A New Porous Nozzle for Aluminum Melts Purification—Preparation and Mathematical–Physical Model
Aluminum and its alloy castings are used more and more widely, and it is particularly important to remove impurities in the alloy. According to the principle of bubble floatation for degassing aluminum melt, a new porous nozzle with controllable pores was developed, and a hydraulic simulation experi...
Saved in:
Published in | Metals (Basel ) Vol. 13; no. 3; p. 586 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aluminum and its alloy castings are used more and more widely, and it is particularly important to remove impurities in the alloy. According to the principle of bubble floatation for degassing aluminum melt, a new porous nozzle with controllable pores was developed, and a hydraulic simulation experimental device was studied with the nozzle. The effects of the particle size ratio of the coarse sand to fine sand and volume fraction of fine sand on the porosity of the porous nozzle were studied by orthogonal experiment, and permeability and compressive strength of the porous nozzle were used as test indicators to determine the optimal parameters of preparation for the porous nozzle. The optimal parameters are fine sand of 100 mesh, and fine sand of 50 wt.%, binder of 17.5 wt.%, pore-forming agent of 6 wt.%, and pressure of making sample of 5 MPa. The nozzle with optimal parameters was prepared and tested, and the permeability is 112.2 × 10−12 m2 and the compressive strength is 2.3 MPa. In addition, a physical model of gas transmission in the porous nozzle was proposed. With the increase in the proportion of fine sand, the permeability of the porous nozzle decreases, the compressive strength increases, and the calculated porosity increases. The hydraulic simulation of melt injection was carried out, and the mathematical model for calculating the bubble diameter of bubble floatation was formulated. The model shows that the bubble diameter increases with the increase in gas flow rate. The experiment shows that the prepared porous nozzle has the merits of a simple preparation process and low-cost, which is expected to degas aluminum melts. |
---|---|
AbstractList | Aluminum and its alloy castings are used more and more widely, and it is particularly important to remove impurities in the alloy. According to the principle of bubble floatation for degassing aluminum melt, a new porous nozzle with controllable pores was developed, and a hydraulic simulation experimental device was studied with the nozzle. The effects of the particle size ratio of the coarse sand to fine sand and volume fraction of fine sand on the porosity of the porous nozzle were studied by orthogonal experiment, and permeability and compressive strength of the porous nozzle were used as test indicators to determine the optimal parameters of preparation for the porous nozzle. The optimal parameters are fine sand of 100 mesh, and fine sand of 50 wt.%, binder of 17.5 wt.%, pore-forming agent of 6 wt.%, and pressure of making sample of 5 MPa. The nozzle with optimal parameters was prepared and tested, and the permeability is 112.2 × 10−12 m2 and the compressive strength is 2.3 MPa. In addition, a physical model of gas transmission in the porous nozzle was proposed. With the increase in the proportion of fine sand, the permeability of the porous nozzle decreases, the compressive strength increases, and the calculated porosity increases. The hydraulic simulation of melt injection was carried out, and the mathematical model for calculating the bubble diameter of bubble floatation was formulated. The model shows that the bubble diameter increases with the increase in gas flow rate. The experiment shows that the prepared porous nozzle has the merits of a simple preparation process and low-cost, which is expected to degas aluminum melts. Aluminum and its alloy castings are used more and more widely, and it is particularly important to remove impurities in the alloy. According to the principle of bubble floatation for degassing aluminum melt, a new porous nozzle with controllable pores was developed, and a hydraulic simulation experimental device was studied with the nozzle. The effects of the particle size ratio of the coarse sand to fine sand and volume fraction of fine sand on the porosity of the porous nozzle were studied by orthogonal experiment, and permeability and compressive strength of the porous nozzle were used as test indicators to determine the optimal parameters of preparation for the porous nozzle. The optimal parameters are fine sand of 100 mesh, and fine sand of 50 wt.%, binder of 17.5 wt.%, pore-forming agent of 6 wt.%, and pressure of making sample of 5 MPa. The nozzle with optimal parameters was prepared and tested, and the permeability is 112.2 × 10[sup.−12] m[sup.2] and the compressive strength is 2.3 MPa. In addition, a physical model of gas transmission in the porous nozzle was proposed. With the increase in the proportion of fine sand, the permeability of the porous nozzle decreases, the compressive strength increases, and the calculated porosity increases. The hydraulic simulation of melt injection was carried out, and the mathematical model for calculating the bubble diameter of bubble floatation was formulated. The model shows that the bubble diameter increases with the increase in gas flow rate. The experiment shows that the prepared porous nozzle has the merits of a simple preparation process and low-cost, which is expected to degas aluminum melts. |
Audience | Academic |
Author | Tan, Yapeng Lu, Weihong Tang, Hongqun Tang, Zhichao Jiang, Aoke Yang, Bo Wang, Junsheng Xu, Zhengbing Zeng, Jianmin Zheng, Qinjia Zhang, Guoqing Xiang, Lei |
Author_xml | – sequence: 1 givenname: Yapeng surname: Tan fullname: Tan, Yapeng – sequence: 2 givenname: Guoqing surname: Zhang fullname: Zhang, Guoqing – sequence: 3 givenname: Weihong surname: Lu fullname: Lu, Weihong – sequence: 4 givenname: Bo surname: Yang fullname: Yang, Bo – sequence: 5 givenname: Zhichao surname: Tang fullname: Tang, Zhichao – sequence: 6 givenname: Zhengbing orcidid: 0000-0002-1012-6251 surname: Xu fullname: Xu, Zhengbing – sequence: 7 givenname: Qinjia surname: Zheng fullname: Zheng, Qinjia – sequence: 8 givenname: Jianmin surname: Zeng fullname: Zeng, Jianmin – sequence: 9 givenname: Hongqun orcidid: 0000-0001-5837-7853 surname: Tang fullname: Tang, Hongqun – sequence: 10 givenname: Junsheng orcidid: 0000-0001-6784-2892 surname: Wang fullname: Wang, Junsheng – sequence: 11 givenname: Aoke surname: Jiang fullname: Jiang, Aoke – sequence: 12 givenname: Lei surname: Xiang fullname: Xiang, Lei |
BookMark | eNpNUctKJDEUDaIwjrqaHwi4lNakblUey0ZmHMHWXug6pPLQNFWVNqli0JX_MH6hX2LaFvHexX1wzuHA-Yl2hzg4hH5RcgogyVnvRgoESCPYDtqvCG9mNSd099v-Ax3lvCKlRMWIlPvIzPG1-4eXMcUp4-v4_Nw57GPC827qwzD1eOG6MePllIIPRo8hDm8vr8vk1jp9XFgPFi_0-OD6chvdvb38Xz485c2KF9G67hDted1ld_Q5D9Ddn9-3539nVzcXl-fzq5kBRscZB6t9W3uQlWGa15Yw6wjlxFlmWkOF4KyirWRWEIBG1rwC6wXjRBYMZXCALre6NuqVWqfQ6_Skog7q4xHTvdKpWOycaoGDAcKEg7reKNi6Fc4QI4mtJIiidbzVWqf4OLk8qlWc0lDsq4pLyrjgTVNQp1vUvS6iYfBxTNqUtq4PpsTjQ_nPeQ2cFZYshJMtwaSYc3L-yyYlapOi-pYivAPjvJFR |
Cites_doi | 10.1007/s11663-009-9233-3 10.1016/j.mseb.2012.02.005 10.1016/j.msea.2006.11.094 10.1016/0009-2509(71)86055-4 10.3390/met12010131 10.1016/j.actamat.2010.09.064 10.1016/j.matpr.2015.10.098 10.1016/j.seppur.2021.119459 10.1016/j.powtec.2020.02.056 10.1007/BF02511801 10.1016/j.ultsonch.2016.06.034 10.2464/jilm.44.461 10.1016/S0032-5910(97)03219-1 10.1063/1.1712801 10.1166/asl.2011.1301 10.1007/BF02654925 10.1021/ie50261a017 10.1016/j.conbuildmat.2019.117761 10.1023/A:1006535211684 10.1126/science.aav7086 10.1016/j.rinp.2020.103386 10.1063/1.350958 10.1016/0955-2219(95)00001-B 10.1016/j.promfg.2019.12.062 10.1016/j.jngse.2016.03.056 10.1016/j.matdes.2022.111341 10.1016/j.promfg.2019.12.071 10.4028/www.scientific.net/AMR.97-101.1045 10.4028/www.scientific.net/AMR.881-883.1361 10.1007/s10955-006-9110-2 10.1007/BF01376989 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/met13030586 |
DatabaseName | CrossRef METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China METADEX ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-4701 |
ExternalDocumentID | oai_doaj_org_article_b373c3068e3446709d4b8ec0c90d2938 A743767919 10_3390_met13030586 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PIMPY PROAC TUS RIG 8BQ 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c361t-73dafb4f392c6a74d06de0170ed6cbc1887621b96d8033594723df8670970e163 |
IEDL.DBID | DOA |
ISSN | 2075-4701 |
IngestDate | Tue Oct 22 14:58:46 EDT 2024 Thu Oct 10 19:35:15 EDT 2024 Tue Nov 12 23:02:19 EST 2024 Fri Dec 06 02:50:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-73dafb4f392c6a74d06de0170ed6cbc1887621b96d8033594723df8670970e163 |
ORCID | 0000-0001-5837-7853 0000-0001-6784-2892 0000-0002-1012-6251 |
OpenAccessLink | https://doaj.org/article/b373c3068e3446709d4b8ec0c90d2938 |
PQID | 2791678755 |
PQPubID | 2032361 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b373c3068e3446709d4b8ec0c90d2938 proquest_journals_2791678755 gale_infotracacademiconefile_A743767919 crossref_primary_10_3390_met13030586 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Metals (Basel ) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Szekely (ref_19) 1976; 7 Dsa (ref_27) 2020; 19 Fowler (ref_34) 1940; 11 Wraith (ref_36) 1971; 26 Zeng (ref_8) 2012; 177 Yen (ref_29) 1992; 71 Mirgaux (ref_38) 2009; 40 Shi (ref_10) 2009; 23 Wu (ref_32) 1998; 32 Yu (ref_24) 1997; 92 Ge (ref_18) 2014; 881–883 Zheng (ref_20) 1995; 15 ref_30 Liu (ref_25) 2020; 366 Arabjamaloei (ref_33) 2016; 31 Wu (ref_17) 2007; 456 (ref_15) 1998; 42 Zeng (ref_16) 2011; 4 Tang (ref_3) 2022; 224 Neuman (ref_35) 1977; 25 Damoah (ref_7) 2011; 59 Zhan (ref_12) 2012; 117–119 Zhu (ref_37) 2019; 37 Sun (ref_1) 2019; 363 Li (ref_9) 2019; 37 Otaki (ref_13) 1994; 44 Tzanakis (ref_28) 2016; 34 Hao (ref_6) 2012; 418–420 David (ref_14) 2015; 2 Stovall (ref_23) 1988; 48 Gao (ref_11) 2002; 2 Xu (ref_5) 2010; 97–101 Pavan (ref_31) 2007; 126 ref_2 Furnas (ref_21) 1931; 23 Wang (ref_22) 2020; 239 Dang (ref_26) 1998; 19 ref_4 |
References_xml | – volume: 40 start-page: 363 year: 2009 ident: ref_38 article-title: Mathematical Modeling and Computer Simulation of Molten Aluminum Purification by Flotation in Stirred Reactor publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-009-9233-3 contributor: fullname: Mirgaux – volume: 418–420 start-page: 1856 year: 2012 ident: ref_6 article-title: Research on Porous Sprayer for Refining of Aluminium Melt publication-title: Adv. Mater. Res. contributor: fullname: Hao – ident: ref_30 – volume: 177 start-page: 1717 year: 2012 ident: ref_8 article-title: Investigation of Inner Vacuum Sucking method for degassing of molten aluminum publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2012.02.005 contributor: fullname: Zeng – volume: 456 start-page: 386 year: 2007 ident: ref_17 article-title: Effects of spray degassing parameters on hydrogen content and properties of commercial purity aluminum publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.11.094 contributor: fullname: Wu – volume: 26 start-page: 1659 year: 1971 ident: ref_36 article-title: Two stage bubble growth at a submerged plate orifice publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(71)86055-4 contributor: fullname: Wraith – ident: ref_2 doi: 10.3390/met12010131 – volume: 59 start-page: 896 year: 2011 ident: ref_7 article-title: AlF3 reactive Al2O3 foam filter for the removal of dissolved impurities from molten aluminum: Preliminary results publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.09.064 contributor: fullname: Damoah – volume: 117–119 start-page: 1701 year: 2012 ident: ref_12 article-title: A New Porous Mullite Nozzle for Refining Molten Aluminum publication-title: Appl. Mech. Mater. contributor: fullname: Zhan – volume: 2 start-page: 5071 year: 2015 ident: ref_14 article-title: Use of Separation and Impurity Removal Methods to Improve Aluminium Waste Recycling Process publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2015.10.098 contributor: fullname: David – ident: ref_4 doi: 10.1016/j.seppur.2021.119459 – volume: 366 start-page: 382 year: 2020 ident: ref_25 article-title: Study of the linear and nonlinear packing model based on mixing of quartz sand publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.02.056 contributor: fullname: Liu – volume: 42 start-page: 284 year: 1998 ident: ref_15 article-title: Prospects of ultrasonic (cavitational) treatment of the melt in the manufacture of aluminum alloy products publication-title: Metallurgist doi: 10.1007/BF02511801 – volume: 48 start-page: 313 year: 1988 ident: ref_23 article-title: Linear parking density model of grain mixtures publication-title: Powder Technol. contributor: fullname: Stovall – volume: 34 start-page: 651 year: 2016 ident: ref_28 article-title: Characterizing the cavitation development and acoustic spectrum in various liquids publication-title: Ultrason. Sonochemistry doi: 10.1016/j.ultsonch.2016.06.034 contributor: fullname: Tzanakis – volume: 44 start-page: 461 year: 1994 ident: ref_13 article-title: Melting and melt treatment of aluminum publication-title: J. Jpn. Inst. Light Met. doi: 10.2464/jilm.44.461 contributor: fullname: Otaki – volume: 92 start-page: 185 year: 1997 ident: ref_24 article-title: On the modelling of the packing of fine particles publication-title: Powder Technol. doi: 10.1016/S0032-5910(97)03219-1 contributor: fullname: Yu – volume: 11 start-page: 496 year: 1940 ident: ref_34 article-title: Flow of a Gas Through Porous Media publication-title: J. Appl. Phys. doi: 10.1063/1.1712801 contributor: fullname: Fowler – volume: 4 start-page: 1740 year: 2011 ident: ref_16 article-title: Hydrogen Diffusion in Molten Aluminum A206 Casting Alloy publication-title: Adv. Sci. Lett. doi: 10.1166/asl.2011.1301 contributor: fullname: Zeng – volume: 7 start-page: 259 year: 1976 ident: ref_19 article-title: The removal of solid particles from molten aluminum in the spinning nozzle inert flotation process publication-title: Metall. Trans. B doi: 10.1007/BF02654925 contributor: fullname: Szekely – volume: 23 start-page: 1052 year: 1931 ident: ref_21 article-title: Grading Aggregates-I.-Mathematical Relations for Beds of Broken Solids of Maximum Density publication-title: Ind. Eng. Chem. doi: 10.1021/ie50261a017 contributor: fullname: Furnas – volume: 239 start-page: 117761 year: 2020 ident: ref_22 article-title: A 100% high-aluminum fly ash-based high-density mullite ceramic with a triple microstructure: Preparation and mechanical characterization publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117761 contributor: fullname: Wang – volume: 32 start-page: 117 year: 1998 ident: ref_32 article-title: Gas Flow in Porous Media With Klinkenberg Effects publication-title: Transp. Porous Media doi: 10.1023/A:1006535211684 contributor: fullname: Wu – volume: 363 start-page: 972 year: 2019 ident: ref_1 article-title: Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity publication-title: Science doi: 10.1126/science.aav7086 contributor: fullname: Sun – volume: 19 start-page: 103386 year: 2020 ident: ref_27 article-title: Motion and mass transfer models for single bubble in an aluminum melt under a compound field of ultrasonic and rotating flow publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103386 contributor: fullname: Dsa – volume: 71 start-page: 3164 year: 1992 ident: ref_29 article-title: A dynamic simulation of particle rearrangement in powder packings with realistic interactions publication-title: J. Appl. Phys. doi: 10.1063/1.350958 contributor: fullname: Yen – volume: 15 start-page: 479 year: 1995 ident: ref_20 article-title: The packing density of binary powder mixtures publication-title: J. Eur. Ceram. Soc. doi: 10.1016/0955-2219(95)00001-B contributor: fullname: Zheng – volume: 37 start-page: 375 year: 2019 ident: ref_37 article-title: Bubble Flotation for Purification of High Manganese Steel with Porous Blower publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.12.062 contributor: fullname: Zhu – volume: 31 start-page: 405 year: 2016 ident: ref_33 article-title: Lattice Boltzmann based simulation of gas flow regimes in low permeability porous media: Klinkenberg’s region and beyond publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.03.056 contributor: fullname: Arabjamaloei – volume: 224 start-page: 111341 year: 2022 ident: ref_3 article-title: A new insight on the diffusion growth mechanism of intermetallic compounds in Al-Er system publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.111341 contributor: fullname: Tang – volume: 37 start-page: 438 year: 2019 ident: ref_9 article-title: Purification of Aluminum melt in Crucibles by Bubble Flotation publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.12.071 contributor: fullname: Li – volume: 97–101 start-page: 1045 year: 2010 ident: ref_5 article-title: An Investigation on the Impurities of Aluminum Alloy in Melt Furnace publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.97-101.1045 contributor: fullname: Xu – volume: 881–883 start-page: 1361 year: 2014 ident: ref_18 article-title: The Purification of ZL114A Alloy by Means of Bubble Floatation publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.881-883.1361 contributor: fullname: Ge – volume: 126 start-page: 355 year: 2007 ident: ref_31 article-title: A New Momentum Equation for Gas Flow in Porous Media: The Klinkenberg Effect Seen Through the Kinetic Theory publication-title: J. Stat. Phys. doi: 10.1007/s10955-006-9110-2 contributor: fullname: Pavan – volume: 23 start-page: 45 year: 2009 ident: ref_10 article-title: Research and Development of Purification Technologies of Aluminum Alloy Melt publication-title: Mater. Rev. contributor: fullname: Shi – volume: 2 start-page: 269 year: 2002 ident: ref_11 article-title: Synthetical technique of high-efficient melt-treatment of aluminum and its effect publication-title: Chin. J. Nonferrous Met. contributor: fullname: Gao – volume: 25 start-page: 153 year: 1977 ident: ref_35 article-title: Theoretical derivation of Darcy’s law publication-title: Acta Mech. doi: 10.1007/BF01376989 contributor: fullname: Neuman – volume: 19 start-page: 132 year: 1998 ident: ref_26 article-title: Study on the dynamic degassing of aluminium alloy melt with rotary impeller in small melting-pot publication-title: J. North China Inst. Technol. contributor: fullname: Dang |
SSID | ssj0000826099 |
Score | 2.285547 |
Snippet | Aluminum and its alloy castings are used more and more widely, and it is particularly important to remove impurities in the alloy. According to the principle... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 586 |
SubjectTerms | air permeability Alloys Aluminum Aluminum alloys aluminum melt purification Bubbles Castings Chlorine Compressive strength Controllability Corrosion resistance Degassing Finite element method Flotation Flow velocity Gas flow Gas transmission Gases Hydraulics Hydrogen Mathematical models Melts Nozzles orthogonal experiment Parameters Particle size Permeability Pore formation Pore size Porosity Porous materials porous nozzle Sand Simulation |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-NADB7xuMABLSyI8tIckPYUMckkk-S06iIKQirqASRuo3m4CKkkkKYXTvwH9hfyS7CTtPQC12SkjGyP_dnxfGbsNMmNd2BN4CMTB7G1ENgI8iDB4C0xIApoCvrDG3V1F1_fJ_ddwW3atVXOfWLjqH3pqEZ-FqUIZNC6kuTv80tAU6Po72o3QmOVrYdRqqilLxtcLmosGN4UIqD2Wh5-WZw9QU1OWyR0d3opEDV8_d955SbUDH6xrQ4j8n6r1G22AsUO21xiDvzNXJ-je-KjssLMnd-Ur68T4Ig_eR-dzWMxe-JDmNRTPppV1AvUiP_j7f-ogpbruyy4KTwfLkhbzeTj7X3UKY3ThLTJLrsbXNyeXwXdvITASRXWQSq9Gdt4jJDHKZPGXigPxI8DXjnrwow8X2hz5TMhZZLHaST9OCMGN1yDwGyPrRVlAfuMh5EzzliTg4dYeG-tRT84Fi4xisYd9djpXHj6uaXF0JhOkIz1kox77B8JdrGEuKybB2X1oLujoa1MpcPMJQOJuSluxsc2AydcLjyCkazH_pBaNJ24ujK0sebiAO6UuKt0H0FQqtA88h47mmtOd0dxqr8M5-Dn14dsg2bJtw1mR2ytrmZwjIijtieNWX0C_eHZNw priority: 102 providerName: ProQuest |
Title | A New Porous Nozzle for Aluminum Melts Purification—Preparation and Mathematical–Physical Model |
URI | https://www.proquest.com/docview/2791678755 https://doaj.org/article/b373c3068e3446709d4b8ec0c90d2938 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a9xAEB4Sp0mK4Lzwxc6xhSGV8Eqr15Zn44sJ3CFCDO6WfcxB4Kwzsq5x5f9g_0L_Es9IslFj3KSVFjTM7H7zjdj5BuAw0zZ4dDYKiU2j1DmMXII6yih5K0qIErsf-otlfnae_r7ILkajvvhOWC8P3DvuyKlCeeK1JSqqXAqpQ-pK9NJrGShV9W2-MhkVUx0GE2sm7tM35NE35dEltgzXMuOu6VEK6pT6X8LjLsnMd-HjwA7FrLfqE7zB-jN8GGkGfgE_EwRMoto0VLOL5ebmZo2CmKeYEcz8q7eXYoHr9lpU24ZvAXWOf7i9rxrsVb43tbB1EItnuVa7fri9q4ZwCZ6Ntv4K5_PTvydn0TApIfIqj9uoUMGuXLoisuNzW6RB5gFZGQdD7p2PS8a82Ok8lFKpTKdFosKqZHfSGqJk32Cn3tS4ByJOvPXWWY0BUxmCc44QcCV9ZnMedDSBwyfnmateEMNQIcE-NiMfT-CYHfu8hFWsuwcUWzPE1rwW2wn85LAYPmttY9mwrmWALGXVKjMj-lPkhY71BA6eImeGQ3htEnpDubjIsu__w5p9eM-z5vsLaAew0zZb_EGMpHVTeFvOf03h3fHpsvoz7bbiI1Ye4xo |
link.rule.ids | 314,780,784,864,2102,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTttAEB61cGh7qKA_Ii2UPSD1ZLHxrtf2qQpVQ2hJlANI3Fb7F4QUbOo4F068Q_uEPAkzthNyaa_2Sl7NzM58M975BuAoyY13wZrIx0ZG0toQ2TjkUYLBW2BA5KEp6I8nanQpf14lV13BbdFdq1z5xMZR-9JRjfw4ThHIoHUlybe73xFNjaK_q90IjZewLQWGbuoUH56uaywY3hQioLYtD7_Mj29DTU6bJ9Q7vRGIGr7-f3nlJtQMd-BthxHZoFXqLrwIxTt4s8Ec-B7cgKF7YtOywsydTcr7-3lgiD_ZAJ3NTbG8ZeMwrxdsuqzoLlAj_seHv9MqtFzfZcFM4dl4Tdpq5o8Pf6ad0hhNSJt_gMvhj4vvo6iblxA5ofp1lApvZlbOEPI4ZVLpufKB-HGCV866fkaer29z5TMuRJLLNBZ-lhGDG65BYPYRtoqyCHvA-rEzzliTBx8k995ai35wxl1iFI076sHRSnj6rqXF0JhOkIz1hox7cEKCXS8hLuvmQVld6-5oaCtS4TBzyYLA3BQ346XNguMu5x7BSNaDr6QWTSeurgxtrGkcwJ0Sd5UeIAhKFZpH3oP9leZ0dxQX-tlwPv3_9SG8Gl2Mz_X52eTXZ3hNc-Xby2b7sFVXy3CA6KO2XxoTewI789wZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BKiE4IJ4iUGAPlThZ2XjttX1CKTQqj0QWolJvq325Qkrt4jiXnvof4Bf2lzBjb0IucLV9WM3MfvPNevYbgKO00M56oyMX6yRKjPGRiX0RpZi8BSZE7vsD_cVSnp4ln8_T89D_tA5tlVtM7IHaNZbOyCdxhkQGoytNJ1Voiyg_zt9f_YxoghT9aQ3jNO7CAWZFHo_g4PhkWX7bnbhgspPIh4ZLergOPrn0HUE4T-km9V5a6tX7_4XRfeKZP4KHgTGy2eDix3DH10_gwZ6O4FOwM4ZgxcqmxTqeLZvr65VnyEbZDKHnR725ZAu_6tas3LTUGdQ74_bmd9n6Qfm7qZmuHVvsJFz16vbmVxlcyGhe2uoZnM1Pvn84jcL0hMgKOe2iTDhdmaRCAmSlzhLHpfOkluOdtMZOc8LBqSmky7kQaZFksXBVTnpu-A3StOcwqpvavwA2ja222ujCO59w54wxiIoVt6mWNPxoDEdb46mrQSRDYXFBNlZ7Nh7DMRl29wkpW_cPmvZChY2ijMiExTom9wIrVVyMS0zuLbcFd0hN8jG8I7co2n9dq2lh_TUCXCkpWakZOj-TGCzFGA63nlNhY67V3zB6-f_Xb-Eexpf6-mn55RXcpyHzQ-fZIYy6duNfIxXpzJsQY38AAs7htQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Porous+Nozzle+for+Aluminum+Melts+Purification%E2%80%94Preparation+and+Mathematical%E2%80%93Physical+Model&rft.jtitle=Metals+%28Basel+%29&rft.au=Tan%2C+Yapeng&rft.au=Zhang%2C+Guoqing&rft.au=Lu%2C+Weihong&rft.au=Yang%2C+Bo&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.issn=2075-4701&rft.eissn=2075-4701&rft.volume=13&rft.issue=3&rft_id=info:doi/10.3390%2Fmet13030586&rft.externalDocID=A743767919 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4701&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4701&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4701&client=summon |