Paths in Folded Hypercubes with Any Pair of Faulty Vertices
When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbos, resulting in both adjacent vertices being unable to operate normally in the network. Hence, it is crucial to ensure fault-tolerance capability when dealing wit...
Saved in:
Published in | IEEE access Vol. 13; p. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbos, resulting in both adjacent vertices being unable to operate normally in the network. Hence, it is crucial to ensure fault-tolerance capability when dealing with a pair of adjacent faulty vertices in the network, as it is essential for maintaining system reliability. The folded hypercube, denoted as FQ n , is a recognized variant of the hypercube architecture. It is formed by connecting every pair of vertices with complementary addresses. Notably, for any odd integer n , the FQ n structure exhibits bipartite characteristics. Consider two adjacent faulty vertices, f 1 and f 2 , within FQ n . Let u and v be any two fault-free vertices in FQ n −{ f 1 , f 2 }. In previous studies, we investigated the embedding of cycles of various lengths in FQ n −{ f 1 , f 2 } 。 Furthermore, we explored any fault-free edge in FQ n −{ f 1 , f 2 } could be part of cycles of different lengths. Based on these findings on cycle embedding properties, we were motivated to consider whether, under the same fault-tolerant conditions, paths of various lengths could also be embedded in FQ n −{ f 1 , f 2 }. Therefore, the main results examined in this paper include: (1) for every odd n ≥ 3, FQ n −{ f 1 , f 2 } contains a fault-free path P [ u, v ] of every length l in the range d FQ n ( u,v )≤ l ≤2 n −3, where l − d FQ n ( u,v ) is even; and (2) for every even n ≥ 4, FQ n −{ f 1 , f 2 } contains a fault-free path P [ u,v ] of every length l in the range n − 1 ≤ l ≤ 2 n − 3. The variety of path lengths embedded in this paper represents the optimal scenario under the fault-tolerant condition. |
---|---|
AbstractList | When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbors, resulting in both adjacent vertices being unable to operate normally in the network. Hence, it is crucial to ensure fault-tolerance capability when dealing with a pair of adjacent faulty vertices in the network, as it is essential for maintaining system reliability. The folded hypercube, denoted as <tex-math notation="LaTeX">$FQ_{n}$ </tex-math>, is a recognized variant of the hypercube architecture. It is formed by connecting every pair of vertices with complementary addresses. Notably, for any odd integer n, the <tex-math notation="LaTeX">$FQ_{n}$ </tex-math> structure exhibits bipartite characteristics. Consider two adjacent faulty vertices, <tex-math notation="LaTeX">$f_{1 }$ </tex-math>and <tex-math notation="LaTeX">$f_{2 }$ </tex-math>, within <tex-math notation="LaTeX">$FQ_{n}$ </tex-math>. Let u and v be any two fault-free vertices in <tex-math notation="LaTeX">${FQ_{n}}-\{{f_{1 }},~{f_{2 }}\}{}$ </tex-math>. In previous studies, we investigated the embedding of cycles of various lengths in <tex-math notation="LaTeX">${FQ_{n}}-\left \{{{f_{1 }},~{f_{2 }}}\right \}{}$ </tex-math>. Furthermore, we explored any fault-free edge in <tex-math notation="LaTeX">${FQ_{n}}-\left \{{{f_{1 }},~{f_{2 }}}\right \}{}$ </tex-math>could be part of cycles of different lengths. Based on these findings on cycle embedding properties, we were motivated to consider whether, under the same fault-tolerant conditions, paths of various lengths could also be embedded in <tex-math notation="LaTeX">${FQ_{n}}-\left \{{{f_{1 }},~{f_{2 }}}\right \}{}$ </tex-math>. Therefore, the main results examined in this paper include: 1) for every odd <tex-math notation="LaTeX">$n{\geq }3$ </tex-math>, <tex-math notation="LaTeX">${FQ_{n}}-\{{f_{1 }},~{f_{2 }}\}{}$ </tex-math> contains a fault-free path <tex-math notation="LaTeX">$P[u,v]$ </tex-math>of every length l in the range <tex-math notation="LaTeX">${d_{FQ_{n}}}\left ({{u,v}}\right){\leq }l{\leq }{2^{n}}-3$ </tex-math>, where <tex-math notation="LaTeX">$l-{d_{FQ_{n}}}\left ({{u,v}}\right)$ </tex-math>is even; and 2) for every even <tex-math notation="LaTeX">$n{\geq }4$ </tex-math>, <tex-math notation="LaTeX">${FQ_{n}}-\{{f_{1 }},~{f_{2 }}\}{}$ </tex-math> contains a fault-free path <tex-math notation="LaTeX">$P[u,v]$ </tex-math>of every length l in the range <tex-math notation="LaTeX">$n-1{\leq }l\leq {2^{n}}-3$ </tex-math>. The variety of path lengths embedded in this paper represents the optimal scenario under the fault-tolerant condition. When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbos, resulting in both adjacent vertices being unable to operate normally in the network. Hence, it is crucial to ensure fault-tolerance capability when dealing with a pair of adjacent faulty vertices in the network, as it is essential for maintaining system reliability. The folded hypercube, denoted as FQ n , is a recognized variant of the hypercube architecture. It is formed by connecting every pair of vertices with complementary addresses. Notably, for any odd integer n , the FQ n structure exhibits bipartite characteristics. Consider two adjacent faulty vertices, f 1 and f 2 , within FQ n . Let u and v be any two fault-free vertices in FQ n −{ f 1 , f 2 }. In previous studies, we investigated the embedding of cycles of various lengths in FQ n −{ f 1 , f 2 } 。 Furthermore, we explored any fault-free edge in FQ n −{ f 1 , f 2 } could be part of cycles of different lengths. Based on these findings on cycle embedding properties, we were motivated to consider whether, under the same fault-tolerant conditions, paths of various lengths could also be embedded in FQ n −{ f 1 , f 2 }. Therefore, the main results examined in this paper include: (1) for every odd n ≥ 3, FQ n −{ f 1 , f 2 } contains a fault-free path P [ u, v ] of every length l in the range d FQ n ( u,v )≤ l ≤2 n −3, where l − d FQ n ( u,v ) is even; and (2) for every even n ≥ 4, FQ n −{ f 1 , f 2 } contains a fault-free path P [ u,v ] of every length l in the range n − 1 ≤ l ≤ 2 n − 3. The variety of path lengths embedded in this paper represents the optimal scenario under the fault-tolerant condition. When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbors, resulting in both adjacent vertices being unable to operate normally in the network. Hence, it is crucial to ensure fault-tolerance capability when dealing with a pair of adjacent faulty vertices in the network, as it is essential for maintaining system reliability. The folded hypercube, denoted as [Formula Omitted], is a recognized variant of the hypercube architecture. It is formed by connecting every pair of vertices with complementary addresses. Notably, for any odd integer n, the [Formula Omitted] structure exhibits bipartite characteristics. Consider two adjacent faulty vertices, [Formula Omitted]and [Formula Omitted], within [Formula Omitted]. Let u and v be any two fault-free vertices in [Formula Omitted]. In previous studies, we investigated the embedding of cycles of various lengths in [Formula Omitted]. Furthermore, we explored any fault-free edge in [Formula Omitted]could be part of cycles of different lengths. Based on these findings on cycle embedding properties, we were motivated to consider whether, under the same fault-tolerant conditions, paths of various lengths could also be embedded in [Formula Omitted]. Therefore, the main results examined in this paper include: 1) for every odd [Formula Omitted], [Formula Omitted] contains a fault-free path [Formula Omitted]of every length l in the range [Formula Omitted], where [Formula Omitted]is even; and 2) for every even [Formula Omitted], [Formula Omitted] contains a fault-free path [Formula Omitted]of every length l in the range [Formula Omitted]. The variety of path lengths embedded in this paper represents the optimal scenario under the fault-tolerant condition. |
Author | Cheng, Yu-Huei Kuo, Che-Nan |
Author_xml | – sequence: 1 givenname: Che-Nan orcidid: 0000-0001-7705-4208 surname: Kuo fullname: Kuo, Che-Nan organization: Department of Artificial Intelligence, CTBC Financial Management College, Tainan, Taiwan – sequence: 2 givenname: Yu-Huei orcidid: 0000-0002-1468-6686 surname: Cheng fullname: Cheng, Yu-Huei email: yuhuei.cheng@gmail.com organization: Department of Information and Communication Engineering, Chaoyang University of Technology, Taiwan |
BookMark | eNpNUFtLKzEQDqKgVn-B5yHgc2uySWY3-FSKVUFQ8PIaZjezuqVnU5Mth_77k7oizssMw3yX-U7ZYR96YuxCipmUwl7NF4ub5-dZIQozUwZKCfKAnRQS7FQZBYe_5mN2ntJK5KryypQn7PoJh4_Eu54vw9qT53e7DcVmW1Pi_7rhg8_7HX_CLvLQ8iVu18OOv1EcuobSGTtqcZ3o_LtP2Ovy5mVxN314vL1fzB-mjQI5TAEr1AgoqTIIXqnCSNuQ0VDZGguFWnggpWStS_JUQ9Fq5cE2dat1YSs1Yfcjrw-4cpvY_cW4cwE797UI8d3h3tGanKlFC0ZUJYHQqsEs6sFra1EabEBkrsuRaxPD55bS4FZhG_ts36lCgBJlxuUrNV41MaQUqf1RlcLtQ3dj6G4fuvsOPaP-jKiOiH4hbGXzx-o_Ucl9KQ |
CODEN | IAECCG |
Cites_doi | 10.1016/j.tcs.2015.04.012 10.1016/j.ipl.2008.12.005 10.1016/j.dam.2021.01.026 10.1016/j.ipl.2008.05.024 10.1109/71.80187 10.1016/S0020-0190(02)00214-4 10.1016/j.dam.2016.12.008 10.1016/j.tcs.2012.11.028 10.1016/j.tcs.2019.05.038 10.1016/j.tcs.2015.08.018 10.1504/IJMC.2014.063655 10.1109/TC.1984.1676437 10.3390/math11153391 10.1002/net.20204 10.1016/j.dam.2016.01.002 10.1016/j.tcs.2020.03.015 10.1016/j.ipl.2008.04.003 10.1016/j.ins.2015.09.029 10.1016/j.ins.2010.04.003 10.1016/j.ipl.2015.07.015 10.1006/jpdc.2000.1681 10.1016/j.ipl.2009.10.003 10.1016/j.dam.2013.06.030 10.1016/j.dam.2009.06.012 10.1016/j.ins.2014.06.003 10.1016/c2013-0-08299-0 10.1016/j.camwa.2006.10.033 10.1109/ACCESS.2020.2990652 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3567161 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_5b0f65087e6043caa1ed6d499a15ac60 10_1109_ACCESS_2025_3567161 10989519 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science and Technology Council grantid: 113-2218-E-005-010; 113-2221-E-324-007; 113-2821-C-324-001-ES funderid: 10.13039/501100020950 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-6a8a4a6a1e85a6d332519ce54689ba23a40d6e331b47edeb62f43d69cbf442983 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:25:42 EDT 2025 Mon Jun 30 07:43:40 EDT 2025 Sun Jul 06 05:07:30 EDT 2025 Wed Aug 27 01:53:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-6a8a4a6a1e85a6d332519ce54689ba23a40d6e331b47edeb62f43d69cbf442983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1468-6686 0000-0001-7705-4208 |
OpenAccessLink | https://doaj.org/article/5b0f65087e6043caa1ed6d499a15ac60 |
PQID | 3206307043 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3567161 proquest_journals_3206307043 doaj_primary_oai_doaj_org_article_5b0f65087e6043caa1ed6d499a15ac60 ieee_primary_10989519 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 Xu (ref26) 2006; 35 ref10 ref32 ref2 ref1 ref17 ref16 Ma (ref24) 2006; 36 Hung (ref31); 65 ref19 ref18 Xu (ref29) 2013 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref12 doi: 10.1016/j.tcs.2015.04.012 – ident: ref3 doi: 10.1016/j.ipl.2008.12.005 – ident: ref19 doi: 10.1016/j.dam.2021.01.026 – ident: ref7 doi: 10.1016/j.ipl.2008.05.024 – ident: ref2 doi: 10.1109/71.80187 – ident: ref32 doi: 10.1016/S0020-0190(02)00214-4 – volume: 36 start-page: 244 issue: 3 year: 2006 ident: ref24 article-title: Edge-fault-tolerant hamiltonicity of folded hypercubes publication-title: J. Univ. Sci. Technol. China – ident: ref15 doi: 10.1016/j.dam.2016.12.008 – ident: ref21 doi: 10.1016/j.tcs.2012.11.028 – ident: ref16 doi: 10.1016/j.tcs.2019.05.038 – ident: ref13 doi: 10.1016/j.tcs.2015.08.018 – ident: ref23 doi: 10.1504/IJMC.2014.063655 – ident: ref1 doi: 10.1109/TC.1984.1676437 – ident: ref20 doi: 10.3390/math11153391 – ident: ref11 doi: 10.1002/net.20204 – volume-title: Topological Structure and Analysis of Interconnection Networks year: 2013 ident: ref29 – ident: ref14 doi: 10.1016/j.dam.2016.01.002 – ident: ref17 doi: 10.1016/j.tcs.2020.03.015 – ident: ref8 doi: 10.1016/j.ipl.2008.04.003 – ident: ref27 doi: 10.1016/j.ins.2015.09.029 – ident: ref22 doi: 10.1016/j.ins.2010.04.003 – ident: ref6 doi: 10.1016/j.ipl.2015.07.015 – ident: ref25 doi: 10.1006/jpdc.2000.1681 – ident: ref9 doi: 10.1016/j.ipl.2009.10.003 – volume: 65 start-page: 1 issue: 69 volume-title: Proc. 25th Workshop Combinat. Math. Comput. Theory ident: ref31 article-title: Adjacent vertices fault-tolerance for bipancyclicity of hypercube – ident: ref4 doi: 10.1016/j.dam.2013.06.030 – ident: ref10 doi: 10.1016/j.dam.2009.06.012 – ident: ref5 doi: 10.1016/j.ins.2014.06.003 – ident: ref28 doi: 10.1016/c2013-0-08299-0 – ident: ref30 doi: 10.1016/j.camwa.2006.10.033 – ident: ref18 doi: 10.1109/ACCESS.2020.2990652 – volume: 35 start-page: 7 year: 2006 ident: ref26 article-title: Edge-fault-tolerant properties of hypercubes and folded hypercubes and folded hypercubes publication-title: Australas. J. Combinatorics |
SSID | ssj0000816957 |
Score | 2.3338833 |
Snippet | When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbos, resulting in both... When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbors, resulting in both... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Apexes Computer hacking Embedding Fault tolerance Fault tolerant systems Folded Hypercubes Hamming distances Hypercubes Interconnection Networks Path Embedding Program processors Rendering (computer graphics) Resilience System reliability Terminology |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3poC6XqtoB84Ei2SfxIrJ62K1YrJBAHqLhZfkwkVJStdpMD_fUdO1lEW1XqLYrsxJ6xPd-MPZ8Bzgrd-JyAclZp7zLhbZNZK12WK6_JXvmiVjEb-epaLe_E5b28H5PVUy4MIqbDZziNj2kvP6x8H0NlNMN1TYhA78IueW5DstZzQCXeIKFlNTILUdHPs_mcOkE-YCmnXCryDIrfrE8i6R9vVflrKU72ZfEGrrctG46VfJ_2nZv6n3-QNv5309_C6xFpstkwNA5gB9tDePWCf_AdfLkh_LdhDy1brB4DBrYkr3Tte4cbFgO0bNY-sRv7sGarhi1s_9g9sW_pIDZujuBucXE7X2bjbQqZ56roMmVrK6yyBdbSqsB5zFn1KIWqtbMltyIPCjkvnKgwoFNlI3hQpMJGkNGq-XvYa1ctfgBm49aNLOpA4EYIjVrRcovOas4lVmU9gfOtlM2PgTTDJGcj12ZQiolKMaNSJvA1auK5aGS8Ti9IgmacQEa6vIloskKVC-4t9SOoQP6aLaT1Kp_AUZT6i_8NAp_A8VaxZpyeG8PLSDVW0Yc-_qPaJ9iPTRyCLcew1617PCH40bnTNOx-AZ5I1Ng priority: 102 providerName: IEEE |
Title | Paths in Folded Hypercubes with Any Pair of Faulty Vertices |
URI | https://ieeexplore.ieee.org/document/10989519 https://www.proquest.com/docview/3206307043 https://doaj.org/article/5b0f65087e6043caa1ed6d499a15ac60 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAUIpYKJUPHAmNY3tii9OyYrVCatUDhd6s8UfESlW22s0e-u8ZOynaigMXrlEUZ94kM28SzxvGPgjbhZqIctXa4CsVsKsQta9qCJbyVRAGcjfyxSWsrtW3G31zMOor7wkb5YFH4M61r7vMItoEtZIBUaQIkXg6Co0BSrVOOe-gmCox2Aiwup1khkRtz-eLBVlEBWGjP0kNVCaIR6moKPZPI1b-issl2SxfsOcTS-Tz8e5esiepP2bPDrQDX7HPV8Tddnzd8-XmNqbIV1RRbsPepx3_uR5-8Xl_z69wveWbji9xfzvc8x9lE3XanbDr5dfvi1U1TUKoggQxVIAGFQLZbjRClDL3m4akFRjrsZGo6ghJSuFVm2Ly0HRKRiD4O0UJx8jX7Kjf9OkN45h_u2hhIhETpWyyQKEyebRS6tQ2ZsY-PoDi7kbBC1cKhdq6EUOXMXQThjP2JQP359SsVl0OkA_d5EP3Lx_O2EmG_WA9a4j52Rk7ffCDm16tnZNNlglr6UJv_8fa79jTbM_4VeWUHQ3bfXpPPGPwZ-WROistgb8BS7LLjw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPPItYKOADR7Ik8SOxOC0rVgu0qx5a1Jvlx0SqqLJoNzm0v56xk60KCIlbFNmJPWN7vhl7PgO8K3TjcwLKWaW9y4S3TWatdFmuvCZ75YtaxWzk45Vanomv5_J8TFZPuTCImA6f4TQ-pr38sPZ9DJXRDNc1IQJ9F-6R4ZfFkK51E1KJd0hoWY3cQlT4w2w-p26QF1jKKZeKfIPiN_uTaPrHe1X-WoyThVk8gtWubcPBkh_TvnNTf_0HbeN_N_4xPByxJpsNg-MJ3MH2KezfYiB8Bh9PCAFu2UXLFuvLgIEtyS_d-N7hlsUQLZu1V-zEXmzYumEL2192V-x7OoqN2wM4W3w-nS-z8T6FzHNVdJmytRVW2QJraVXgPGatepRC1drZkluRB4WcF05UGNCpshE8KFJiI8hs1fw57LXrFl8As3HzRhZ1IHgjhEataMFFZzXnEquynsD7nZTNz4E2wyR3I9dmUIqJSjGjUibwKWripmjkvE4vSIJmnEJGuryJeLJClQvuLfUjqEAemy2k9SqfwEGU-q3_DQKfwOFOsWacoFvDy0g2VtGHXv6j2lu4vzw9PjJHX1bfXsGD2Nwh9HIIe92mx9cERjr3Jg3BX-V-2CE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paths+in+Folded+Hypercubes+With+Any+Pair+of+Faulty+Vertices&rft.jtitle=IEEE+access&rft.au=Che-Nan+Kuo&rft.au=Yu-Huei+Cheng&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=85380&rft.epage=85389&rft_id=info:doi/10.1109%2FACCESS.2025.3567161&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5b0f65087e6043caa1ed6d499a15ac60 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |