Visual Commonsense Causal Reasoning From a Still Image
Even from a still image, humans exhibit the ability to ratiocinate diverse visual cause-and-effect relationships of events preceding, succeeding, and extending beyond the given image scope. Previous work on commonsense causal reasoning (CCR) aimed at understanding general causal dependencies among c...
Saved in:
Published in | IEEE access Vol. 13; pp. 85084 - 85097 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Even from a still image, humans exhibit the ability to ratiocinate diverse visual cause-and-effect relationships of events preceding, succeeding, and extending beyond the given image scope. Previous work on commonsense causal reasoning (CCR) aimed at understanding general causal dependencies among common events in natural language descriptions. However, in real-world scenarios, CCR is fundamentally a multisensory task and is more susceptible to spurious correlations, given that commonsense causal relationships manifest in various modalities and involve multiple sources of confounders. In this work, to the best of our knowledge, we present the first comprehensive study focusing on visual commonsense causal reasoning (VCCR) within the potential outcomes framework. By drawing parallels between vision-language data and human subjects in the observational study, we tailor a foundational framework, VCC-Reasoner, for detecting implicit visual commonsense causation. It combines inverse propensity score weighting and outcome regression, offering dual robust estimates of the average treatment effect. Empirical evidence underscores the efficacy and superiority of VCC-Reasoner, showcasing its outstanding VCCR capabilities. |
---|---|
AbstractList | Even from a still image, humans exhibit the ability to ratiocinate diverse visual cause-and-effect relationships of events preceding, succeeding, and extending beyond the given image scope. Previous work on commonsense causal reasoning (CCR) aimed at understanding general causal dependencies among common events in natural language descriptions. However, in real-world scenarios, CCR is fundamentally a multisensory task and is more susceptible to spurious correlations, given that commonsense causal relationships manifest in various modalities and involve multiple sources of confounders. In this work, to the best of our knowledge, we present the first comprehensive study focusing on visual commonsense causal reasoning (VCCR) within the potential outcomes framework. By drawing parallels between vision-language data and human subjects in the observational study, we tailor a foundational framework, VCC-Reasoner, for detecting implicit visual commonsense causation. It combines inverse propensity score weighting and outcome regression, offering dual robust estimates of the average treatment effect. Empirical evidence underscores the efficacy and superiority of VCC-Reasoner, showcasing its outstanding VCCR capabilities. |
Author | Zhu, Ning Wu, Xiaojing Guo, Rui Li, Qin |
Author_xml | – sequence: 1 givenname: Xiaojing orcidid: 0009-0002-4064-9720 surname: Wu fullname: Wu, Xiaojing organization: School of Undergraduate Education, Shenzhen Polytechnic University, Shenzhen, China – sequence: 2 givenname: Rui surname: Guo fullname: Guo, Rui email: grui@bgy.edu.cn organization: School of Information Engineering, Beijing Polytechnic College, Beijing, China – sequence: 3 givenname: Qin surname: Li fullname: Li, Qin organization: School of Information Engineering, Weifang Engineering Vocational College, Qingzhou, Shandong, China – sequence: 4 givenname: Ning surname: Zhu fullname: Zhu, Ning organization: Shangyu Technology (Beijing) Company Ltd., Beijing, China |
BookMark | eNpNUE1Lw0AQXaSCtfYX6CHgOXW_kz2W0GqhIFj1umyS2ZKSZOtuc_DfuzUiHQZmeLz3Zni3aNK7HhC6J3hBCFZPy6JY7XYLiqlYMCFyTtUVmlIiVcoEk5OL_QbNQzjgWHmERDZF8rMJg2mTwnWd6wPETgozhAi9gQmub_p9svauS0yyOzVtm2w6s4c7dG1NG2D-N2foY716L17S7evzplhu04pJckozLoBbICXI2lZU4jIjohYS50xxVVpSVrkUDAjDtgLgNcmqktZc5spYoxiboc3oWztz0EffdMZ_a2ca_Qs4v9fGn5qqBa0UlpwKUttacs5VnguRkZoqajm31Eavx9Hr6N3XAOGkD27wfXxfM4olwxkWNLLYyKq8C8GD_b9KsD7nrce89Tlv_Zd3VD2MqgYALhRKYMIx-wGy0nsU |
CODEN | IAECCG |
Cites_doi | 10.18653/v1/2022.findings-emnlp.399 10.1145/582415.582418 10.18653/v1/2024.findings-acl.640 10.1017/CBO9781107587991 10.1145/3474085.3475328 10.1007/978-3-319-46475-6_5 10.1007/978-3-319-10602-1_48 10.1007/s10516-023-09671-5 10.1177/1536867X0400400307 10.1023/B:BTTJ.0000047600.45421.6d 10.18653/v1/P18-1043 10.1109/ICCV.2017.322 10.1109/ICCV.2015.303 10.1109/CVPR.2019.00688 10.1109/CVPR.2016.9 10.1162/tacl_a_00511 10.1111/j.1467-6419.2007.00527.x 10.1037/rev0000281 10.1017/CBO9781139025751 10.1080/01621459.1984.10478078 10.18653/v1/2020.acl-tutorials.7 10.1002/sim.6207 10.2307/2289069 10.18653/v1/P16-1135 10.1111/rssb.12027 10.18653/v1/2021.acl-long.523 10.1093/aje/kwq439 10.1080/01621459.1994.10476818 10.1080/01621459.2016.1260466 10.1093/biomet/82.4.669 10.1007/s11263-016-0981-7 10.1109/WACV.2018.00048 10.1017/CBO9780511803161 10.18653/v1/2020.acl-main.474 10.18653/v1/P18-1212 10.4324/9781315081656 10.1111/j.1541-0420.2005.00377.x 10.1080/01621459.1987.10478441 10.1016/j.knosys.2021.107347 10.1002/sim.1903 10.18653/v1/2021.acl-short.20 10.1037/h0037350 10.1109/CVPR.2018.00387 10.1109/CVPR42600.2020.01077 10.4135/9781412952637.n77 10.1109/WACVW60836.2024.00102 10.1214/09-STS313 10.18653/v1/D19-6004 10.18653/v1/2023.acl-long.288 10.18653/v1/2020.acl-main.357 10.1007/978-3-030-58558-7_30 10.1093/biomet/70.1.41 10.1093/pan/mpj004 10.1198/016214504000001880 10.2307/2981697 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3558429 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 85097 |
ExternalDocumentID | oai_doaj_org_article_99064251dfd64449885571d292f44f2f 10_1109_ACCESS_2025_3558429 10950140 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-745e4fe1be6dfc260b715d56083949bf1bc8653e130fcee4d17cb2d4689afa933 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 00:18:40 EDT 2025 Mon Jun 30 07:44:24 EDT 2025 Sun Jul 06 05:04:24 EDT 2025 Wed Aug 27 01:53:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-745e4fe1be6dfc260b715d56083949bf1bc8653e130fcee4d17cb2d4689afa933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-4064-9720 |
OpenAccessLink | https://doaj.org/article/99064251dfd64449885571d292f44f2f |
PQID | 3206307052 |
PQPubID | 4845423 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3558429 ieee_primary_10950140 proquest_journals_3206307052 doaj_primary_oai_doaj_org_article_99064251dfd64449885571d292f44f2f |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref15 ref59 ref14 ref58 ref11 ref54 ref17 Bian (ref55) 2023 ref19 ref18 Zhang (ref65) 2023 Do (ref45) Won Chung (ref77) 2022 ref46 Zecevic (ref12) 2023; 8 Pearl (ref16) 2000; 19 ref47 ref42 OpenAI (ref78) 2023 ref41 Pan (ref32) 2015 Zeng (ref56) Guo (ref31) 2014; 11 Chiang (ref51) 2023 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref80 Touvron (ref52) 2023 Zhang (ref8) ref35 ref79 ref34 ref37 ref36 ref30 ref74 ref33 ref76 Jin (ref43) 2023 ref2 ref1 ref39 ref38 Gupta (ref62) 2015 Radford (ref49) Tsiatis (ref71) 2007 Yeo (ref27) ref70 ref73 ref72 ref24 ref23 ref67 Luo (ref10) ref26 ref25 ref69 ref20 ref64 ref63 ref22 Zhang (ref48) ref66 ref21 Liu (ref53) 2023 Mirza (ref44) ref28 Tsimpoukelli (ref75); 34 ref29 Pearl (ref68) 2018 Liu (ref50) 2023 ref60 ref61 |
References_xml | – start-page: 1026 volume-title: Proc. Conf. Causal Learn. Reasoning ident: ref48 article-title: Some reflections on drawing causal inference using textual data: Parallels between human subjects and organized texts – ident: ref63 doi: 10.18653/v1/2022.findings-emnlp.399 – ident: ref79 doi: 10.1145/582415.582418 – ident: ref30 doi: 10.18653/v1/2024.findings-acl.640 – ident: ref20 doi: 10.1017/CBO9781107587991 – ident: ref29 doi: 10.1145/3474085.3475328 – year: 2023 ident: ref50 article-title: Visual instruction tuning publication-title: arXiv:2304.08485 – ident: ref58 doi: 10.1007/978-3-319-46475-6_5 – volume: 19 start-page: 3 issue: 2 volume-title: Models, Reasoning and Inference year: 2000 ident: ref16 – ident: ref57 doi: 10.1007/978-3-319-10602-1_48 – ident: ref13 doi: 10.1007/s10516-023-09671-5 – ident: ref36 doi: 10.1177/1536867X0400400307 – ident: ref3 doi: 10.1023/B:BTTJ.0000047600.45421.6d – volume-title: Propensity Score Analysis: Fundamentals and Developments year: 2015 ident: ref32 – year: 2023 ident: ref43 article-title: Can large language models infer causation from correlation? publication-title: arXiv:2306.05836 – ident: ref37 doi: 10.18653/v1/P18-1043 – ident: ref54 doi: 10.1109/ICCV.2017.322 – ident: ref59 doi: 10.1109/ICCV.2015.303 – start-page: 421 volume-title: Proc. KR ident: ref10 article-title: Commonsense causal reasoning between short texts – ident: ref6 doi: 10.1109/CVPR.2019.00688 – volume-title: arXiv:2303.08774 year: 2023 ident: ref78 article-title: GPT-4 technical report – ident: ref64 doi: 10.1109/CVPR.2016.9 – volume-title: Semiparametric Theory and Missing Data year: 2007 ident: ref71 – ident: ref47 doi: 10.1162/tacl_a_00511 – start-page: 8748 volume-title: Proc. ICML ident: ref49 article-title: Learning transferable visual models from natural language supervision – year: 2023 ident: ref65 article-title: GPT4RoI: Instruction tuning large language model on region-of-interest publication-title: arXiv:2307.03601 – ident: ref69 doi: 10.1111/j.1467-6419.2007.00527.x – ident: ref46 doi: 10.1037/rev0000281 – ident: ref18 doi: 10.1017/CBO9781139025751 – start-page: 26750 volume-title: Proc. ICML ident: ref8 article-title: ROCK: Causal inference principles for reasoning about commonsense causality – ident: ref35 doi: 10.1080/01621459.1984.10478078 – ident: ref38 doi: 10.18653/v1/2020.acl-tutorials.7 – ident: ref24 doi: 10.1002/sim.6207 – ident: ref14 doi: 10.2307/2289069 – ident: ref40 doi: 10.18653/v1/P16-1135 – ident: ref72 doi: 10.1111/rssb.12027 – volume: 34 start-page: 200 volume-title: Proc. NeurIPS ident: ref75 article-title: Multimodal few-shot learning with frozen language models – ident: ref76 doi: 10.18653/v1/2021.acl-long.523 – ident: ref26 doi: 10.1093/aje/kwq439 – volume-title: Vicuna: An Open-Source Chatbot Impressing GPT-4 With 90%* ChatGPT Quality year: 2023 ident: ref51 – ident: ref74 doi: 10.1080/01621459.1994.10476818 – ident: ref33 doi: 10.1080/01621459.2016.1260466 – ident: ref15 doi: 10.1093/biomet/82.4.669 – ident: ref60 doi: 10.1007/s11263-016-0981-7 – ident: ref61 doi: 10.1109/WACV.2018.00048 – ident: ref1 doi: 10.1017/CBO9780511803161 – volume-title: The Book of Why: The New Science of Cause and Effect year: 2018 ident: ref68 – year: 2023 ident: ref55 article-title: ChatGPT is a knowledgeable but inexperienced solver: An investigation of commonsense problem in large language models publication-title: arXiv:2303.16421 – ident: ref19 doi: 10.18653/v1/2020.acl-main.474 – start-page: 2097 volume-title: Proc. COLING ident: ref44 article-title: An analysis of causality between events and its relation to temporal information – ident: ref39 doi: 10.18653/v1/P18-1212 – ident: ref2 doi: 10.4324/9781315081656 – ident: ref22 doi: 10.1111/j.1541-0420.2005.00377.x – ident: ref70 doi: 10.1080/01621459.1987.10478441 – ident: ref4 doi: 10.1016/j.knosys.2021.107347 – ident: ref23 doi: 10.1002/sim.1903 – volume: 8 start-page: 1 year: 2023 ident: ref12 article-title: Causal parrots: Large language models may talk causality but are not causal publication-title: Trans. Mach. Learn. Res. – ident: ref41 doi: 10.18653/v1/2021.acl-short.20 – ident: ref66 doi: 10.1037/h0037350 – ident: ref5 doi: 10.1109/CVPR.2018.00387 – ident: ref28 doi: 10.1109/CVPR42600.2020.01077 – ident: ref21 doi: 10.4135/9781412952637.n77 – ident: ref7 doi: 10.1109/WACVW60836.2024.00102 – ident: ref25 doi: 10.1214/09-STS313 – start-page: 25994 volume-title: Proc. ICML ident: ref56 article-title: Multi-grained vision language pre-training: Aligning texts with visual concepts – ident: ref42 doi: 10.18653/v1/D19-6004 – ident: ref9 doi: 10.18653/v1/2023.acl-long.288 – ident: ref80 doi: 10.18653/v1/2020.acl-main.357 – year: 2023 ident: ref53 article-title: Grounding DINO: Marrying DINO with grounded pre-training for open-set object detection publication-title: arXiv:2303.05499 – ident: ref11 doi: 10.1007/978-3-030-58558-7_30 – ident: ref34 doi: 10.1093/biomet/70.1.41 – start-page: 1 volume-title: Proc. LREC ident: ref27 article-title: Visual choice of plausible alternatives: An evaluation of image-based commonsense causal reasoning – ident: ref73 doi: 10.1093/pan/mpj004 – start-page: 294 volume-title: Proc. EMNLP ident: ref45 article-title: Minimally supervised event causality identification – year: 2023 ident: ref52 article-title: LLaMA: Open and efficient foundation language models publication-title: arXiv:2302.13971 – volume: 11 year: 2014 ident: ref31 publication-title: Propensity Score Analysis: Statistical Methods and Applications – ident: ref17 doi: 10.1198/016214504000001880 – year: 2022 ident: ref77 article-title: Scaling instruction-finetuned language models publication-title: arXiv:2210.11416 – year: 2015 ident: ref62 article-title: Visual semantic role labeling publication-title: arXiv:1505.04474 – ident: ref67 doi: 10.2307/2981697 |
SSID | ssj0000816957 |
Score | 2.3339539 |
Snippet | Even from a still image, humans exhibit the ability to ratiocinate diverse visual cause-and-effect relationships of events preceding, succeeding, and extending... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 85084 |
SubjectTerms | Cause effect analysis Commonsense reasoning Correlation Electronic mail Estimation Large language models multimodal large language model Natural languages Question answering (information retrieval) Reasoning Visual commonsense reasoning Visual effects visual event reasoning Visualization |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygUlIGRlPqVxGOpqACJDrzEZtmxLVX0gdpk4ddzdtJSgZCQMkSWIzt3tu8-2_cdQhdOMeLzHsWWJi5mRuE4AyQUE0MFNwxGlfFA8WGY3L6w-zf-Vgerh1gYa224fGY7_jWc5ZtZXvqtMpjhwh-DAULfBORWBWutNlR8BgnB05pZCKpe9fp9-AnAgIR3PIs4C37kt_UJJP11VpVfS3GwL4NdNFz2rLpW8t4pC93JP3-QNv6763top_Y0o141NPbRhp0eoO01_sFDlLyOFiXU8VEi_lY1PFFflQsoerRqEXZqo8F8NolU9FSMxuPobgLrTxO9DG6e-7dxnUghzmmCizhl3DJnsbaJcTkgGJ1ibsDXAe-ICe2wzrOEUwv2zIHRZAanuSaGJZlQTglKj1BjOpvaYxRZnHk-H6a0MIx1c3BvMuKYNtRoLahqoculgOVHxZchA87oClnpQ3p9yFofLXTtlbCq6smuQwEIT9ZzR4LBBJTEsXEGvDcmsozzFBsioGHmiGuhphf4WnuVrFuovdSprGfmQlLiWcbSLicnf3x2irZ8F6t9ljZqFPPSnoHnUejzMOK-AJaj0oo priority: 102 providerName: IEEE |
Title | Visual Commonsense Causal Reasoning From a Still Image |
URI | https://ieeexplore.ieee.org/document/10950140 https://www.proquest.com/docview/3206307052 https://doaj.org/article/99064251dfd64449885571d292f44f2f |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxGBUmVgJDR-JfFYKqqCBANQ1M2yY1uq1Adq0__P2UkhEgMLUibLkuPvnLvvHPs7hG6cYsTXPUoszVzCjMJJAZlQQgwV3DBYVcYnis8v2XjCnqZ82ir15c-E1fLANXB98JZAkTk2zkDoZqIoOM-xIYI4xhxx3vtCzGslU8EHFzgTPG9khnAq-oPhEGYECSHhd15SnAVS-ROKgmJ_U2Lll18OwWZ0jI4alhgP6rc7QXt2eYoOW9qBZyj7mG220Mff8PAnouGJh2q7gaZXqzZhlzUerVeLWMVv1Ww-jx8X4Ds6aDJ6eB-Ok6YIQlLSDFdJzrhlzmJtM-NKyD50jrkBngLMhgntsC6LjFMLschBwGMG56UmhmWFUE4JSs_R_nK1tBcotrjwWjxMaWEYS0ugJgWgqA01WguqInS7w0N-1loXMuQIqZA1fNLDJxv4InTvMfvu6oWqQwOYTzbmk3-ZL0Idj3hrPOH_dKYR6u5MIJuvaiMp8QphecrJ5X-MfYUO_HzqDZUu2q_WW3sNFKPSvbCaeuE24Bf_vMgJ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6t4LBw2Cdou8uyOXAkpX4l8REqqgJtD8tD3Cw7tqWKPlY0ufDrGTspoEVISDlE1kR2ZmzPw55vAA685jTUPUody3zKrSZpgZ5QSi2TwnKcVTY4iuNJNrzm57fitk1Wj7kwzrl4-cx1w2s8y7fLsg6hMlzhMhyDoYe-iYpfkCZd6ymkEmpISJG32EJIfHTc7-NvoBdIRTfgiPNoST7rnwjT39ZVebUZRw0z-AyT9diaiyV33boy3fLhP9jGdw_-C3xqbc3kuJkcX-GDW3yD7RcIhN8hu5muaqQJeSLhXjU-SV_XK2z66_QqxmqTwf1ynujksprOZsnZHHegHbgenF71h2lbSiEtWUaqNOfCce-IcZn1JfowJifCorWD9hGXxhNTFplgDjWaR7XJLclLQy3PCqm9loztwsZiuXA_IHGkCIg-XBtpOe-VaOAU1HNjmTVGMt2BwzWD1b8GMUNFT6MnVSMPFeShWnl04CQI4Yk0wF3HBmSealePQpWJfpIg1lu037gsCiFyYqnEjrmnvgM7geEv-mt43YG9tUxVuzZXitGAM5b3BP35xmd_4OPwajxSo7PJxS_YCsNtoi57sFHd1-432iGV2Y-z7xG-qtXT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Commonsense+Causal+Reasoning+From+a+Still+Image&rft.jtitle=IEEE+access&rft.au=Wu%2C+Xiaojing&rft.au=Guo%2C+Rui&rft.au=Li%2C+Qin&rft.au=Zhu%2C+Ning&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=85084&rft.epage=85097&rft_id=info:doi/10.1109%2FACCESS.2025.3558429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3558429 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |