Wind Turbine Gearbox Failure Identification With Deep Neural Networks

The feasibility of monitoring the health of wind turbine (WT) gearboxes based on the lubricant pressure data in the supervisory control and data acquisition system is investigated in this paper. A deep neural network (DNN)-based framework is developed to monitor conditions of WT gearboxes and identi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 13; no. 3; pp. 1360 - 1368
Main Authors Wang, Long, Zhang, Zijun, Long, Huan, Xu, Jia, Liu, Ruihua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The feasibility of monitoring the health of wind turbine (WT) gearboxes based on the lubricant pressure data in the supervisory control and data acquisition system is investigated in this paper. A deep neural network (DNN)-based framework is developed to monitor conditions of WT gearboxes and identify their impending failures. Six data-mining algorithms, the k-nearest neighbors, least absolute shrinkage and selection operator, ridge regression (Ridge), support vector machines, shallow neural network, as well as DNN, are applied to model the lubricant pressure. A comparative analysis of developed data-driven models is conducted and the DNN model is the most accurate. To prevent the overfitting of the DNN model, a dropout algorithm is applied into the DNN training process. Computational results show that the prediction error will shift before the occurrences of gearbox failures. An exponentially weighted moving average control chart is deployed to derive criteria for detecting the shifts. The effectiveness of the proposed monitoring approach is demonstrated by examining real cases from wind farms in China and benchmarked against the gearbox monitoring based on the oil temperature data.
AbstractList The feasibility of monitoring the health of wind turbine (WT) gearboxes based on the lubricant pressure data in the supervisory control and data acquisition system is investigated in this paper. A deep neural network (DNN)-based framework is developed to monitor conditions of WT gearboxes and identify their impending failures. Six data-mining algorithms, the k- nearest neighbors, least absolute shrinkage and selection operator, ridge regression (Ridge), support vector machines, shallow neural network, as well as DNN, are applied to model the lubricant pressure. A comparative analysis of developed data-driven models is conducted and the DNN model is the most accurate. To prevent the overfitting of the DNN model, a dropout algorithm is applied into the DNN training process. Computational results show that the prediction error will shift before the occurrences of gearbox failures. An exponentially weighted moving average control chart is deployed to derive criteria for detecting the shifts. The effectiveness of the proposed monitoring approach is demonstrated by examining real cases from wind farms in China and benchmarked against the gearbox monitoring based on the oil temperature data.
Author Long Wang
Ruihua Liu
Jia Xu
Zijun Zhang
Huan Long
Author_xml – sequence: 1
  givenname: Long
  surname: Wang
  fullname: Wang, Long
– sequence: 2
  givenname: Zijun
  surname: Zhang
  fullname: Zhang, Zijun
– sequence: 3
  givenname: Huan
  surname: Long
  fullname: Long, Huan
– sequence: 4
  givenname: Jia
  surname: Xu
  fullname: Xu, Jia
– sequence: 5
  givenname: Ruihua
  surname: Liu
  fullname: Liu, Ruihua
BookMark eNp9kDFPwzAUhC1UJNrCjsQSiTnl2W7seESlLZEQLEUdLcd5ES4lKY4j4N_j0oqBgenecPdO943IoGkbJOSSwoRSUDeropgwoGLCBEgq1QkZUjWlKUAGg3hnGU05A35GRl23AeASuBqS-do1VbLqfekaTJZofNl-Jgvjtr3HpKiwCa521gTXNsnahZfkDnGXPGLvzTZK-Gj9a3dOTmuz7fDiqGPyvJivZvfpw9OymN0-pJYLGlJJleCV5SirSlUAVlg5ZYpbtMLYvKSGGmNySTOsK-TIS4Yw5YbZOKXEnI_J9eHvzrfvPXZBb9reN7FSUwWZZEzlLLrg4LK-7TqPtd5592b8l6ag97B0hKX3sPQRVoyIPxHrws_o4COL_4JXh6BDxN8emQnOBePfrVV4bg
CODEN ITIICH
CitedBy_id crossref_primary_10_1049_rpg2_12920
crossref_primary_10_1109_TII_2019_2945366
crossref_primary_10_21595_jve_2020_20178
crossref_primary_10_1109_TIA_2017_2781646
crossref_primary_10_1109_TII_2020_3011441
crossref_primary_10_1109_TII_2022_3222396
crossref_primary_10_1049_iet_rpg_2018_5313
crossref_primary_10_1109_ACCESS_2019_2908192
crossref_primary_10_1109_TII_2018_2890141
crossref_primary_10_1109_TASE_2023_3293931
crossref_primary_10_3390_en16124678
crossref_primary_10_1177_14750902221096221
crossref_primary_10_1002_er_5331
crossref_primary_10_1016_j_advengsoft_2023_103409
crossref_primary_10_1109_TII_2017_2746761
crossref_primary_10_1049_rpg2_12011
crossref_primary_10_1109_TIE_2022_3156039
crossref_primary_10_1177_1475921720919073
crossref_primary_10_3390_machines9110248
crossref_primary_10_1016_j_renene_2023_05_003
crossref_primary_10_1177_14759217211004822
crossref_primary_10_3390_en13164078
crossref_primary_10_1002_er_5560
crossref_primary_10_1016_j_aei_2024_102402
crossref_primary_10_1109_ACCESS_2020_2994077
crossref_primary_10_1109_ACCESS_2020_3047077
crossref_primary_10_3390_en15197186
crossref_primary_10_1145_3586006
crossref_primary_10_1109_TII_2019_2924662
crossref_primary_10_32604_EE_2021_014177
crossref_primary_10_1109_TIM_2021_3049276
crossref_primary_10_3389_fenrg_2021_751066
crossref_primary_10_1002_ls_1692
crossref_primary_10_1016_j_ijepes_2020_106233
crossref_primary_10_1177_09574565221139638
crossref_primary_10_3390_w12113085
crossref_primary_10_1007_s13198_022_01841_9
crossref_primary_10_1016_j_energy_2020_119356
crossref_primary_10_1016_j_ymssp_2021_107976
crossref_primary_10_1016_j_measurement_2021_109970
crossref_primary_10_3390_app14072963
crossref_primary_10_1016_j_eswa_2022_117398
crossref_primary_10_1016_j_ijmecsci_2021_106698
crossref_primary_10_1631_FITEE_1900193
crossref_primary_10_1109_TIM_2020_3048799
crossref_primary_10_1109_TII_2018_2885365
crossref_primary_10_3390_en15155638
crossref_primary_10_1016_j_infrared_2020_103383
crossref_primary_10_3390_en10111839
crossref_primary_10_1016_j_measurement_2022_111529
crossref_primary_10_1016_j_egyr_2024_09_073
crossref_primary_10_1016_j_engappai_2024_108285
crossref_primary_10_1109_TSM_2018_2849206
crossref_primary_10_1088_1742_6596_2132_1_012015
crossref_primary_10_1088_1361_6501_acd8e1
crossref_primary_10_1109_TII_2018_2868359
crossref_primary_10_1109_TFUZZ_2019_2914617
crossref_primary_10_1109_ACCESS_2019_2927039
crossref_primary_10_3390_en16083567
crossref_primary_10_1016_j_ijepes_2020_106056
crossref_primary_10_1016_j_ymssp_2022_110093
crossref_primary_10_1109_TSTE_2020_2985217
crossref_primary_10_1016_j_jsv_2018_05_020
crossref_primary_10_1016_j_jweia_2023_105507
crossref_primary_10_1109_TFUZZ_2024_3406001
crossref_primary_10_1016_j_seta_2019_100601
crossref_primary_10_3390_s25071972
crossref_primary_10_1016_j_neucom_2025_129830
crossref_primary_10_3390_en14030602
crossref_primary_10_1007_s10489_022_03344_3
crossref_primary_10_1109_TII_2021_3097716
crossref_primary_10_1088_1361_6501_ac94ec
crossref_primary_10_3390_en14071845
crossref_primary_10_1049_iet_rpg_2017_0867
crossref_primary_10_1109_TIM_2020_3044719
crossref_primary_10_1080_15567036_2023_2203111
crossref_primary_10_1007_s10845_018_1424_9
crossref_primary_10_1016_j_renene_2021_09_067
crossref_primary_10_1016_j_oceaneng_2024_117395
crossref_primary_10_1109_TASE_2023_3321049
crossref_primary_10_1109_TII_2020_3004816
crossref_primary_10_1016_j_renene_2019_09_041
crossref_primary_10_3390_ndt1010005
crossref_primary_10_1016_j_neucom_2020_04_045
crossref_primary_10_1049_iet_rpg_2020_0604
crossref_primary_10_3390_en12060982
crossref_primary_10_1051_itmconf_20257605012
crossref_primary_10_1109_TIE_2019_2912763
crossref_primary_10_1016_j_renene_2020_11_106
crossref_primary_10_1109_ACCESS_2024_3379529
crossref_primary_10_1109_TII_2020_3037977
crossref_primary_10_1109_TII_2020_3029551
crossref_primary_10_1177_0954407020945823
crossref_primary_10_26748_KSOE_2021_018
crossref_primary_10_1016_j_renene_2018_10_047
crossref_primary_10_1109_TII_2020_2967556
crossref_primary_10_1109_TII_2022_3154486
crossref_primary_10_1109_TMECH_2021_3127213
crossref_primary_10_3390_app10093258
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1109_TIM_2019_2963731
crossref_primary_10_3390_en15176127
crossref_primary_10_1109_TII_2022_3157748
crossref_primary_10_3390_app8081346
crossref_primary_10_1016_j_energy_2023_129638
crossref_primary_10_1109_TIE_2020_2988229
crossref_primary_10_1109_TIM_2020_3045800
crossref_primary_10_3390_electronics9050751
crossref_primary_10_1016_j_ress_2024_110030
crossref_primary_10_1016_j_psep_2022_07_046
crossref_primary_10_1109_TII_2019_2933675
crossref_primary_10_1016_j_cor_2023_106146
crossref_primary_10_3390_app11020590
crossref_primary_10_1016_j_apenergy_2019_114469
crossref_primary_10_1109_TII_2021_3075239
crossref_primary_10_1109_TIM_2023_3314813
crossref_primary_10_1088_1755_1315_354_1_012115
crossref_primary_10_1109_TMECH_2019_2908233
crossref_primary_10_3390_machines12010055
crossref_primary_10_1109_TIM_2022_3227606
crossref_primary_10_1587_transinf_2022EDL8044
crossref_primary_10_1007_s11831_021_09671_x
crossref_primary_10_1155_2024_1242311
crossref_primary_10_32604_cmes_2023_043377
crossref_primary_10_1109_JSEN_2019_2925845
crossref_primary_10_1016_j_egyr_2023_09_163
crossref_primary_10_1109_TIA_2019_2951088
crossref_primary_10_3390_s20154298
crossref_primary_10_1016_j_apenergy_2021_117342
crossref_primary_10_1109_ACCESS_2018_2883591
crossref_primary_10_1186_s42162_022_00218_3
crossref_primary_10_1109_TII_2018_2866549
crossref_primary_10_1109_ACCESS_2020_2981289
crossref_primary_10_1016_j_ijleo_2019_163846
crossref_primary_10_1016_j_egyr_2021_10_041
crossref_primary_10_1007_s42417_024_01380_6
crossref_primary_10_1016_j_renene_2018_02_096
crossref_primary_10_1109_TII_2022_3208001
crossref_primary_10_1109_TEC_2021_3125369
crossref_primary_10_1016_j_apenergy_2022_119373
crossref_primary_10_1080_00207543_2020_1836419
crossref_primary_10_1016_j_engfailanal_2024_108354
crossref_primary_10_1016_j_rineng_2024_102921
crossref_primary_10_1016_j_ymssp_2017_11_024
crossref_primary_10_1109_TII_2019_2957409
crossref_primary_10_1109_TII_2020_3041114
crossref_primary_10_1111_exsy_13830
crossref_primary_10_3390_jmse7110399
crossref_primary_10_1109_TIE_2018_2866057
crossref_primary_10_1016_j_seta_2021_101178
crossref_primary_10_1115_1_4049537
crossref_primary_10_3390_en12183429
crossref_primary_10_1080_0951192X_2022_2025623
crossref_primary_10_1016_j_isatra_2023_03_045
crossref_primary_10_1016_j_renene_2020_12_116
crossref_primary_10_1109_TIM_2020_3025396
crossref_primary_10_1016_j_rser_2024_115281
crossref_primary_10_1016_j_neucom_2019_07_017
crossref_primary_10_1109_TIE_2018_2813959
crossref_primary_10_1109_TII_2021_3082517
crossref_primary_10_1108_JQME_03_2020_0017
crossref_primary_10_3390_machines7040069
crossref_primary_10_1016_j_compind_2018_12_004
crossref_primary_10_3390_s21175739
crossref_primary_10_1016_j_oceaneng_2024_118176
crossref_primary_10_1109_ACCESS_2019_2912621
crossref_primary_10_1109_ACCESS_2023_3320766
crossref_primary_10_1007_s10479_023_05649_z
crossref_primary_10_1002_we_2510
crossref_primary_10_1109_ACCESS_2021_3110909
crossref_primary_10_3390_e24101394
crossref_primary_10_1002_we_2628
crossref_primary_10_3390_s22093246
crossref_primary_10_1109_ACCESS_2021_3062865
crossref_primary_10_1109_JSYST_2019_2905565
crossref_primary_10_1109_TII_2021_3099060
crossref_primary_10_1109_TSTE_2022_3215672
crossref_primary_10_1016_j_engappai_2021_104383
crossref_primary_10_4236_sgre_2019_104007
crossref_primary_10_1016_j_eswa_2024_123931
crossref_primary_10_3390_su12177139
crossref_primary_10_1016_j_engfailanal_2024_108010
crossref_primary_10_31796_ogummf_873963
crossref_primary_10_1016_j_compchemeng_2020_106991
crossref_primary_10_1016_j_ymssp_2021_107996
crossref_primary_10_1177_0309524X211003960
crossref_primary_10_1155_2018_5628429
crossref_primary_10_1109_ACCESS_2022_3187839
crossref_primary_10_1016_j_conengprac_2020_104546
crossref_primary_10_1088_1742_6596_1346_1_012038
crossref_primary_10_1016_j_ress_2023_109162
crossref_primary_10_1109_TII_2018_2884211
crossref_primary_10_3390_machines10060443
crossref_primary_10_1088_1361_6501_abf30b
crossref_primary_10_1109_TII_2020_3036159
crossref_primary_10_3390_s19204381
crossref_primary_10_3390_sym13101861
crossref_primary_10_1088_1361_6501_ac9855
crossref_primary_10_1016_j_ins_2019_10_074
crossref_primary_10_1049_rpg2_12336
crossref_primary_10_1111_mice_13094
crossref_primary_10_3390_su132212757
crossref_primary_10_1007_s10845_024_02357_8
crossref_primary_10_1109_ACCESS_2020_2966268
crossref_primary_10_1016_j_rser_2018_09_012
crossref_primary_10_1016_j_ymssp_2019_05_049
crossref_primary_10_1002_we_2290
crossref_primary_10_1109_JPROC_2022_3171691
crossref_primary_10_1109_ACCESS_2021_3090434
crossref_primary_10_3390_app12157747
crossref_primary_10_1088_1742_6596_2846_1_012018
crossref_primary_10_1109_TII_2019_2920661
crossref_primary_10_1088_1361_6501_aaaca6
crossref_primary_10_1109_ACCESS_2020_2964294
crossref_primary_10_1109_TIM_2023_3324347
crossref_primary_10_1016_j_measurement_2021_109491
crossref_primary_10_1109_ACCESS_2019_2914731
crossref_primary_10_3390_en13123132
crossref_primary_10_1109_TII_2021_3065702
crossref_primary_10_1109_ACCESS_2019_2938227
crossref_primary_10_1109_TII_2018_2834462
crossref_primary_10_1002_er_4382
crossref_primary_10_1109_TII_2021_3130721
crossref_primary_10_1109_TII_2019_2915846
crossref_primary_10_1088_1361_6501_ac95b2
crossref_primary_10_1109_TIA_2019_2907666
crossref_primary_10_3389_fenrg_2021_799039
crossref_primary_10_1109_ACCESS_2019_2947501
crossref_primary_10_1177_1748006X20965434
crossref_primary_10_1109_TII_2023_3331766
crossref_primary_10_1016_j_prime_2024_100690
crossref_primary_10_1088_1361_6501_aca496
crossref_primary_10_32604_ee_2023_023049
crossref_primary_10_1016_j_renene_2019_07_033
crossref_primary_10_1016_j_renene_2021_12_049
crossref_primary_10_1186_s44147_023_00227_3
crossref_primary_10_1016_j_ress_2024_110554
Cites_doi 10.1214/12-AOS1003
10.1016/j.ymssp.2012.06.021
10.2307/1267351
10.1007/978-3-642-35289-8_26
10.1038/nature14539
10.1214/aos/1176344136
10.1016/j.ymssp.2015.03.003
10.1049/iet-rpg.2012.0215
10.1111/j.2517-6161.1996.tb02080.x
10.1080/00224065.1997.11979720
10.1016/j.ymssp.2006.08.005
10.1109/TEC.2012.2189887
10.1002/we.538
10.1016/j.rser.2007.05.008
10.2307/2685209
10.1016/j.renene.2013.10.041
10.1109/TEC.2006.889623
10.1109/PEMWA.2009.5208325
10.1109/ICASSP.2013.6639346
10.1038/nature16961
10.1002/we.1595
10.1016/j.rser.2014.12.005
10.12720/ijoee.2.1.53-56
10.1002/we.1521
10.1016/j.renene.2016.03.025
10.1016/j.renene.2013.04.005
10.1038/nbt.3300
10.1016/j.compind.2006.02.011
10.1002/we.319
10.1038/nbt.3313
10.1016/j.renene.2013.12.047
10.1038/nature14236
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2016.2607179
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 1368
ExternalDocumentID 10_1109_TII_2016_2607179
7563362
Genre orig-research
GrantInformation_xml – fundername: Early Career Scheme Grant from the Research Grants Council of the Hong Kong Special Administrative Region
  grantid: CityU 138313
– fundername: CityU Strategic Research Grant
  grantid: 7004551
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-71963dc3e7dd9d00c6c74293cec6ac8b1a1aaa8715efde3e3b2e043a2c194be83
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:23:12 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Tue Jul 01 03:06:07 EDT 2025
Tue Aug 26 17:08:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-71963dc3e7dd9d00c6c74293cec6ac8b1a1aaa8715efde3e3b2e043a2c194be83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1905722982
PQPubID 85507
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TII_2016_2607179
proquest_journals_1905722982
ieee_primary_7563362
crossref_primary_10_1109_TII_2016_2607179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
srivastava (ref27) 2014; 15
ref37
ref15
ref14
ref30
dietterich (ref33) 2000
ref11
ref10
prabhu (ref40) 1997; 29
ref2
ref1
ref38
ref16
ref19
ref18
smith (ref17) 0
kröse (ref32) 1993
recht (ref36) 0; 24
ref24
tibshirani (ref29) 1996; 73
ref23
ref25
ref20
ref22
ref21
bengio (ref35) 2012
ref28
abu-mostafa (ref41) 2012
ref8
smola (ref31) 0; 9
ref7
ref9
ref4
ref3
ref6
montgomery (ref39) 2007
ref5
bengio (ref26) 0
References_xml – ident: ref38
  doi: 10.1214/12-AOS1003
– year: 2007
  ident: ref39
  publication-title: Introduction to statistical quality
– ident: ref9
  doi: 10.1016/j.ymssp.2012.06.021
– ident: ref30
  doi: 10.2307/1267351
– start-page: 437
  year: 2012
  ident: ref35
  article-title: Practical recommendations for gradient-based training of deep architectures
  publication-title: Neural Networks Tricks of the Trade
  doi: 10.1007/978-3-642-35289-8_26
– ident: ref23
  doi: 10.1038/nature14539
– ident: ref37
  doi: 10.1214/aos/1176344136
– ident: ref11
  doi: 10.1016/j.ymssp.2015.03.003
– ident: ref20
  doi: 10.1049/iet-rpg.2012.0215
– volume: 73
  start-page: 267
  year: 1996
  ident: ref29
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Royal Statistical Society Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 29
  start-page: 8
  year: 1997
  ident: ref40
  article-title: Designing a multivariate EWMA control chart
  publication-title: J Quality Technol
  doi: 10.1080/00224065.1997.11979720
– ident: ref15
  doi: 10.1016/j.ymssp.2006.08.005
– ident: ref16
  doi: 10.1109/TEC.2012.2189887
– ident: ref4
  doi: 10.1002/we.538
– ident: ref5
  doi: 10.1016/j.rser.2007.05.008
– ident: ref28
  doi: 10.2307/2685209
– ident: ref2
  doi: 10.1016/j.renene.2013.10.041
– ident: ref1
  doi: 10.1109/TEC.2006.889623
– ident: ref6
  doi: 10.1109/PEMWA.2009.5208325
– ident: ref34
  doi: 10.1109/ICASSP.2013.6639346
– year: 2012
  ident: ref41
  publication-title: Learning From Data
– ident: ref25
  doi: 10.1038/nature16961
– ident: ref12
  doi: 10.1002/we.1595
– ident: ref8
  doi: 10.1016/j.rser.2014.12.005
– ident: ref7
  doi: 10.12720/ijoee.2.1.53-56
– ident: ref18
  doi: 10.1002/we.1521
– ident: ref14
  doi: 10.1016/j.renene.2016.03.025
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref27
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref10
  doi: 10.1016/j.renene.2013.04.005
– start-page: 1
  year: 2000
  ident: ref33
  article-title: Ensemble methods in machine learning
  publication-title: Multiple Classifier Systems
– volume: 24
  start-page: 693
  year: 0
  ident: ref36
  article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref24
  doi: 10.1038/nbt.3300
– ident: ref19
  doi: 10.1016/j.compind.2006.02.011
– ident: ref3
  doi: 10.1002/we.319
– start-page: 18
  year: 0
  ident: ref26
  article-title: On the expressive power of deep architectures
  publication-title: Proc Int Conf Algorithmic Learn Theory
– ident: ref21
  doi: 10.1038/nbt.3313
– ident: ref13
  doi: 10.1016/j.renene.2013.12.047
– ident: ref22
  doi: 10.1038/nature14236
– start-page: 11/1
  year: 0
  ident: ref17
  article-title: SCADA in wind farms
  publication-title: Proc IEE Colloq Instrum Elect Supply Ind
– year: 1993
  ident: ref32
  publication-title: An Introduction to Neural Networks
– volume: 9
  start-page: 155
  year: 0
  ident: ref31
  article-title: Support vector regression machines
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0037039
Score 2.5985491
Snippet The feasibility of monitoring the health of wind turbine (WT) gearboxes based on the lubricant pressure data in the supervisory control and data acquisition...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1360
SubjectTerms Algorithms
Artificial neural networks
Benchmarks
Computational modeling
Condition monitoring
Control charts
Control systems
Criteria
Data mining
deep neural network (DNN)
Failure
Feasibility
lubricant pressure
Lubricants
Mathematical models
Monitoring
Neural networks
Predictive models
Regression analysis
Supervisory control and data acquisition
Support vector machines
Training
Transmissions (machine elements)
Vibrations
Wind power
Wind power generation
wind turbine gearbox
Wind turbines
Title Wind Turbine Gearbox Failure Identification With Deep Neural Networks
URI https://ieeexplore.ieee.org/document/7563362
https://www.proquest.com/docview/1905722982
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJz34a4rTKTl4EWyXJumvo6hzE9xpY7uVJH3FoWxja0H8603SdgwV8dZDUkLey8v7ku99QeiaS6OxCdyBSILDozRwhNAoxSeCQ8Z9Uw5p2BbDoD_mz1N_2kC3m1oYALDkM3DNp73LTxeqMEdl3dAPmA24Oxq4lbVaddRl2nNjq43qew6jhNVXkiTujgYDw-EKXGrE1Axpa2sLsm-q_AjEdnfpHaCXelwlqeTNLXLpqs9vko3_Hfgh2q_STHxX-sURasD8GO1tiQ-20ONEw3E8KlYaGwN-0h4vFx-4J2aGqI7LAt6sOtHDk1n-ih8Altioeeg_D0v6-PoEjXuPo_u-Uz2q4CgWeLkTmiWXKgZhmsYpISpQGh3HTIEKhIqkJzwhhIZRPmQpMGCSAuFMUOXFXELETlFzvpjDGcKhTh1B452MZpJHypTYqkh5AQGSqjCSbdSt5zlRleK4efjiPbHIg8SJtkxiLJNUlmmjm02PZam28UfblpnoTbtqjtuoU5syqZbjOtFZjx9SGkf0_PdeF2iXmv3aHq90UDNfFXCps41cXlk3-wIi9s__
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4hGICBN6I8PbAgkdaxndeIgNLy6FTUbpHtXAQCtQgSCfHrsZ2kQoAQWwY7snxn3332d58BjoWyGpsoPIwVeiLOQk9Kg1ICKgXmIrDlkJZtMQh79-J6HIzn4HRWC4OIjnyGbfvp7vKzqS7tUVknCkLuNtwFE_cDv6rWavZdbnw3ceqoge9xRnlzKUmTzrDftyyusM2snJqlbX0JQu5VlR9bsYsv3VW4a0ZW0Uqe2mWh2vrjm2jjf4e-Bit1oknOKs9YhzmcbMDyF_nBTbgcGUBOhuWrQcdIrozPq-k76cpHS1UnVQlvXp_pkdFj8UAuEF-I1fMwfx5UBPK3LbjvXg7Pe179rIKneegXXmQXXaY5RlmWZJTqUBt8nHCNOpQ6Vr70pZQGSAWYZ8iRK4ZUcMm0nwiFMd-G-cl0gjtAIpM8okE8OcuViLUtstWx9kOKNNNRrFrQaeY51bXmuH364jl12IMmqbFMai2T1pZpwcmsx0ult_FH20070bN29Ry3YL8xZVovyLfU5D1BxFgSs93fex3BYm94d5ve9gc3e7DEbPR2hy37MF-8lnhgco9CHTqX-wQomNNI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Turbine+Gearbox+Failure+Identification+With+Deep+Neural+Networks&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Wang%2C+Long&rft.au=Zhang%2C+Zijun&rft.au=Long%2C+Huan&rft.au=Xu%2C+Jia&rft.date=2017-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=13&rft.issue=3&rft.spage=1360&rft_id=info:doi/10.1109%2FTII.2016.2607179&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon