Understanding of tip clearance flow structure in high speed mixed flow compressor
This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed mixed-flow compressor having stage exit static pressure to inlet total pressure ratio of 3.8 with 39,836 rpm rotor speed. The four different tip co...
Saved in:
Published in | Propulsion and Power Research Vol. 12; no. 3; pp. 356 - 379 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
KeAi Communications Co., Ltd
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed mixed-flow compressor having stage exit static pressure to inlet total pressure ratio of 3.8 with 39,836 rpm rotor speed. The four different tip configurations namely the constant (λ = 0.016 and 0.019) and variable (λ = 0.011 (inlet)-0.019 (exit) and 0.019 (inlet)-0.022 (exit)) tip clearances were numerically analysed using available experimental data-set. The numerical investigation reveals that in contrast to the classic jet-wake pattern, two anomalous velocity profiles formed at the impeller exit which results in pressure losses in the vaneless diffuser. Near the impeller inlet, the tip leakage flow rolls up to discrete tip leakage vortex structure for each tip clearance configuration. This results in the formation of a region of momentum deficit, recirculation zone, which gets weakened as it moves downstream. The tip clearance configuration is observed to profoundly influence the extent and vorticity of the tip leakage vortex. In the splitter blade passage, the tip leakage flow and Coriolis flow interact with passage flow, resulting in the formation of two secondary passage vortices that move downstream along the pressure and suction surface of the splitter blade. The tip clearance configuration directly influences the impeller exit jet-wake pattern by modulating the secondary passage vortices trajectory and vorticity. Moreover, off-design analysis for tip clearances λ = 0.016 and λ = 0.019, depict distinctive tip leakage vortex characteristics. When operating near the stall conditions (80% of design mass flow rate), λ = 0.019 exhibits bubble shape tip leakage vortex breakdown occurring near the impeller inlet. This result in a substantial change in the tip leakage vortex nature; expansion of the recirculation zone and early weakening of the vorticity in the tip leakage vortex. It is observed that vortex breakdown plays a vital role in characteristics of the passage flow field structure and compressor performance near the stall conditions. |
---|---|
AbstractList | This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed mixed-flow compressor having stage exit static pressure to inlet total pressure ratio of 3.8 with 39,836 rpm rotor speed. The four different tip configurations namely the constant (λ = 0.016 and 0.019) and variable (λ = 0.011 (inlet)-0.019 (exit) and 0.019 (inlet)-0.022 (exit)) tip clearances were numerically analysed using available experimental data-set. The numerical investigation reveals that in contrast to the classic jet-wake pattern, two anomalous velocity profiles formed at the impeller exit which results in pressure losses in the vaneless diffuser. Near the impeller inlet, the tip leakage flow rolls up to discrete tip leakage vortex structure for each tip clearance configuration. This results in the formation of a region of momentum deficit, recirculation zone, which gets weakened as it moves downstream. The tip clearance configuration is observed to profoundly influence the extent and vorticity of the tip leakage vortex. In the splitter blade passage, the tip leakage flow and Coriolis flow interact with passage flow, resulting in the formation of two secondary passage vortices that move downstream along the pressure and suction surface of the splitter blade. The tip clearance configuration directly influences the impeller exit jet-wake pattern by modulating the secondary passage vortices trajectory and vorticity. Moreover, off-design analysis for tip clearances λ = 0.016 and λ = 0.019, depict distinctive tip leakage vortex characteristics. When operating near the stall conditions (80% of design mass flow rate), λ = 0.019 exhibits bubble shape tip leakage vortex breakdown occurring near the impeller inlet. This result in a substantial change in the tip leakage vortex nature; expansion of the recirculation zone and early weakening of the vorticity in the tip leakage vortex. It is observed that vortex breakdown plays a vital role in characteristics of the passage flow field structure and compressor performance near the stall conditions. |
Author | Kumar, Hemant Mistry, Chetan S. |
Author_xml | – sequence: 1 givenname: Hemant surname: Kumar fullname: Kumar, Hemant – sequence: 2 givenname: Chetan S. surname: Mistry fullname: Mistry, Chetan S. |
BookMark | eNpNkNtKAzEQhoNUsNa-gFd5gV1z2Bz2UoqHQkEEC96FZDNpd2k3S7JFfXtbK-LN_MMwfPB_12jSxx4QuqWkpITKu67shiGVjDBeEl0SUl2gKWOUFaIi75N_-xWa59wRQpgWUnM5Ra_r3kPKo-19229wDHhsB9zswCbbN4DDLn7gPKZDMx4S4LbH23azxXkA8Hjffh7nz0sT90OCnGO6QZfB7jLMf3OG1o8Pb4vnYvXytFzcr4qGSzoWitlaWh4oSF9rp7x3XDIB1GlJbVBWBXC1Ug4geKe4dJXjxAllNXjNCJ-h5Znro-3MkNq9TV8m2tb8HGLaGJvG9ljF1J4LKbyGoFUlrNM8BOVFxepG1tqKI4udWU2KOScIfzxKzMmx6czJsTk5NkSbo2P-DYmLdEk |
Cites_doi | 10.1115/1.3262141 10.1002/fld.1650130505 10.3390/en10020191 10.22261/JGPPS.I1RSJ3 10.1115/1.3239889 10.1115/1.2929291 10.1016/j.renene.2020.03.142 10.1115/1.3262263 10.1016/j.ast.2019.02.026 10.1115/1.4042756 10.1177/0954410014541102 10.1115/GT2005-68262 10.3390/en10020148 10.1115/1.2776956 10.1115/1.4044982 10.1115/1.3425036 10.1016/j.renene.2020.08.033 10.1115/1.2841339 10.1115/GT2018-76837 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.jppr.2023.08.004 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2212-540X |
EndPage | 379 |
ExternalDocumentID | oai_doaj_org_article_9d3565d8ef8745ab83ff7d5429c698a5 10_1016_j_jppr_2023_08_004 |
GroupedDBID | 0R~ 0SF 4.4 457 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYXX ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CITATION EBS EJD FDB GROUPED_DOAJ HZ~ IXB KQ8 M~E NCXOZ O-L O9- OK1 ROL SSZ |
ID | FETCH-LOGICAL-c361t-72a96a3f1e6d98b7ddb3625e1b861af7a7feb977beefdb736b4b30b57a8ed8203 |
IEDL.DBID | DOA |
ISSN | 2212-540X |
IngestDate | Tue Oct 22 14:51:30 EDT 2024 Fri Aug 23 01:07:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-72a96a3f1e6d98b7ddb3625e1b861af7a7feb977beefdb736b4b30b57a8ed8203 |
OpenAccessLink | https://doaj.org/article/9d3565d8ef8745ab83ff7d5429c698a5 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9d3565d8ef8745ab83ff7d5429c698a5 crossref_primary_10_1016_j_jppr_2023_08_004 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-00 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Propulsion and Power Research |
PublicationYear | 2023 |
Publisher | KeAi Communications Co., Ltd |
Publisher_xml | – name: KeAi Communications Co., Ltd |
References | Zhang (10.1016/j.jppr.2023.08.004_bib21) 2017; 10 Monig (10.1016/j.jppr.2023.08.004_bib18) 1993; 115 Liu (10.1016/j.jppr.2023.08.004_bib24) 2019; 142 Furukawa (10.1016/j.jppr.2023.08.004_bib5) 1999; 121 10.1016/j.jppr.2023.08.004_bib7 Ramamurthy (10.1016/j.jppr.2023.08.004_bib8) 1986 Belamri (10.1016/j.jppr.2023.08.004_bib26) 2005 Han (10.1016/j.jppr.2023.08.004_bib22) 2020; 155 Sadagopan (10.1016/j.jppr.2023.08.004_bib16) 2019; 87 Rajakumar (10.1016/j.jppr.2023.08.004_bib15) 2015; 229 Mosdzien (10.1016/j.jppr.2023.08.004_bib31) 2018; 2 Musgrave (10.1016/j.jppr.2023.08.004_bib14) 1987; 109 Liu (10.1016/j.jppr.2023.08.004_bib23) 2019; 141 Inoue (10.1016/j.jppr.2023.08.004_bib4) 1989; 111 Han (10.1016/j.jppr.2023.08.004_bib25) 2020; 162 10.1016/j.jppr.2023.08.004_bib27 Goldstein (10.1016/j.jppr.2023.08.004_bib2) 1948 10.1016/j.jppr.2023.08.004_bib28 Zangeneh (10.1016/j.jppr.2023.08.004_bib13) 1991; 13 Corsini (10.1016/j.jppr.2023.08.004_bib29) 2013 Schleer (10.1016/j.jppr.2023.08.004_bib12) 2008; 130 King (10.1016/j.jppr.2023.08.004_bib1) 1942 Monig (10.1016/j.jppr.2023.08.004_bib19) 1987; 421 Liu (10.1016/j.jppr.2023.08.004_bib20) 2017; 10 Zhu (10.1016/j.jppr.2023.08.004_bib10) 2013; GT2013-94100 10.1016/j.jppr.2023.08.004_bib30 Inoue (10.1016/j.jppr.2023.08.004_bib6) 1990; 2 10.1016/j.jppr.2023.08.004_bib11 Kumar (10.1016/j.jppr.2023.08.004_bib17) 2021 Inoue (10.1016/j.jppr.2023.08.004_bib3) 1986; 108 Huh (10.1016/j.jppr.2023.08.004_bib9) 2017; 139 |
References_xml | – year: 1986 ident: 10.1016/j.jppr.2023.08.004_bib8 contributor: fullname: Ramamurthy – volume: 109 start-page: 513 issue: 4 year: 1987 ident: 10.1016/j.jppr.2023.08.004_bib14 article-title: Mixed flow compressor stage design and test results with a pressure ratio of 3:1 publication-title: J. Turbomach. doi: 10.1115/1.3262141 contributor: fullname: Musgrave – ident: 10.1016/j.jppr.2023.08.004_bib28 – ident: 10.1016/j.jppr.2023.08.004_bib30 – volume: 13 start-page: 599 issue: 5 year: 1991 ident: 10.1016/j.jppr.2023.08.004_bib13 article-title: A compressible three-dimensional design method for radial and mixed flow turbomachinery blades publication-title: Int. J. Numer. Methods Fluid. doi: 10.1002/fld.1650130505 contributor: fullname: Zangeneh – volume: 10 start-page: 191 issue: 2 year: 2017 ident: 10.1016/j.jppr.2023.08.004_bib20 article-title: Energy performance and flow patterns of a mixed-flow pump with different tip clearance sizes publication-title: Energies doi: 10.3390/en10020191 contributor: fullname: Liu – volume: 2 start-page: 429 year: 2018 ident: 10.1016/j.jppr.2023.08.004_bib31 article-title: Influence of blade geometry on secondary flow development in a transonic centrifugal compressor publication-title: Journal of the Global Power and Propulsion Society doi: 10.22261/JGPPS.I1RSJ3 contributor: fullname: Mosdzien – volume: 108 start-page: 7 issue: 1 year: 1986 ident: 10.1016/j.jppr.2023.08.004_bib3 article-title: Behavior of tip leakage flow behind an axial flow compressor rotor publication-title: ASME Journal of Engineering for Gas Turbines and Power doi: 10.1115/1.3239889 contributor: fullname: Inoue – volume: 115 start-page: 565 issue: 3 year: 1993 ident: 10.1016/j.jppr.2023.08.004_bib18 article-title: Design and rotor performance of a 5:1 mixed-flow supersonic compressor publication-title: ASME Journal of Turbomachinery doi: 10.1115/1.2929291 contributor: fullname: Monig – volume: 155 start-page: 725 year: 2020 ident: 10.1016/j.jppr.2023.08.004_bib22 article-title: Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode publication-title: Renew. Energy doi: 10.1016/j.renene.2020.03.142 contributor: fullname: Han – volume: 111 start-page: 250 issue: 3 year: 1989 ident: 10.1016/j.jppr.2023.08.004_bib4 article-title: Structure of tip clearance flow in an isolated axial compressor rotor publication-title: ASME Journal of Turbomachinery doi: 10.1115/1.3262263 contributor: fullname: Inoue – volume: 87 start-page: 265 year: 2019 ident: 10.1016/j.jppr.2023.08.004_bib16 article-title: A design strategy for a 6:1 supersonic mixed-flow compressor stage publication-title: J. Aero. Sci. Technol. doi: 10.1016/j.ast.2019.02.026 contributor: fullname: Sadagopan – volume: 141 issue: 8 year: 2019 ident: 10.1016/j.jppr.2023.08.004_bib23 article-title: Spatial-temporal evolution of tip leakage vortex in a mixed-flow pump with tip clearance publication-title: ASME. J. Fluids Eng doi: 10.1115/1.4042756 contributor: fullname: Liu – volume: GT2013-94100 start-page: 3 year: 2013 ident: 10.1016/j.jppr.2023.08.004_bib10 article-title: Experimental and numerical investigation of the tip clearance noise of an axial fan publication-title: Proceedings of ASME Turbo Expo contributor: fullname: Zhu – volume: 229 start-page: 933 issue: 5 year: 2015 ident: 10.1016/j.jppr.2023.08.004_bib15 article-title: Experimental investigations on effects of tip clearance in mixed-flow compressor performance publication-title: Proc I MechE Part G: J. Aero. Eng. doi: 10.1177/0954410014541102 contributor: fullname: Rajakumar – ident: 10.1016/j.jppr.2023.08.004_bib27 doi: 10.1115/GT2005-68262 – volume: 10 start-page: 148 issue: 2 year: 2017 ident: 10.1016/j.jppr.2023.08.004_bib21 article-title: Influence of tip clearance on pressure fluctuation in low specific speed mixed-flow pump passage publication-title: Energies doi: 10.3390/en10020148 contributor: fullname: Zhang – volume: 130 start-page: 2 issue: 3 year: 2008 ident: 10.1016/j.jppr.2023.08.004_bib12 article-title: Clearance effect on the onset of instability in a centrifugal compressor publication-title: ASME J. Turbomachinery doi: 10.1115/1.2776956 contributor: fullname: Schleer – volume: 142 issue: 2 year: 2019 ident: 10.1016/j.jppr.2023.08.004_bib24 article-title: Theoretical prediction model of tip leakage vortex in a mixed flow pump with tip clearance publication-title: ASME. J. Fluids Eng. doi: 10.1115/1.4044982 contributor: fullname: Liu – year: 2021 ident: 10.1016/j.jppr.2023.08.004_bib17 contributor: fullname: Kumar – ident: 10.1016/j.jppr.2023.08.004_bib7 doi: 10.1115/1.3425036 – start-page: 1001 year: 2005 ident: 10.1016/j.jppr.2023.08.004_bib26 contributor: fullname: Belamri – year: 1942 ident: 10.1016/j.jppr.2023.08.004_bib1 contributor: fullname: King – year: 1948 ident: 10.1016/j.jppr.2023.08.004_bib2 contributor: fullname: Goldstein – volume: 139 issue: 6 year: 2017 ident: 10.1016/j.jppr.2023.08.004_bib9 article-title: Effects of double-leakage tip clearance flow on the performance of a compressor stage with a large rotor tip gap publication-title: ASME Journal of Turbomachinery contributor: fullname: Huh – start-page: 327 year: 2013 ident: 10.1016/j.jppr.2023.08.004_bib29 contributor: fullname: Corsini – volume: 2 start-page: 179 year: 1990 ident: 10.1016/j.jppr.2023.08.004_bib6 article-title: Behavior of tip clearance flow in axial flow impellers at low flow rate publication-title: Proceedings of the 3rd Japan-China Joint Conference on Fluid Machinery contributor: fullname: Inoue – volume: 162 start-page: 144 year: 2020 ident: 10.1016/j.jppr.2023.08.004_bib25 article-title: Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode publication-title: Renew. Energy doi: 10.1016/j.renene.2020.08.033 contributor: fullname: Han – volume: 121 start-page: 469 issue: 3 year: 1999 ident: 10.1016/j.jppr.2023.08.004_bib5 article-title: A role of tip leakage vortex breakdown in compressor rotor aerodynamics publication-title: ASME Journal of Turbomachinery doi: 10.1115/1.2841339 contributor: fullname: Furukawa – volume: 421 year: 1987 ident: 10.1016/j.jppr.2023.08.004_bib19 article-title: Applications of highly loaded single-stage mixed-flow compressors in small jet-engines publication-title: AGARD Conference Proceedings, No. contributor: fullname: Monig – ident: 10.1016/j.jppr.2023.08.004_bib11 doi: 10.1115/GT2018-76837 |
SSID | ssj0002856836 |
Score | 2.2797544 |
Snippet | This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 356 |
SubjectTerms | Jet-wake flow Mixed-flow compressor Recirculation zone Tip leakage flow Vaned-diffuser Vortex breakdown |
Title | Understanding of tip clearance flow structure in high speed mixed flow compressor |
URI | https://doaj.org/article/9d3565d8ef8745ab83ff7d5429c698a5 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA0yL15EUXFTRw7epNg2bX4cdTiG4ERwMLyUpPkCG9qWWdE_33xtp7158dJDCSW8L_C-JK_vEXKZqBwb9TywLoUg8SQSqBwlVqCZ83yZ2EZE8zDns0Vyv0yXvagv1IS19sAtcNfKMt9zWAkOjdm1kcw5YTFlKedK6ta9NFS9zdS6OTJKucR7ydGvoGtdVWgAGrPGs7NLZtsyUc-wv2GW6QHZ71pCetNO5ZDsQHFEnhb9v05o6Wi9qmiOIQ9YJ-pey0_amr9-bICuCorGw_S98mxE31Zf_tkMQck47qjLzTFZTO-eJ7Ogiz8IcsajOhCxVtwjFgG3ShphrfFsk0JkJI-0E1o4ML59MwDOGsG4SQwLTSq0BOuJnZ2QQVEWcEqoyVXMIVJaG5PEwmrJFbMuBJ4qEzE3JFdbKLKqdbnItvKvdYbAZQhchomVYTIkt4jWz0h0qG5e-LplXd2yv-o2-o-PnJE9nFer-TonA486XPgmoTbjZj2Mye58snx8-QbFHL2_ |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+of+tip+clearance+flow+structure+in+high+speed+mixed+flow+compressor&rft.jtitle=Propulsion+and+Power+Research&rft.au=Kumar%2C+Hemant&rft.au=Mistry%2C+Chetan+S.&rft.date=2023-09-01&rft.issn=2212-540X&rft.eissn=2212-540X&rft.volume=12&rft.issue=3&rft.spage=356&rft.epage=379&rft_id=info:doi/10.1016%2Fj.jppr.2023.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jppr_2023_08_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-540X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-540X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-540X&client=summon |