Wind Turbine Gearbox Failure Identification With Deep Neural Networks
The feasibility of monitoring the health of wind turbine (WT) gearboxes based on the lubricant pressure data in the supervisory control and data acquisition system is investigated in this paper. A deep neural network (DNN)-based framework is developed to monitor conditions of WT gearboxes and identi...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 13; no. 3; pp. 1360 - 1368 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The feasibility of monitoring the health of wind turbine (WT) gearboxes based on the lubricant pressure data in the supervisory control and data acquisition system is investigated in this paper. A deep neural network (DNN)-based framework is developed to monitor conditions of WT gearboxes and identify their impending failures. Six data-mining algorithms, the k-nearest neighbors, least absolute shrinkage and selection operator, ridge regression (Ridge), support vector machines, shallow neural network, as well as DNN, are applied to model the lubricant pressure. A comparative analysis of developed data-driven models is conducted and the DNN model is the most accurate. To prevent the overfitting of the DNN model, a dropout algorithm is applied into the DNN training process. Computational results show that the prediction error will shift before the occurrences of gearbox failures. An exponentially weighted moving average control chart is deployed to derive criteria for detecting the shifts. The effectiveness of the proposed monitoring approach is demonstrated by examining real cases from wind farms in China and benchmarked against the gearbox monitoring based on the oil temperature data. |
---|---|
AbstractList | The feasibility of monitoring the health of wind turbine (WT) gearboxes based on the lubricant pressure data in the supervisory control and data acquisition system is investigated in this paper. A deep neural network (DNN)-based framework is developed to monitor conditions of WT gearboxes and identify their impending failures. Six data-mining algorithms, the k- nearest neighbors, least absolute shrinkage and selection operator, ridge regression (Ridge), support vector machines, shallow neural network, as well as DNN, are applied to model the lubricant pressure. A comparative analysis of developed data-driven models is conducted and the DNN model is the most accurate. To prevent the overfitting of the DNN model, a dropout algorithm is applied into the DNN training process. Computational results show that the prediction error will shift before the occurrences of gearbox failures. An exponentially weighted moving average control chart is deployed to derive criteria for detecting the shifts. The effectiveness of the proposed monitoring approach is demonstrated by examining real cases from wind farms in China and benchmarked against the gearbox monitoring based on the oil temperature data. |
Author | Long Wang Ruihua Liu Jia Xu Zijun Zhang Huan Long |
Author_xml | – sequence: 1 givenname: Long surname: Wang fullname: Wang, Long – sequence: 2 givenname: Zijun surname: Zhang fullname: Zhang, Zijun – sequence: 3 givenname: Huan surname: Long fullname: Long, Huan – sequence: 4 givenname: Jia surname: Xu fullname: Xu, Jia – sequence: 5 givenname: Ruihua surname: Liu fullname: Liu, Ruihua |
BookMark | eNp9kDFPwzAUhC1UJNrCjsQSiTnl2W7seESlLZEQLEUdLcd5ES4lKY4j4N_j0oqBgenecPdO943IoGkbJOSSwoRSUDeropgwoGLCBEgq1QkZUjWlKUAGg3hnGU05A35GRl23AeASuBqS-do1VbLqfekaTJZofNl-Jgvjtr3HpKiwCa521gTXNsnahZfkDnGXPGLvzTZK-Gj9a3dOTmuz7fDiqGPyvJivZvfpw9OymN0-pJYLGlJJleCV5SirSlUAVlg5ZYpbtMLYvKSGGmNySTOsK-TIS4Yw5YbZOKXEnI_J9eHvzrfvPXZBb9reN7FSUwWZZEzlLLrg4LK-7TqPtd5592b8l6ag97B0hKX3sPQRVoyIPxHrws_o4COL_4JXh6BDxN8emQnOBePfrVV4bg |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1049_rpg2_12920 crossref_primary_10_1109_TII_2019_2945366 crossref_primary_10_21595_jve_2020_20178 crossref_primary_10_1109_TIA_2017_2781646 crossref_primary_10_1109_TII_2020_3011441 crossref_primary_10_1109_TII_2022_3222396 crossref_primary_10_1049_iet_rpg_2018_5313 crossref_primary_10_1109_ACCESS_2019_2908192 crossref_primary_10_1109_TII_2018_2890141 crossref_primary_10_1109_TASE_2023_3293931 crossref_primary_10_3390_en16124678 crossref_primary_10_1177_14750902221096221 crossref_primary_10_1002_er_5331 crossref_primary_10_1016_j_advengsoft_2023_103409 crossref_primary_10_1109_TII_2017_2746761 crossref_primary_10_1049_rpg2_12011 crossref_primary_10_1109_TIE_2022_3156039 crossref_primary_10_1177_1475921720919073 crossref_primary_10_3390_machines9110248 crossref_primary_10_1016_j_renene_2023_05_003 crossref_primary_10_1177_14759217211004822 crossref_primary_10_3390_en13164078 crossref_primary_10_1002_er_5560 crossref_primary_10_1016_j_aei_2024_102402 crossref_primary_10_1109_ACCESS_2020_2994077 crossref_primary_10_1109_ACCESS_2020_3047077 crossref_primary_10_3390_en15197186 crossref_primary_10_1145_3586006 crossref_primary_10_1109_TII_2019_2924662 crossref_primary_10_32604_EE_2021_014177 crossref_primary_10_1109_TIM_2021_3049276 crossref_primary_10_3389_fenrg_2021_751066 crossref_primary_10_1002_ls_1692 crossref_primary_10_1016_j_ijepes_2020_106233 crossref_primary_10_1177_09574565221139638 crossref_primary_10_3390_w12113085 crossref_primary_10_1007_s13198_022_01841_9 crossref_primary_10_1016_j_energy_2020_119356 crossref_primary_10_1016_j_ymssp_2021_107976 crossref_primary_10_1016_j_measurement_2021_109970 crossref_primary_10_3390_app14072963 crossref_primary_10_1016_j_eswa_2022_117398 crossref_primary_10_1016_j_ijmecsci_2021_106698 crossref_primary_10_1631_FITEE_1900193 crossref_primary_10_1109_TIM_2020_3048799 crossref_primary_10_1109_TII_2018_2885365 crossref_primary_10_3390_en15155638 crossref_primary_10_1016_j_infrared_2020_103383 crossref_primary_10_3390_en10111839 crossref_primary_10_1016_j_measurement_2022_111529 crossref_primary_10_1016_j_egyr_2024_09_073 crossref_primary_10_1016_j_engappai_2024_108285 crossref_primary_10_1109_TSM_2018_2849206 crossref_primary_10_1088_1742_6596_2132_1_012015 crossref_primary_10_1088_1361_6501_acd8e1 crossref_primary_10_1109_TII_2018_2868359 crossref_primary_10_1109_TFUZZ_2019_2914617 crossref_primary_10_1109_ACCESS_2019_2927039 crossref_primary_10_3390_en16083567 crossref_primary_10_1016_j_ijepes_2020_106056 crossref_primary_10_1016_j_ymssp_2022_110093 crossref_primary_10_1109_TSTE_2020_2985217 crossref_primary_10_1016_j_jsv_2018_05_020 crossref_primary_10_1016_j_jweia_2023_105507 crossref_primary_10_1109_TFUZZ_2024_3406001 crossref_primary_10_1016_j_seta_2019_100601 crossref_primary_10_3390_s25071972 crossref_primary_10_1016_j_neucom_2025_129830 crossref_primary_10_3390_en14030602 crossref_primary_10_1007_s10489_022_03344_3 crossref_primary_10_1109_TII_2021_3097716 crossref_primary_10_1088_1361_6501_ac94ec crossref_primary_10_3390_en14071845 crossref_primary_10_1049_iet_rpg_2017_0867 crossref_primary_10_1109_TIM_2020_3044719 crossref_primary_10_1080_15567036_2023_2203111 crossref_primary_10_1007_s10845_018_1424_9 crossref_primary_10_1016_j_renene_2021_09_067 crossref_primary_10_1016_j_oceaneng_2024_117395 crossref_primary_10_1109_TASE_2023_3321049 crossref_primary_10_1109_TII_2020_3004816 crossref_primary_10_1016_j_renene_2019_09_041 crossref_primary_10_3390_ndt1010005 crossref_primary_10_1016_j_neucom_2020_04_045 crossref_primary_10_1049_iet_rpg_2020_0604 crossref_primary_10_3390_en12060982 crossref_primary_10_1051_itmconf_20257605012 crossref_primary_10_1109_TIE_2019_2912763 crossref_primary_10_1016_j_renene_2020_11_106 crossref_primary_10_1109_ACCESS_2024_3379529 crossref_primary_10_1109_TII_2020_3037977 crossref_primary_10_1109_TII_2020_3029551 crossref_primary_10_1177_0954407020945823 crossref_primary_10_26748_KSOE_2021_018 crossref_primary_10_1016_j_renene_2018_10_047 crossref_primary_10_1109_TII_2020_2967556 crossref_primary_10_1109_TII_2022_3154486 crossref_primary_10_1109_TMECH_2021_3127213 crossref_primary_10_3390_app10093258 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1109_TIM_2019_2963731 crossref_primary_10_3390_en15176127 crossref_primary_10_1109_TII_2022_3157748 crossref_primary_10_3390_app8081346 crossref_primary_10_1016_j_energy_2023_129638 crossref_primary_10_1109_TIE_2020_2988229 crossref_primary_10_1109_TIM_2020_3045800 crossref_primary_10_3390_electronics9050751 crossref_primary_10_1016_j_ress_2024_110030 crossref_primary_10_1016_j_psep_2022_07_046 crossref_primary_10_1109_TII_2019_2933675 crossref_primary_10_1016_j_cor_2023_106146 crossref_primary_10_3390_app11020590 crossref_primary_10_1016_j_apenergy_2019_114469 crossref_primary_10_1109_TII_2021_3075239 crossref_primary_10_1109_TIM_2023_3314813 crossref_primary_10_1088_1755_1315_354_1_012115 crossref_primary_10_1109_TMECH_2019_2908233 crossref_primary_10_3390_machines12010055 crossref_primary_10_1109_TIM_2022_3227606 crossref_primary_10_1587_transinf_2022EDL8044 crossref_primary_10_1007_s11831_021_09671_x crossref_primary_10_1155_2024_1242311 crossref_primary_10_32604_cmes_2023_043377 crossref_primary_10_1109_JSEN_2019_2925845 crossref_primary_10_1016_j_egyr_2023_09_163 crossref_primary_10_1109_TIA_2019_2951088 crossref_primary_10_3390_s20154298 crossref_primary_10_1016_j_apenergy_2021_117342 crossref_primary_10_1109_ACCESS_2018_2883591 crossref_primary_10_1186_s42162_022_00218_3 crossref_primary_10_1109_TII_2018_2866549 crossref_primary_10_1109_ACCESS_2020_2981289 crossref_primary_10_1016_j_ijleo_2019_163846 crossref_primary_10_1016_j_egyr_2021_10_041 crossref_primary_10_1007_s42417_024_01380_6 crossref_primary_10_1016_j_renene_2018_02_096 crossref_primary_10_1109_TII_2022_3208001 crossref_primary_10_1109_TEC_2021_3125369 crossref_primary_10_1016_j_apenergy_2022_119373 crossref_primary_10_1080_00207543_2020_1836419 crossref_primary_10_1016_j_engfailanal_2024_108354 crossref_primary_10_1016_j_rineng_2024_102921 crossref_primary_10_1016_j_ymssp_2017_11_024 crossref_primary_10_1109_TII_2019_2957409 crossref_primary_10_1109_TII_2020_3041114 crossref_primary_10_1111_exsy_13830 crossref_primary_10_3390_jmse7110399 crossref_primary_10_1109_TIE_2018_2866057 crossref_primary_10_1016_j_seta_2021_101178 crossref_primary_10_1115_1_4049537 crossref_primary_10_3390_en12183429 crossref_primary_10_1080_0951192X_2022_2025623 crossref_primary_10_1016_j_isatra_2023_03_045 crossref_primary_10_1016_j_renene_2020_12_116 crossref_primary_10_1109_TIM_2020_3025396 crossref_primary_10_1016_j_rser_2024_115281 crossref_primary_10_1016_j_neucom_2019_07_017 crossref_primary_10_1109_TIE_2018_2813959 crossref_primary_10_1109_TII_2021_3082517 crossref_primary_10_1108_JQME_03_2020_0017 crossref_primary_10_3390_machines7040069 crossref_primary_10_1016_j_compind_2018_12_004 crossref_primary_10_3390_s21175739 crossref_primary_10_1016_j_oceaneng_2024_118176 crossref_primary_10_1109_ACCESS_2019_2912621 crossref_primary_10_1109_ACCESS_2023_3320766 crossref_primary_10_1007_s10479_023_05649_z crossref_primary_10_1002_we_2510 crossref_primary_10_1109_ACCESS_2021_3110909 crossref_primary_10_3390_e24101394 crossref_primary_10_1002_we_2628 crossref_primary_10_3390_s22093246 crossref_primary_10_1109_ACCESS_2021_3062865 crossref_primary_10_1109_JSYST_2019_2905565 crossref_primary_10_1109_TII_2021_3099060 crossref_primary_10_1109_TSTE_2022_3215672 crossref_primary_10_1016_j_engappai_2021_104383 crossref_primary_10_4236_sgre_2019_104007 crossref_primary_10_1016_j_eswa_2024_123931 crossref_primary_10_3390_su12177139 crossref_primary_10_1016_j_engfailanal_2024_108010 crossref_primary_10_31796_ogummf_873963 crossref_primary_10_1016_j_compchemeng_2020_106991 crossref_primary_10_1016_j_ymssp_2021_107996 crossref_primary_10_1177_0309524X211003960 crossref_primary_10_1155_2018_5628429 crossref_primary_10_1109_ACCESS_2022_3187839 crossref_primary_10_1016_j_conengprac_2020_104546 crossref_primary_10_1088_1742_6596_1346_1_012038 crossref_primary_10_1016_j_ress_2023_109162 crossref_primary_10_1109_TII_2018_2884211 crossref_primary_10_3390_machines10060443 crossref_primary_10_1088_1361_6501_abf30b crossref_primary_10_1109_TII_2020_3036159 crossref_primary_10_3390_s19204381 crossref_primary_10_3390_sym13101861 crossref_primary_10_1088_1361_6501_ac9855 crossref_primary_10_1016_j_ins_2019_10_074 crossref_primary_10_1049_rpg2_12336 crossref_primary_10_1111_mice_13094 crossref_primary_10_3390_su132212757 crossref_primary_10_1007_s10845_024_02357_8 crossref_primary_10_1109_ACCESS_2020_2966268 crossref_primary_10_1016_j_rser_2018_09_012 crossref_primary_10_1016_j_ymssp_2019_05_049 crossref_primary_10_1002_we_2290 crossref_primary_10_1109_JPROC_2022_3171691 crossref_primary_10_1109_ACCESS_2021_3090434 crossref_primary_10_3390_app12157747 crossref_primary_10_1088_1742_6596_2846_1_012018 crossref_primary_10_1109_TII_2019_2920661 crossref_primary_10_1088_1361_6501_aaaca6 crossref_primary_10_1109_ACCESS_2020_2964294 crossref_primary_10_1109_TIM_2023_3324347 crossref_primary_10_1016_j_measurement_2021_109491 crossref_primary_10_1109_ACCESS_2019_2914731 crossref_primary_10_3390_en13123132 crossref_primary_10_1109_TII_2021_3065702 crossref_primary_10_1109_ACCESS_2019_2938227 crossref_primary_10_1109_TII_2018_2834462 crossref_primary_10_1002_er_4382 crossref_primary_10_1109_TII_2021_3130721 crossref_primary_10_1109_TII_2019_2915846 crossref_primary_10_1088_1361_6501_ac95b2 crossref_primary_10_1109_TIA_2019_2907666 crossref_primary_10_3389_fenrg_2021_799039 crossref_primary_10_1109_ACCESS_2019_2947501 crossref_primary_10_1177_1748006X20965434 crossref_primary_10_1109_TII_2023_3331766 crossref_primary_10_1016_j_prime_2024_100690 crossref_primary_10_1088_1361_6501_aca496 crossref_primary_10_32604_ee_2023_023049 crossref_primary_10_1016_j_renene_2019_07_033 crossref_primary_10_1016_j_renene_2021_12_049 crossref_primary_10_1186_s44147_023_00227_3 crossref_primary_10_1016_j_ress_2024_110554 |
Cites_doi | 10.1214/12-AOS1003 10.1016/j.ymssp.2012.06.021 10.2307/1267351 10.1007/978-3-642-35289-8_26 10.1038/nature14539 10.1214/aos/1176344136 10.1016/j.ymssp.2015.03.003 10.1049/iet-rpg.2012.0215 10.1111/j.2517-6161.1996.tb02080.x 10.1080/00224065.1997.11979720 10.1016/j.ymssp.2006.08.005 10.1109/TEC.2012.2189887 10.1002/we.538 10.1016/j.rser.2007.05.008 10.2307/2685209 10.1016/j.renene.2013.10.041 10.1109/TEC.2006.889623 10.1109/PEMWA.2009.5208325 10.1109/ICASSP.2013.6639346 10.1038/nature16961 10.1002/we.1595 10.1016/j.rser.2014.12.005 10.12720/ijoee.2.1.53-56 10.1002/we.1521 10.1016/j.renene.2016.03.025 10.1016/j.renene.2013.04.005 10.1038/nbt.3300 10.1016/j.compind.2006.02.011 10.1002/we.319 10.1038/nbt.3313 10.1016/j.renene.2013.12.047 10.1038/nature14236 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2016.2607179 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 1368 |
ExternalDocumentID | 10_1109_TII_2016_2607179 7563362 |
Genre | orig-research |
GrantInformation_xml | – fundername: Early Career Scheme Grant from the Research Grants Council of the Hong Kong Special Administrative Region grantid: CityU 138313 – fundername: CityU Strategic Research Grant grantid: 7004551 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-71963dc3e7dd9d00c6c74293cec6ac8b1a1aaa8715efde3e3b2e043a2c194be83 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:23:12 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Tue Jul 01 03:06:07 EDT 2025 Tue Aug 26 17:08:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-71963dc3e7dd9d00c6c74293cec6ac8b1a1aaa8715efde3e3b2e043a2c194be83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1905722982 |
PQPubID | 85507 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_TII_2016_2607179 proquest_journals_1905722982 ieee_primary_7563362 crossref_primary_10_1109_TII_2016_2607179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 srivastava (ref27) 2014; 15 ref37 ref15 ref14 ref30 dietterich (ref33) 2000 ref11 ref10 prabhu (ref40) 1997; 29 ref2 ref1 ref38 ref16 ref19 ref18 smith (ref17) 0 kröse (ref32) 1993 recht (ref36) 0; 24 ref24 tibshirani (ref29) 1996; 73 ref23 ref25 ref20 ref22 ref21 bengio (ref35) 2012 ref28 abu-mostafa (ref41) 2012 ref8 smola (ref31) 0; 9 ref7 ref9 ref4 ref3 ref6 montgomery (ref39) 2007 ref5 bengio (ref26) 0 |
References_xml | – ident: ref38 doi: 10.1214/12-AOS1003 – year: 2007 ident: ref39 publication-title: Introduction to statistical quality – ident: ref9 doi: 10.1016/j.ymssp.2012.06.021 – ident: ref30 doi: 10.2307/1267351 – start-page: 437 year: 2012 ident: ref35 article-title: Practical recommendations for gradient-based training of deep architectures publication-title: Neural Networks Tricks of the Trade doi: 10.1007/978-3-642-35289-8_26 – ident: ref23 doi: 10.1038/nature14539 – ident: ref37 doi: 10.1214/aos/1176344136 – ident: ref11 doi: 10.1016/j.ymssp.2015.03.003 – ident: ref20 doi: 10.1049/iet-rpg.2012.0215 – volume: 73 start-page: 267 year: 1996 ident: ref29 article-title: Regression shrinkage and selection via the lasso publication-title: J Royal Statistical Society Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 29 start-page: 8 year: 1997 ident: ref40 article-title: Designing a multivariate EWMA control chart publication-title: J Quality Technol doi: 10.1080/00224065.1997.11979720 – ident: ref15 doi: 10.1016/j.ymssp.2006.08.005 – ident: ref16 doi: 10.1109/TEC.2012.2189887 – ident: ref4 doi: 10.1002/we.538 – ident: ref5 doi: 10.1016/j.rser.2007.05.008 – ident: ref28 doi: 10.2307/2685209 – ident: ref2 doi: 10.1016/j.renene.2013.10.041 – ident: ref1 doi: 10.1109/TEC.2006.889623 – ident: ref6 doi: 10.1109/PEMWA.2009.5208325 – ident: ref34 doi: 10.1109/ICASSP.2013.6639346 – year: 2012 ident: ref41 publication-title: Learning From Data – ident: ref25 doi: 10.1038/nature16961 – ident: ref12 doi: 10.1002/we.1595 – ident: ref8 doi: 10.1016/j.rser.2014.12.005 – ident: ref7 doi: 10.12720/ijoee.2.1.53-56 – ident: ref18 doi: 10.1002/we.1521 – ident: ref14 doi: 10.1016/j.renene.2016.03.025 – volume: 15 start-page: 1929 year: 2014 ident: ref27 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref10 doi: 10.1016/j.renene.2013.04.005 – start-page: 1 year: 2000 ident: ref33 article-title: Ensemble methods in machine learning publication-title: Multiple Classifier Systems – volume: 24 start-page: 693 year: 0 ident: ref36 article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent publication-title: Proc Adv Neural Inf Process Syst – ident: ref24 doi: 10.1038/nbt.3300 – ident: ref19 doi: 10.1016/j.compind.2006.02.011 – ident: ref3 doi: 10.1002/we.319 – start-page: 18 year: 0 ident: ref26 article-title: On the expressive power of deep architectures publication-title: Proc Int Conf Algorithmic Learn Theory – ident: ref21 doi: 10.1038/nbt.3313 – ident: ref13 doi: 10.1016/j.renene.2013.12.047 – ident: ref22 doi: 10.1038/nature14236 – start-page: 11/1 year: 0 ident: ref17 article-title: SCADA in wind farms publication-title: Proc IEE Colloq Instrum Elect Supply Ind – year: 1993 ident: ref32 publication-title: An Introduction to Neural Networks – volume: 9 start-page: 155 year: 0 ident: ref31 article-title: Support vector regression machines publication-title: Proc Adv Neural Inf Process Syst |
SSID | ssj0037039 |
Score | 2.5985491 |
Snippet | The feasibility of monitoring the health of wind turbine (WT) gearboxes based on the lubricant pressure data in the supervisory control and data acquisition... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1360 |
SubjectTerms | Algorithms Artificial neural networks Benchmarks Computational modeling Condition monitoring Control charts Control systems Criteria Data mining deep neural network (DNN) Failure Feasibility lubricant pressure Lubricants Mathematical models Monitoring Neural networks Predictive models Regression analysis Supervisory control and data acquisition Support vector machines Training Transmissions (machine elements) Vibrations Wind power Wind power generation wind turbine gearbox Wind turbines |
Title | Wind Turbine Gearbox Failure Identification With Deep Neural Networks |
URI | https://ieeexplore.ieee.org/document/7563362 https://www.proquest.com/docview/1905722982 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJz34a4rTKTl4EWyXJumvo6hzE9xpY7uVJH3FoWxja0H8603SdgwV8dZDUkLey8v7ku99QeiaS6OxCdyBSILDozRwhNAoxSeCQ8Z9Uw5p2BbDoD_mz1N_2kC3m1oYALDkM3DNp73LTxeqMEdl3dAPmA24Oxq4lbVaddRl2nNjq43qew6jhNVXkiTujgYDw-EKXGrE1Axpa2sLsm-q_AjEdnfpHaCXelwlqeTNLXLpqs9vko3_Hfgh2q_STHxX-sURasD8GO1tiQ-20ONEw3E8KlYaGwN-0h4vFx-4J2aGqI7LAt6sOtHDk1n-ih8Altioeeg_D0v6-PoEjXuPo_u-Uz2q4CgWeLkTmiWXKgZhmsYpISpQGh3HTIEKhIqkJzwhhIZRPmQpMGCSAuFMUOXFXELETlFzvpjDGcKhTh1B452MZpJHypTYqkh5AQGSqjCSbdSt5zlRleK4efjiPbHIg8SJtkxiLJNUlmmjm02PZam28UfblpnoTbtqjtuoU5syqZbjOtFZjx9SGkf0_PdeF2iXmv3aHq90UDNfFXCps41cXlk3-wIi9s__ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4hGICBN6I8PbAgkdaxndeIgNLy6FTUbpHtXAQCtQgSCfHrsZ2kQoAQWwY7snxn3332d58BjoWyGpsoPIwVeiLOQk9Kg1ICKgXmIrDlkJZtMQh79-J6HIzn4HRWC4OIjnyGbfvp7vKzqS7tUVknCkLuNtwFE_cDv6rWavZdbnw3ceqoge9xRnlzKUmTzrDftyyusM2snJqlbX0JQu5VlR9bsYsv3VW4a0ZW0Uqe2mWh2vrjm2jjf4e-Bit1oknOKs9YhzmcbMDyF_nBTbgcGUBOhuWrQcdIrozPq-k76cpHS1UnVQlvXp_pkdFj8UAuEF-I1fMwfx5UBPK3LbjvXg7Pe179rIKneegXXmQXXaY5RlmWZJTqUBt8nHCNOpQ6Vr70pZQGSAWYZ8iRK4ZUcMm0nwiFMd-G-cl0gjtAIpM8okE8OcuViLUtstWx9kOKNNNRrFrQaeY51bXmuH364jl12IMmqbFMai2T1pZpwcmsx0ult_FH20070bN29Ry3YL8xZVovyLfU5D1BxFgSs93fex3BYm94d5ve9gc3e7DEbPR2hy37MF-8lnhgco9CHTqX-wQomNNI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Turbine+Gearbox+Failure+Identification+With+Deep+Neural+Networks&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Wang%2C+Long&rft.au=Zhang%2C+Zijun&rft.au=Long%2C+Huan&rft.au=Xu%2C+Jia&rft.date=2017-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=13&rft.issue=3&rft.spage=1360&rft_id=info:doi/10.1109%2FTII.2016.2607179&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |