1177/1536867X0400400307
– ident: ref3
  doi: 10.1023/B:BTTJ.0000047600.45421.6d
– volume-title: Propensity Score Analysis: Fundamentals and Developments
  year: 2015
  ident: ref32
– year: 2023
  ident: ref43
  article-title: Can large language models infer causation from correlation?
  publication-title: arXiv:2306.05836
– ident: ref37
  doi: 10.18653/v1/P18-1043
– ident: ref54
  doi: 10.1109/ICCV.2017.322
– ident: ref59
  doi: 10.1109/ICCV.2015.303
– start-page: 421
  volume-title: Proc. KR
  ident: ref10
  article-title: Commonsense causal reasoning between short texts
– ident: ref6
  doi: 10.1109/CVPR.2019.00688
– volume-title: arXiv:2303.08774
  year: 2023
  ident: ref78
  article-title: GPT-4 technical report
– ident: ref64
  doi: 10.1109/CVPR.2016.9
– volume-title: Semiparametric Theory and Missing Data
  year: 2007
  ident: ref71
– ident: ref47
  doi: 10.1162/tacl_a_00511
– start-page: 8748
  volume-title: Proc. ICML
  ident: ref49
  article-title: Learning transferable visual models from natural language supervision
– year: 2023
  ident: ref65
  article-title: GPT4RoI: Instruction tuning large language model on region-of-interest
  publication-title: arXiv:2307.03601
– ident: ref69
  doi: 10.1111/j.1467-6419.2007.00527.x
– ident: ref46
  doi: 10.1037/rev0000281
– ident: ref18
  doi: 10.1017/CBO9781139025751
– start-page: 26750
  volume-title: Proc. ICML
  ident: ref8
  article-title: ROCK: Causal inference principles for reasoning about commonsense causality
– ident: ref35
  doi: 10.1080/01621459.1984.10478078
– ident: ref38
  doi: 10.18653/v1/2020.acl-tutorials.7
– ident: ref24
  doi: 10.1002/sim.6207
– ident: ref14
  doi: 10.2307/2289069
– ident: ref40
  doi: 10.18653/v1/P16-1135
– ident: ref72
  doi: 10.1111/rssb.12027
– volume: 34
  start-page: 200
  volume-title: Proc. NeurIPS
  ident: ref75
  article-title: Multimodal few-shot learning with frozen language models
– ident: ref76
  doi: 10.18653/v1/2021.acl-long.523
– ident: ref26
  doi: 10.1093/aje/kwq439
– volume-title: Vicuna: An Open-Source Chatbot Impressing GPT-4 With 90%* ChatGPT Quality
  year: 2023
  ident: ref51
– ident: ref74
  doi: 10.1080/01621459.1994.10476818
– ident: ref33
  doi: 10.1080/01621459.2016.1260466
– ident: ref15
  doi: 10.1093/biomet/82.4.669
– ident: ref60
  doi: 10.1007/s11263-016-0981-7
– ident: ref61
  doi: 10.1109/WACV.2018.00048
– ident: ref1
  doi: 10.1017/CBO9780511803161
– volume-title: The Book of Why: The New Science of Cause and Effect
  year: 2018
  ident: ref68
– year: 2023
  ident: ref55
  article-title: ChatGPT is a knowledgeable but inexperienced solver: An investigation of commonsense problem in large language models
  publication-title: arXiv:2303.16421
– ident: ref19
  doi: 10.18653/v1/2020.acl-main.474
– start-page: 2097
  volume-title: Proc. COLING
  ident: ref44
  article-title: An analysis of causality between events and its relation to temporal information
– ident: ref39
  doi: 10.18653/v1/P18-1212
– ident: ref2
  doi: 10.4324/9781315081656
– ident: ref22
  doi: 10.1111/j.1541-0420.2005.00377.x
– ident: ref70
  doi: 10.1080/01621459.1987.10478441
– ident: ref4
  doi: 10.1016/j.knosys.2021.107347
– ident: ref23
  doi: 10.1002/sim.1903
– volume: 8
  start-page: 1
  year: 2023
  ident: ref12
  article-title: Causal parrots: Large language models may talk causality but are not causal
  publication-title: Trans. Mach. Learn. Res.
– ident: ref41
  doi: 10.18653/v1/2021.acl-short.20
– ident: ref66
  doi: 10.1037/h0037350
– ident: ref5
  doi: 10.1109/CVPR.2018.00387
– ident: ref28
  doi: 10.1109/CVPR42600.2020.01077
– ident: ref21
  doi: 10.4135/9781412952637.n77
– ident: ref7
  doi: 10.1109/WACVW60836.2024.00102
– ident: ref25
  doi: 10.1214/09-STS313
– start-page: 25994
  volume-title: Proc. ICML
  ident: ref56
  article-title: Multi-grained vision language pre-training: Aligning texts with visual concepts
– ident: ref42
  doi: 10.18653/v1/D19-6004
– ident: ref9
  doi: 10.18653/v1/2023.acl-long.288
– ident: ref80
  doi: 10.18653/v1/2020.acl-main.357
– year: 2023
  ident: ref53
  article-title: Grounding DINO: Marrying DINO with grounded pre-training for open-set object detection
  publication-title: arXiv:2303.05499
– ident: ref11
  doi: 10.1007/978-3-030-58558-7_30
– ident: ref34
  doi: 10.1093/biomet/70.1.41
– start-page: 1
  volume-title: Proc. LREC
  ident: ref27
  article-title: Visual choice of plausible alternatives: An evaluation of image-based commonsense causal reasoning
– ident: ref73
  doi: 10.1093/pan/mpj004
– start-page: 294
  volume-title: Proc. EMNLP
  ident: ref45
  article-title: Minimally supervised event causality identification
– year: 2023
  ident: ref52
  article-title: LLaMA: Open and efficient foundation language models
  publication-title: arXiv:2302.13971
– volume: 11
  year: 2014
  ident: ref31
  publication-title: Propensity Score Analysis: Statistical Methods and Applications
– ident: ref17
  doi: 10.1198/016214504000001880
– year: 2022
  ident: ref77
  article-title: Scaling instruction-finetuned language models
  publication-title: arXiv:2210.11416
– year: 2015
  ident: ref62
  article-title: Visual semantic role labeling
  publication-title: arXiv:1505.04474
– ident: ref67
  doi: 10.2307/2981697
SSID ssj0000816957
Score 2.3339539
Snippet Even from a still image, humans exhibit the ability to ratiocinate diverse visual cause-and-effect relationships of events preceding, succeeding, and extending...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 85084
SubjectTerms Cause effect analysis
Commonsense reasoning
Correlation
Electronic mail
Estimation
Large language models
multimodal large language model
Natural languages
Question answering (information retrieval)
Reasoning
Visual commonsense reasoning
Visual effects
visual event reasoning
Visualization
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygUlIGRlPqVxGOpqACJDrzEZtmxLVX0gdpk4ddzdtJSgZCQMkSWIzt3tu8-2_cdQhdOMeLzHsWWJi5mRuE4AyQUE0MFNwxGlfFA8WGY3L6w-zf-Vgerh1gYa224fGY7_jWc5ZtZXvqtMpjhwh-DAULfBORWBWutNlR8BgnB05pZCKpe9fp9-AnAgIR3PIs4C37kt_UJJP11VpVfS3GwL4NdNFz2rLpW8t4pC93JP3-QNv6763top_Y0o141NPbRhp0eoO01_sFDlLyOFiXU8VEi_lY1PFFflQsoerRqEXZqo8F8NolU9FSMxuPobgLrTxO9DG6e-7dxnUghzmmCizhl3DJnsbaJcTkgGJ1ibsDXAe-ICe2wzrOEUwv2zIHRZAanuSaGJZlQTglKj1BjOpvaYxRZnHk-H6a0MIx1c3BvMuKYNtRoLahqoculgOVHxZchA87oClnpQ3p9yFofLXTtlbCq6smuQwEIT9ZzR4LBBJTEsXEGvDcmsozzFBsioGHmiGuhphf4WnuVrFuovdSprGfmQlLiWcbSLicnf3x2irZ8F6t9ljZqFPPSnoHnUejzMOK-AJaj0oo
  priority: 102
  providerName: IEEE
Title Visual Commonsense Causal Reasoning From a Still Image
URI https://ieeexplore.ieee.org/document/10950140
https://www.proquest.com/docview/3206307052
https://doaj.org/article/99064251dfd64449885571d292f44f2f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxGBUmVgJDR-JfFYKqqCBANQ1M2yY1uq1Adq0__P2UkhEgMLUibLkuPvnLvvHPs7hG6cYsTXPUoszVzCjMJJAZlQQgwV3DBYVcYnis8v2XjCnqZ82ir15c-E1fLANXB98JZAkTk2zkDoZqIoOM-xIYI4xhxx3vtCzGslU8EHFzgTPG9khnAq-oPhEGYECSHhd15SnAVS-ROKgmJ_U2Lll18OwWZ0jI4alhgP6rc7QXt2eYoOW9qBZyj7mG220Mff8PAnouGJh2q7gaZXqzZhlzUerVeLWMVv1Ww-jx8X4Ds6aDJ6eB-Ok6YIQlLSDFdJzrhlzmJtM-NKyD50jrkBngLMhgntsC6LjFMLschBwGMG56UmhmWFUE4JSs_R_nK1tBcotrjwWjxMaWEYS0ugJgWgqA01WguqInS7w0N-1loXMuQIqZA1fNLDJxv4InTvMfvu6oWqQwOYTzbmk3-ZL0Idj3hrPOH_dKYR6u5MIJuvaiMp8QphecrJ5X-MfYUO_HzqDZUu2q_WW3sNFKPSvbCaeuE24Bf_vMgJ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6t4LBw2Cdou8uyOXAkpX4l8REqqgJtD8tD3Cw7tqWKPlY0ufDrGTspoEVISDlE1kR2ZmzPw55vAA685jTUPUody3zKrSZpgZ5QSi2TwnKcVTY4iuNJNrzm57fitk1Wj7kwzrl4-cx1w2s8y7fLsg6hMlzhMhyDoYe-iYpfkCZd6ymkEmpISJG32EJIfHTc7-NvoBdIRTfgiPNoST7rnwjT39ZVebUZRw0z-AyT9diaiyV33boy3fLhP9jGdw_-C3xqbc3kuJkcX-GDW3yD7RcIhN8hu5muaqQJeSLhXjU-SV_XK2z66_QqxmqTwf1ynujksprOZsnZHHegHbgenF71h2lbSiEtWUaqNOfCce-IcZn1JfowJifCorWD9hGXxhNTFplgDjWaR7XJLclLQy3PCqm9loztwsZiuXA_IHGkCIg-XBtpOe-VaOAU1HNjmTVGMt2BwzWD1b8GMUNFT6MnVSMPFeShWnl04CQI4Yk0wF3HBmSealePQpWJfpIg1lu037gsCiFyYqnEjrmnvgM7geEv-mt43YG9tUxVuzZXitGAM5b3BP35xmd_4OPwajxSo7PJxS_YCsNtoi57sFHd1-432iGV2Y-z7xG-qtXT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Commonsense+Causal+Reasoning+From+a+Still+Image&rft.jtitle=IEEE+access&rft.au=Wu%2C+Xiaojing&rft.au=Guo%2C+Rui&rft.au=Li%2C+Qin&rft.au=Zhu%2C+Ning&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=85084&rft.epage=85097&rft_id=info:doi/10.1109%2FACCESS.2025.3558429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3558429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon