Understanding of tip clearance flow structure in high speed mixed flow compressor

This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed mixed-flow compressor having stage exit static pressure to inlet total pressure ratio of 3.8 with 39,836 rpm rotor speed. The four different tip co...

Full description

Saved in:
Bibliographic Details
Published inPropulsion and Power Research Vol. 12; no. 3; pp. 356 - 379
Main Authors Kumar, Hemant, Mistry, Chetan S.
Format Journal Article
LanguageEnglish
Published KeAi Communications Co., Ltd 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed mixed-flow compressor having stage exit static pressure to inlet total pressure ratio of 3.8 with 39,836 rpm rotor speed. The four different tip configurations namely the constant (λ = 0.016 and 0.019) and variable (λ = 0.011 (inlet)-0.019 (exit) and 0.019 (inlet)-0.022 (exit)) tip clearances were numerically analysed using available experimental data-set. The numerical investigation reveals that in contrast to the classic jet-wake pattern, two anomalous velocity profiles formed at the impeller exit which results in pressure losses in the vaneless diffuser. Near the impeller inlet, the tip leakage flow rolls up to discrete tip leakage vortex structure for each tip clearance configuration. This results in the formation of a region of momentum deficit, recirculation zone, which gets weakened as it moves downstream. The tip clearance configuration is observed to profoundly influence the extent and vorticity of the tip leakage vortex. In the splitter blade passage, the tip leakage flow and Coriolis flow interact with passage flow, resulting in the formation of two secondary passage vortices that move downstream along the pressure and suction surface of the splitter blade. The tip clearance configuration directly influences the impeller exit jet-wake pattern by modulating the secondary passage vortices trajectory and vorticity. Moreover, off-design analysis for tip clearances λ = 0.016 and λ = 0.019, depict distinctive tip leakage vortex characteristics. When operating near the stall conditions (80% of design mass flow rate), λ = 0.019 exhibits bubble shape tip leakage vortex breakdown occurring near the impeller inlet. This result in a substantial change in the tip leakage vortex nature; expansion of the recirculation zone and early weakening of the vorticity in the tip leakage vortex. It is observed that vortex breakdown plays a vital role in characteristics of the passage flow field structure and compressor performance near the stall conditions.
AbstractList This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed mixed-flow compressor having stage exit static pressure to inlet total pressure ratio of 3.8 with 39,836 rpm rotor speed. The four different tip configurations namely the constant (λ = 0.016 and 0.019) and variable (λ = 0.011 (inlet)-0.019 (exit) and 0.019 (inlet)-0.022 (exit)) tip clearances were numerically analysed using available experimental data-set. The numerical investigation reveals that in contrast to the classic jet-wake pattern, two anomalous velocity profiles formed at the impeller exit which results in pressure losses in the vaneless diffuser. Near the impeller inlet, the tip leakage flow rolls up to discrete tip leakage vortex structure for each tip clearance configuration. This results in the formation of a region of momentum deficit, recirculation zone, which gets weakened as it moves downstream. The tip clearance configuration is observed to profoundly influence the extent and vorticity of the tip leakage vortex. In the splitter blade passage, the tip leakage flow and Coriolis flow interact with passage flow, resulting in the formation of two secondary passage vortices that move downstream along the pressure and suction surface of the splitter blade. The tip clearance configuration directly influences the impeller exit jet-wake pattern by modulating the secondary passage vortices trajectory and vorticity. Moreover, off-design analysis for tip clearances λ = 0.016 and λ = 0.019, depict distinctive tip leakage vortex characteristics. When operating near the stall conditions (80% of design mass flow rate), λ = 0.019 exhibits bubble shape tip leakage vortex breakdown occurring near the impeller inlet. This result in a substantial change in the tip leakage vortex nature; expansion of the recirculation zone and early weakening of the vorticity in the tip leakage vortex. It is observed that vortex breakdown plays a vital role in characteristics of the passage flow field structure and compressor performance near the stall conditions.
Author Kumar, Hemant
Mistry, Chetan S.
Author_xml – sequence: 1
  givenname: Hemant
  surname: Kumar
  fullname: Kumar, Hemant
– sequence: 2
  givenname: Chetan S.
  surname: Mistry
  fullname: Mistry, Chetan S.
BookMark eNpNkNtKAzEQhoNUsNa-gFd5gV1z2Bz2UoqHQkEEC96FZDNpd2k3S7JFfXtbK-LN_MMwfPB_12jSxx4QuqWkpITKu67shiGVjDBeEl0SUl2gKWOUFaIi75N_-xWa59wRQpgWUnM5Ra_r3kPKo-19229wDHhsB9zswCbbN4DDLn7gPKZDMx4S4LbH23azxXkA8Hjffh7nz0sT90OCnGO6QZfB7jLMf3OG1o8Pb4vnYvXytFzcr4qGSzoWitlaWh4oSF9rp7x3XDIB1GlJbVBWBXC1Ug4geKe4dJXjxAllNXjNCJ-h5Znro-3MkNq9TV8m2tb8HGLaGJvG9ljF1J4LKbyGoFUlrNM8BOVFxepG1tqKI4udWU2KOScIfzxKzMmx6czJsTk5NkSbo2P-DYmLdEk
Cites_doi 10.1115/1.3262141
10.1002/fld.1650130505
10.3390/en10020191
10.22261/JGPPS.I1RSJ3
10.1115/1.3239889
10.1115/1.2929291
10.1016/j.renene.2020.03.142
10.1115/1.3262263
10.1016/j.ast.2019.02.026
10.1115/1.4042756
10.1177/0954410014541102
10.1115/GT2005-68262
10.3390/en10020148
10.1115/1.2776956
10.1115/1.4044982
10.1115/1.3425036
10.1016/j.renene.2020.08.033
10.1115/1.2841339
10.1115/GT2018-76837
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.jppr.2023.08.004
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2212-540X
EndPage 379
ExternalDocumentID oai_doaj_org_article_9d3565d8ef8745ab83ff7d5429c698a5
10_1016_j_jppr_2023_08_004
GroupedDBID 0R~
0SF
4.4
457
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYXX
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IXB
KQ8
M~E
NCXOZ
O-L
O9-
OK1
ROL
SSZ
ID FETCH-LOGICAL-c361t-72a96a3f1e6d98b7ddb3625e1b861af7a7feb977beefdb736b4b30b57a8ed8203
IEDL.DBID DOA
ISSN 2212-540X
IngestDate Tue Oct 22 14:51:30 EDT 2024
Fri Aug 23 01:07:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-72a96a3f1e6d98b7ddb3625e1b861af7a7feb977beefdb736b4b30b57a8ed8203
OpenAccessLink https://doaj.org/article/9d3565d8ef8745ab83ff7d5429c698a5
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_9d3565d8ef8745ab83ff7d5429c698a5
crossref_primary_10_1016_j_jppr_2023_08_004
PublicationCentury 2000
PublicationDate 2023-09-00
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-00
PublicationDecade 2020
PublicationTitle Propulsion and Power Research
PublicationYear 2023
Publisher KeAi Communications Co., Ltd
Publisher_xml – name: KeAi Communications Co., Ltd
References Zhang (10.1016/j.jppr.2023.08.004_bib21) 2017; 10
Monig (10.1016/j.jppr.2023.08.004_bib18) 1993; 115
Liu (10.1016/j.jppr.2023.08.004_bib24) 2019; 142
Furukawa (10.1016/j.jppr.2023.08.004_bib5) 1999; 121
10.1016/j.jppr.2023.08.004_bib7
Ramamurthy (10.1016/j.jppr.2023.08.004_bib8) 1986
Belamri (10.1016/j.jppr.2023.08.004_bib26) 2005
Han (10.1016/j.jppr.2023.08.004_bib22) 2020; 155
Sadagopan (10.1016/j.jppr.2023.08.004_bib16) 2019; 87
Rajakumar (10.1016/j.jppr.2023.08.004_bib15) 2015; 229
Mosdzien (10.1016/j.jppr.2023.08.004_bib31) 2018; 2
Musgrave (10.1016/j.jppr.2023.08.004_bib14) 1987; 109
Liu (10.1016/j.jppr.2023.08.004_bib23) 2019; 141
Inoue (10.1016/j.jppr.2023.08.004_bib4) 1989; 111
Han (10.1016/j.jppr.2023.08.004_bib25) 2020; 162
10.1016/j.jppr.2023.08.004_bib27
Goldstein (10.1016/j.jppr.2023.08.004_bib2) 1948
10.1016/j.jppr.2023.08.004_bib28
Zangeneh (10.1016/j.jppr.2023.08.004_bib13) 1991; 13
Corsini (10.1016/j.jppr.2023.08.004_bib29) 2013
Schleer (10.1016/j.jppr.2023.08.004_bib12) 2008; 130
King (10.1016/j.jppr.2023.08.004_bib1) 1942
Monig (10.1016/j.jppr.2023.08.004_bib19) 1987; 421
Liu (10.1016/j.jppr.2023.08.004_bib20) 2017; 10
Zhu (10.1016/j.jppr.2023.08.004_bib10) 2013; GT2013-94100
10.1016/j.jppr.2023.08.004_bib30
Inoue (10.1016/j.jppr.2023.08.004_bib6) 1990; 2
10.1016/j.jppr.2023.08.004_bib11
Kumar (10.1016/j.jppr.2023.08.004_bib17) 2021
Inoue (10.1016/j.jppr.2023.08.004_bib3) 1986; 108
Huh (10.1016/j.jppr.2023.08.004_bib9) 2017; 139
References_xml – year: 1986
  ident: 10.1016/j.jppr.2023.08.004_bib8
  contributor:
    fullname: Ramamurthy
– volume: 109
  start-page: 513
  issue: 4
  year: 1987
  ident: 10.1016/j.jppr.2023.08.004_bib14
  article-title: Mixed flow compressor stage design and test results with a pressure ratio of 3:1
  publication-title: J. Turbomach.
  doi: 10.1115/1.3262141
  contributor:
    fullname: Musgrave
– ident: 10.1016/j.jppr.2023.08.004_bib28
– ident: 10.1016/j.jppr.2023.08.004_bib30
– volume: 13
  start-page: 599
  issue: 5
  year: 1991
  ident: 10.1016/j.jppr.2023.08.004_bib13
  article-title: A compressible three-dimensional design method for radial and mixed flow turbomachinery blades
  publication-title: Int. J. Numer. Methods Fluid.
  doi: 10.1002/fld.1650130505
  contributor:
    fullname: Zangeneh
– volume: 10
  start-page: 191
  issue: 2
  year: 2017
  ident: 10.1016/j.jppr.2023.08.004_bib20
  article-title: Energy performance and flow patterns of a mixed-flow pump with different tip clearance sizes
  publication-title: Energies
  doi: 10.3390/en10020191
  contributor:
    fullname: Liu
– volume: 2
  start-page: 429
  year: 2018
  ident: 10.1016/j.jppr.2023.08.004_bib31
  article-title: Influence of blade geometry on secondary flow development in a transonic centrifugal compressor
  publication-title: Journal of the Global Power and Propulsion Society
  doi: 10.22261/JGPPS.I1RSJ3
  contributor:
    fullname: Mosdzien
– volume: 108
  start-page: 7
  issue: 1
  year: 1986
  ident: 10.1016/j.jppr.2023.08.004_bib3
  article-title: Behavior of tip leakage flow behind an axial flow compressor rotor
  publication-title: ASME Journal of Engineering for Gas Turbines and Power
  doi: 10.1115/1.3239889
  contributor:
    fullname: Inoue
– volume: 115
  start-page: 565
  issue: 3
  year: 1993
  ident: 10.1016/j.jppr.2023.08.004_bib18
  article-title: Design and rotor performance of a 5:1 mixed-flow supersonic compressor
  publication-title: ASME Journal of Turbomachinery
  doi: 10.1115/1.2929291
  contributor:
    fullname: Monig
– volume: 155
  start-page: 725
  year: 2020
  ident: 10.1016/j.jppr.2023.08.004_bib22
  article-title: Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.03.142
  contributor:
    fullname: Han
– volume: 111
  start-page: 250
  issue: 3
  year: 1989
  ident: 10.1016/j.jppr.2023.08.004_bib4
  article-title: Structure of tip clearance flow in an isolated axial compressor rotor
  publication-title: ASME Journal of Turbomachinery
  doi: 10.1115/1.3262263
  contributor:
    fullname: Inoue
– volume: 87
  start-page: 265
  year: 2019
  ident: 10.1016/j.jppr.2023.08.004_bib16
  article-title: A design strategy for a 6:1 supersonic mixed-flow compressor stage
  publication-title: J. Aero. Sci. Technol.
  doi: 10.1016/j.ast.2019.02.026
  contributor:
    fullname: Sadagopan
– volume: 141
  issue: 8
  year: 2019
  ident: 10.1016/j.jppr.2023.08.004_bib23
  article-title: Spatial-temporal evolution of tip leakage vortex in a mixed-flow pump with tip clearance
  publication-title: ASME. J. Fluids Eng
  doi: 10.1115/1.4042756
  contributor:
    fullname: Liu
– volume: GT2013-94100
  start-page: 3
  year: 2013
  ident: 10.1016/j.jppr.2023.08.004_bib10
  article-title: Experimental and numerical investigation of the tip clearance noise of an axial fan
  publication-title: Proceedings of ASME Turbo Expo
  contributor:
    fullname: Zhu
– volume: 229
  start-page: 933
  issue: 5
  year: 2015
  ident: 10.1016/j.jppr.2023.08.004_bib15
  article-title: Experimental investigations on effects of tip clearance in mixed-flow compressor performance
  publication-title: Proc I MechE Part G: J. Aero. Eng.
  doi: 10.1177/0954410014541102
  contributor:
    fullname: Rajakumar
– ident: 10.1016/j.jppr.2023.08.004_bib27
  doi: 10.1115/GT2005-68262
– volume: 10
  start-page: 148
  issue: 2
  year: 2017
  ident: 10.1016/j.jppr.2023.08.004_bib21
  article-title: Influence of tip clearance on pressure fluctuation in low specific speed mixed-flow pump passage
  publication-title: Energies
  doi: 10.3390/en10020148
  contributor:
    fullname: Zhang
– volume: 130
  start-page: 2
  issue: 3
  year: 2008
  ident: 10.1016/j.jppr.2023.08.004_bib12
  article-title: Clearance effect on the onset of instability in a centrifugal compressor
  publication-title: ASME J. Turbomachinery
  doi: 10.1115/1.2776956
  contributor:
    fullname: Schleer
– volume: 142
  issue: 2
  year: 2019
  ident: 10.1016/j.jppr.2023.08.004_bib24
  article-title: Theoretical prediction model of tip leakage vortex in a mixed flow pump with tip clearance
  publication-title: ASME. J. Fluids Eng.
  doi: 10.1115/1.4044982
  contributor:
    fullname: Liu
– year: 2021
  ident: 10.1016/j.jppr.2023.08.004_bib17
  contributor:
    fullname: Kumar
– ident: 10.1016/j.jppr.2023.08.004_bib7
  doi: 10.1115/1.3425036
– start-page: 1001
  year: 2005
  ident: 10.1016/j.jppr.2023.08.004_bib26
  contributor:
    fullname: Belamri
– year: 1942
  ident: 10.1016/j.jppr.2023.08.004_bib1
  contributor:
    fullname: King
– year: 1948
  ident: 10.1016/j.jppr.2023.08.004_bib2
  contributor:
    fullname: Goldstein
– volume: 139
  issue: 6
  year: 2017
  ident: 10.1016/j.jppr.2023.08.004_bib9
  article-title: Effects of double-leakage tip clearance flow on the performance of a compressor stage with a large rotor tip gap
  publication-title: ASME Journal of Turbomachinery
  contributor:
    fullname: Huh
– start-page: 327
  year: 2013
  ident: 10.1016/j.jppr.2023.08.004_bib29
  contributor:
    fullname: Corsini
– volume: 2
  start-page: 179
  year: 1990
  ident: 10.1016/j.jppr.2023.08.004_bib6
  article-title: Behavior of tip clearance flow in axial flow impellers at low flow rate
  publication-title: Proceedings of the 3rd Japan-China Joint Conference on Fluid Machinery
  contributor:
    fullname: Inoue
– volume: 162
  start-page: 144
  year: 2020
  ident: 10.1016/j.jppr.2023.08.004_bib25
  article-title: Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.08.033
  contributor:
    fullname: Han
– volume: 121
  start-page: 469
  issue: 3
  year: 1999
  ident: 10.1016/j.jppr.2023.08.004_bib5
  article-title: A role of tip leakage vortex breakdown in compressor rotor aerodynamics
  publication-title: ASME Journal of Turbomachinery
  doi: 10.1115/1.2841339
  contributor:
    fullname: Furukawa
– volume: 421
  year: 1987
  ident: 10.1016/j.jppr.2023.08.004_bib19
  article-title: Applications of highly loaded single-stage mixed-flow compressors in small jet-engines
  publication-title: AGARD Conference Proceedings, No.
  contributor:
    fullname: Monig
– ident: 10.1016/j.jppr.2023.08.004_bib11
  doi: 10.1115/GT2018-76837
SSID ssj0002856836
Score 2.2797544
Snippet This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 356
SubjectTerms Jet-wake flow
Mixed-flow compressor
Recirculation zone
Tip leakage flow
Vaned-diffuser
Vortex breakdown
Title Understanding of tip clearance flow structure in high speed mixed flow compressor
URI https://doaj.org/article/9d3565d8ef8745ab83ff7d5429c698a5
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA0yL15EUXFTRw7epNg2bX4cdTiG4ERwMLyUpPkCG9qWWdE_33xtp7158dJDCSW8L_C-JK_vEXKZqBwb9TywLoUg8SQSqBwlVqCZ83yZ2EZE8zDns0Vyv0yXvagv1IS19sAtcNfKMt9zWAkOjdm1kcw5YTFlKedK6ta9NFS9zdS6OTJKucR7ydGvoGtdVWgAGrPGs7NLZtsyUc-wv2GW6QHZ71pCetNO5ZDsQHFEnhb9v05o6Wi9qmiOIQ9YJ-pey0_amr9-bICuCorGw_S98mxE31Zf_tkMQck47qjLzTFZTO-eJ7Ogiz8IcsajOhCxVtwjFgG3ShphrfFsk0JkJI-0E1o4ML59MwDOGsG4SQwLTSq0BOuJnZ2QQVEWcEqoyVXMIVJaG5PEwmrJFbMuBJ4qEzE3JFdbKLKqdbnItvKvdYbAZQhchomVYTIkt4jWz0h0qG5e-LplXd2yv-o2-o-PnJE9nFer-TonA486XPgmoTbjZj2Mye58snx8-QbFHL2_
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+of+tip+clearance+flow+structure+in+high+speed+mixed+flow+compressor&rft.jtitle=Propulsion+and+Power+Research&rft.au=Kumar%2C+Hemant&rft.au=Mistry%2C+Chetan+S.&rft.date=2023-09-01&rft.issn=2212-540X&rft.eissn=2212-540X&rft.volume=12&rft.issue=3&rft.spage=356&rft.epage=379&rft_id=info:doi/10.1016%2Fj.jppr.2023.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jppr_2023_08_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-540X&client=summon