Genetic feature selection for gait recognition
Many research studies have demonstrated that gait can serve as a useful biometric modality for human identification at a distance. Traditional gait recognition systems, however, have mostly been evaluated without explicitly considering the most relevant gait features, which might have compromised pe...
Saved in:
Published in | Journal of electronic imaging Vol. 24; no. 1; p. 013036 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Society of Photo-Optical Instrumentation Engineers
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many research studies have demonstrated that gait can serve as a useful biometric modality for human identification at a distance. Traditional gait recognition systems, however, have mostly been evaluated without explicitly considering the most relevant gait features, which might have compromised performance. We investigate the problem of selecting a subset of the most relevant gait features for improving gait recognition performance. This is achieved by discarding redundant and irrelevant gait features while preserving the most informative ones. Motivated by our previous work on feature subset selection using genetic algorithms (GAs), we propose using GAs to select an optimal subset of gait features. First, features are extracted using kernel principal component analysis (KPCA) on spatiotemporal projections of gait silhouettes. Then, GA is applied to select a subset of eigenvectors in KPCA space that best represents a subject's identity. Each gait pattern is then represented by projecting it only on the eigenvectors selected by the GA. To evaluate the effectiveness of the selected features, we have experimented with two different classifiers: k nearest-neighbor and Naïve Bayes classifier. We report considerable gait recognition performance improvements on the Georgia Tech and CASIA databases. |
---|---|
AbstractList | Many research studies have demonstrated that gait can serve as a useful biometric modality for human identification at a distance. Traditional gait recognition systems, however, have mostly been evaluated without explicitly considering the most relevant gait features, which might have compromised performance. We investigate the problem of selecting a subset of the most relevant gait features for improving gait recognition performance. This is achieved by discarding redundant and irrelevant gait features while preserving the most informative ones. Motivated by our previous work on feature subset selection using genetic algorithms (GAs), we propose using GAs to select an optimal subset of gait features. First, features are extracted using kernel principal component analysis (KPCA) on spatiotemporal projections of gait silhouettes. Then, GA is applied to select a subset of eigenvectors in KPCA space that best represents a subject's identity. Each gait pattern is then represented by projecting it only on the eigenvectors selected by the GA. To evaluate the effectiveness of the selected features, we have experimented with two different classifiers: k nearest-neighbor and Naïve Bayes classifier. We report considerable gait recognition performance improvements on the Georgia Tech and CASIA databases. |
Author | Louis, Sushil Bebis, George Hussain, Muhammad Tafazzoli, Faezeh |
Author_xml | – sequence: 1 givenname: Faezeh surname: Tafazzoli fullname: Tafazzoli, Faezeh organization: aUniversity of Nevada, Department of Computer Science and Engineering, Reno, Nevada, United States – sequence: 2 givenname: George surname: Bebis fullname: Bebis, George email: bebis@cse.unr.edu organization: aUniversity of Nevada, Department of Computer Science and Engineering, Reno, Nevada, United States – sequence: 3 givenname: Sushil surname: Louis fullname: Louis, Sushil organization: aUniversity of Nevada, Department of Computer Science and Engineering, Reno, Nevada, United States – sequence: 4 givenname: Muhammad surname: Hussain fullname: Hussain, Muhammad organization: bKing Saud University, College of Computer and Information Sciences, Computer Science Department, Riyadh 11543, Saudi Arabia |
BookMark | eNp9kMFOwzAMhiM0JLbBA3DrC7TESZakx2lsY2gSHIbErQqJM2UqbZV2B3h6OoY4DLSTf_32Z_n3iAyqukJCboFmAKDuIHucrzImMsgocMrlBRnCRNKUsfx10GsKKs1zml-RUdvuKAXQAoYkW2KFXbCJR9PtIyYtlmi7UFeJr2OyNaFLItp6W4WDeU0uvSlbvPmpY_KymG9mD-n6abmaTdep5RK6VDrpRe6Y9mC0YkrKN4nOOuDWK6HQG3CCGS3FhGrlnLBuAgy9zq1nSnM-JnDca2PdthF90cTwbuJHAbQ4BC6g6AMXTPTiGLhn1AljQ2cOV3fRhPIsmR3JtglY7Op9rPpwZ4HNf8Dv2GdoTplvbxr7V5f4fL_4026c519uLYX7 |
CitedBy_id | crossref_primary_10_1007_s11831_019_09375_3 crossref_primary_10_1016_j_jvcir_2021_103218 crossref_primary_10_1109_LSP_2017_2715179 crossref_primary_10_1007_s11042_017_4884_6 crossref_primary_10_1080_21681163_2021_2012829 crossref_primary_10_1145_3152124 crossref_primary_10_1016_j_cosrev_2021_100432 crossref_primary_10_3390_electronics11152386 crossref_primary_10_1109_ACCESS_2018_2879896 |
ContentType | Journal Article |
Copyright | 2015 SPIE and IS&T |
Copyright_xml | – notice: 2015 SPIE and IS&T |
DBID | AAYXX CITATION |
DOI | 10.1117/1.JEI.24.1.013036 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Visual Arts Engineering |
EISSN | 1560-229X |
EndPage | 013036 |
ExternalDocumentID | 10_1117_1_JEI_24_1_013036 |
GroupedDBID | 0R 29K 4.4 5GY ABPTK ACGFS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 D-I DU5 EBS EJD F5P FQ0 G8K HZ ITE M4W M4X NU. O9- P2P RNS SJN SPBNH TAE ULE UNR UT2 .DC 0R~ AAJMC AAYXX ABDPE ABJNI ACGFO ADMLS AKROS CITATION HZ~ |
ID | FETCH-LOGICAL-c361t-6d6f49d28f1a872766b6edcd13cf747efa1d42a8645087dd4cd512ef89cf27833 |
ISSN | 1017-9909 |
IngestDate | Tue Jul 01 01:22:26 EDT 2025 Thu Apr 24 23:02:48 EDT 2025 Fri May 31 16:22:02 EDT 2019 Fri Jan 15 20:10:21 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | gait recognition genetic algorithms kernel principal component analysis feature selection |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c361t-6d6f49d28f1a872766b6edcd13cf747efa1d42a8645087dd4cd512ef89cf27833 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1117_1_JEI_24_1_013036 crossref_citationtrail_10_1117_1_JEI_24_1_013036 spie_journals_10_1117_1_JEI_24_1_013036 |
ProviderPackageCode | FQ0 SPBNH UT2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of electronic imaging |
PublicationTitleAlternate | J. Electron. Imaging |
PublicationYear | 2015 |
Publisher | Society of Photo-Optical Instrumentation Engineers |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers |
SSID | ssj0011841 |
Score | 2.1916192 |
Snippet | Many research studies have demonstrated that gait can serve as a useful biometric modality for human identification at a distance. Traditional gait recognition... |
SourceID | crossref spie |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 013036 |
Title | Genetic feature selection for gait recognition |
URI | http://www.dx.doi.org/10.1117/1.JEI.24.1.013036 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPfAwQ40t5QEJiSshXneRxsFXdRAFpG9pb5MQ2jUSbSE5e8nfwB3OOXdddxzR4iVLnkqi-8_nucvc7hN75jEorwnc5SyfgoETEzcAwcbOsLJKMwdLMZIHz_CueXcZnV5Or0ei3lbXUtYVX9jfWlfwPV2EM-CqrZP-Bs-ahMADnwF84AofheCceS8xoCbjK2QDPeSiGpjbr5MGfpGoPTYKQnv5dO9RqhFMth55FG2-ek76vVQH1lLCemdjxJ1ZUVkzdpPXUnRo-78Rik7wx64QgCqxg3i3IckmoHW0IJteiDetUUpmft6jb2v3WqJD76YB3u9T1UiuDpmhFHOXiBxnwlYZkWt9i3w1VN12jkFVR9ZbgKe3qDxuutVdvBm7YCQYsAe_s5NQLYy_w7Ju3ALaVG5TkQQ60eRjDiaK9h_ZCcD7CMdo7Op5_OTdfp8ArHhz59R_SX8vhIR93Xrhl74xFUzHLfrl4jB5qhjtHSoqeoBFb7aNH2glxtIoX--iBhVAJv35UolO3iafI0wLnaIFzjMA5IHCOFDjHErhn6HJ6cvF55uqGG24Z4aB1McU8zmiY8oCkYNhiXGBGSxpEJQe3k3ES0DgkKY7BrE8ojUsK9iLjaVZy2bEleo7Gq3rFXiAnARUA2iGlBcYSAxBUBcdcGusRSRLsHyB_PS15qdHoZVOUX_lf2XGAPphbGgXFchvxeznXuV6t4jbK-Talud5XzXXiYUxz6vvxdOdyQ_nLO7_5Fbq_WWKv0RgWEHsDJm5bvNUS9weUNp_t |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+feature+selection+for+gait+recognition&rft.jtitle=Journal+of+electronic+imaging&rft.au=Tafazzoli%2C+Faezeh&rft.au=Bebis%2C+George&rft.au=Louis%2C+Sushil&rft.au=Hussain%2C+Muhammad&rft.date=2015-01-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=1017-9909&rft.eissn=1560-229X&rft.volume=24&rft.issue=1&rft.spage=013036&rft.epage=013036&rft_id=info:doi/10.1117%2F1.JEI.24.1.013036&rft.externalDocID=10_1117_1_JEI_24_1_013036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-9909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-9909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-9909&client=summon |