Genetic feature selection for gait recognition

Many research studies have demonstrated that gait can serve as a useful biometric modality for human identification at a distance. Traditional gait recognition systems, however, have mostly been evaluated without explicitly considering the most relevant gait features, which might have compromised pe...

Full description

Saved in:
Bibliographic Details
Published inJournal of electronic imaging Vol. 24; no. 1; p. 013036
Main Authors Tafazzoli, Faezeh, Bebis, George, Louis, Sushil, Hussain, Muhammad
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many research studies have demonstrated that gait can serve as a useful biometric modality for human identification at a distance. Traditional gait recognition systems, however, have mostly been evaluated without explicitly considering the most relevant gait features, which might have compromised performance. We investigate the problem of selecting a subset of the most relevant gait features for improving gait recognition performance. This is achieved by discarding redundant and irrelevant gait features while preserving the most informative ones. Motivated by our previous work on feature subset selection using genetic algorithms (GAs), we propose using GAs to select an optimal subset of gait features. First, features are extracted using kernel principal component analysis (KPCA) on spatiotemporal projections of gait silhouettes. Then, GA is applied to select a subset of eigenvectors in KPCA space that best represents a subject's identity. Each gait pattern is then represented by projecting it only on the eigenvectors selected by the GA. To evaluate the effectiveness of the selected features, we have experimented with two different classifiers: k nearest-neighbor and Naïve Bayes classifier. We report considerable gait recognition performance improvements on the Georgia Tech and CASIA databases.
AbstractList Many research studies have demonstrated that gait can serve as a useful biometric modality for human identification at a distance. Traditional gait recognition systems, however, have mostly been evaluated without explicitly considering the most relevant gait features, which might have compromised performance. We investigate the problem of selecting a subset of the most relevant gait features for improving gait recognition performance. This is achieved by discarding redundant and irrelevant gait features while preserving the most informative ones. Motivated by our previous work on feature subset selection using genetic algorithms (GAs), we propose using GAs to select an optimal subset of gait features. First, features are extracted using kernel principal component analysis (KPCA) on spatiotemporal projections of gait silhouettes. Then, GA is applied to select a subset of eigenvectors in KPCA space that best represents a subject's identity. Each gait pattern is then represented by projecting it only on the eigenvectors selected by the GA. To evaluate the effectiveness of the selected features, we have experimented with two different classifiers: k nearest-neighbor and Naïve Bayes classifier. We report considerable gait recognition performance improvements on the Georgia Tech and CASIA databases.
Author Louis, Sushil
Bebis, George
Hussain, Muhammad
Tafazzoli, Faezeh
Author_xml – sequence: 1
  givenname: Faezeh
  surname: Tafazzoli
  fullname: Tafazzoli, Faezeh
  organization: aUniversity of Nevada, Department of Computer Science and Engineering, Reno, Nevada, United States
– sequence: 2
  givenname: George
  surname: Bebis
  fullname: Bebis, George
  email: bebis@cse.unr.edu
  organization: aUniversity of Nevada, Department of Computer Science and Engineering, Reno, Nevada, United States
– sequence: 3
  givenname: Sushil
  surname: Louis
  fullname: Louis, Sushil
  organization: aUniversity of Nevada, Department of Computer Science and Engineering, Reno, Nevada, United States
– sequence: 4
  givenname: Muhammad
  surname: Hussain
  fullname: Hussain, Muhammad
  organization: bKing Saud University, College of Computer and Information Sciences, Computer Science Department, Riyadh 11543, Saudi Arabia
BookMark eNp9kMFOwzAMhiM0JLbBA3DrC7TESZakx2lsY2gSHIbErQqJM2UqbZV2B3h6OoY4DLSTf_32Z_n3iAyqukJCboFmAKDuIHucrzImMsgocMrlBRnCRNKUsfx10GsKKs1zml-RUdvuKAXQAoYkW2KFXbCJR9PtIyYtlmi7UFeJr2OyNaFLItp6W4WDeU0uvSlbvPmpY_KymG9mD-n6abmaTdep5RK6VDrpRe6Y9mC0YkrKN4nOOuDWK6HQG3CCGS3FhGrlnLBuAgy9zq1nSnM-JnDca2PdthF90cTwbuJHAbQ4BC6g6AMXTPTiGLhn1AljQ2cOV3fRhPIsmR3JtglY7Op9rPpwZ4HNf8Dv2GdoTplvbxr7V5f4fL_4026c519uLYX7
CitedBy_id crossref_primary_10_1007_s11831_019_09375_3
crossref_primary_10_1016_j_jvcir_2021_103218
crossref_primary_10_1109_LSP_2017_2715179
crossref_primary_10_1007_s11042_017_4884_6
crossref_primary_10_1080_21681163_2021_2012829
crossref_primary_10_1145_3152124
crossref_primary_10_1016_j_cosrev_2021_100432
crossref_primary_10_3390_electronics11152386
crossref_primary_10_1109_ACCESS_2018_2879896
ContentType Journal Article
Copyright 2015 SPIE and IS&T
Copyright_xml – notice: 2015 SPIE and IS&T
DBID AAYXX
CITATION
DOI 10.1117/1.JEI.24.1.013036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Visual Arts
Engineering
EISSN 1560-229X
EndPage 013036
ExternalDocumentID 10_1117_1_JEI_24_1_013036
GroupedDBID 0R
29K
4.4
5GY
ABPTK
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
D-I
DU5
EBS
EJD
F5P
FQ0
G8K
HZ
ITE
M4W
M4X
NU.
O9-
P2P
RNS
SJN
SPBNH
TAE
ULE
UNR
UT2
.DC
0R~
AAJMC
AAYXX
ABDPE
ABJNI
ACGFO
ADMLS
AKROS
CITATION
HZ~
ID FETCH-LOGICAL-c361t-6d6f49d28f1a872766b6edcd13cf747efa1d42a8645087dd4cd512ef89cf27833
ISSN 1017-9909
IngestDate Tue Jul 01 01:22:26 EDT 2025
Thu Apr 24 23:02:48 EDT 2025
Fri May 31 16:22:02 EDT 2019
Fri Jan 15 20:10:21 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords gait recognition
genetic algorithms
kernel principal component analysis
feature selection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c361t-6d6f49d28f1a872766b6edcd13cf747efa1d42a8645087dd4cd512ef89cf27833
PageCount 1
ParticipantIDs crossref_primary_10_1117_1_JEI_24_1_013036
crossref_citationtrail_10_1117_1_JEI_24_1_013036
spie_journals_10_1117_1_JEI_24_1_013036
ProviderPackageCode FQ0
SPBNH
UT2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of electronic imaging
PublicationTitleAlternate J. Electron. Imaging
PublicationYear 2015
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
SSID ssj0011841
Score 2.1916192
Snippet Many research studies have demonstrated that gait can serve as a useful biometric modality for human identification at a distance. Traditional gait recognition...
SourceID crossref
spie
SourceType Enrichment Source
Index Database
Publisher
StartPage 013036
Title Genetic feature selection for gait recognition
URI http://www.dx.doi.org/10.1117/1.JEI.24.1.013036
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPfAwQ40t5QEJiSshXneRxsFXdRAFpG9pb5MQ2jUSbSE5e8nfwB3OOXdddxzR4iVLnkqi-8_nucvc7hN75jEorwnc5SyfgoETEzcAwcbOsLJKMwdLMZIHz_CueXcZnV5Or0ei3lbXUtYVX9jfWlfwPV2EM-CqrZP-Bs-ahMADnwF84AofheCceS8xoCbjK2QDPeSiGpjbr5MGfpGoPTYKQnv5dO9RqhFMth55FG2-ek76vVQH1lLCemdjxJ1ZUVkzdpPXUnRo-78Rik7wx64QgCqxg3i3IckmoHW0IJteiDetUUpmft6jb2v3WqJD76YB3u9T1UiuDpmhFHOXiBxnwlYZkWt9i3w1VN12jkFVR9ZbgKe3qDxuutVdvBm7YCQYsAe_s5NQLYy_w7Ju3ALaVG5TkQQ60eRjDiaK9h_ZCcD7CMdo7Op5_OTdfp8ArHhz59R_SX8vhIR93Xrhl74xFUzHLfrl4jB5qhjtHSoqeoBFb7aNH2glxtIoX--iBhVAJv35UolO3iafI0wLnaIFzjMA5IHCOFDjHErhn6HJ6cvF55uqGG24Z4aB1McU8zmiY8oCkYNhiXGBGSxpEJQe3k3ES0DgkKY7BrE8ojUsK9iLjaVZy2bEleo7Gq3rFXiAnARUA2iGlBcYSAxBUBcdcGusRSRLsHyB_PS15qdHoZVOUX_lf2XGAPphbGgXFchvxeznXuV6t4jbK-Talud5XzXXiYUxz6vvxdOdyQ_nLO7_5Fbq_WWKv0RgWEHsDJm5bvNUS9weUNp_t
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+feature+selection+for+gait+recognition&rft.jtitle=Journal+of+electronic+imaging&rft.au=Tafazzoli%2C+Faezeh&rft.au=Bebis%2C+George&rft.au=Louis%2C+Sushil&rft.au=Hussain%2C+Muhammad&rft.date=2015-01-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=1017-9909&rft.eissn=1560-229X&rft.volume=24&rft.issue=1&rft.spage=013036&rft.epage=013036&rft_id=info:doi/10.1117%2F1.JEI.24.1.013036&rft.externalDocID=10_1117_1_JEI_24_1_013036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-9909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-9909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-9909&client=summon