Paths in Folded Hypercubes with Any Pair of Faulty Vertices

When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbos, resulting in both adjacent vertices being unable to operate normally in the network. Hence, it is crucial to ensure fault-tolerance capability when dealing wit...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; p. 1
Main Authors Kuo, Che-Nan, Cheng, Yu-Huei
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbos, resulting in both adjacent vertices being unable to operate normally in the network. Hence, it is crucial to ensure fault-tolerance capability when dealing with a pair of adjacent faulty vertices in the network, as it is essential for maintaining system reliability. The folded hypercube, denoted as FQ n , is a recognized variant of the hypercube architecture. It is formed by connecting every pair of vertices with complementary addresses. Notably, for any odd integer n , the FQ n structure exhibits bipartite characteristics. Consider two adjacent faulty vertices, f 1 and f 2 , within FQ n . Let u and v be any two fault-free vertices in FQ n −{ f 1 , f 2 }. In previous studies, we investigated the embedding of cycles of various lengths in FQ n −{ f 1 , f 2 } 。 Furthermore, we explored any fault-free edge in FQ n −{ f 1 , f 2 } could be part of cycles of different lengths. Based on these findings on cycle embedding properties, we were motivated to consider whether, under the same fault-tolerant conditions, paths of various lengths could also be embedded in FQ n −{ f 1 , f 2 }. Therefore, the main results examined in this paper include: (1) for every odd n ≥ 3, FQ n −{ f 1 , f 2 } contains a fault-free path P [ u, v ] of every length l in the range d FQ n ( u,v )≤ l ≤2 n −3, where l − d FQ n ( u,v ) is even; and (2) for every even n ≥ 4, FQ n −{ f 1 , f 2 } contains a fault-free path P [ u,v ] of every length l in the range n − 1 ≤ l ≤ 2 n − 3. The variety of path lengths embedded in this paper represents the optimal scenario under the fault-tolerant condition.
AbstractList When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbors, resulting in both adjacent vertices being unable to operate normally in the network. Hence, it is crucial to ensure fault-tolerance capability when dealing with a pair of adjacent faulty vertices in the network, as it is essential for maintaining system reliability. The folded hypercube, denoted as <tex-math notation="LaTeX">$FQ_{n}$ </tex-math>, is a recognized variant of the hypercube architecture. It is formed by connecting every pair of vertices with complementary addresses. Notably, for any odd integer n, the <tex-math notation="LaTeX">$FQ_{n}$ </tex-math> structure exhibits bipartite characteristics. Consider two adjacent faulty vertices, <tex-math notation="LaTeX">$f_{1 }$ </tex-math>and <tex-math notation="LaTeX">$f_{2 }$ </tex-math>, within <tex-math notation="LaTeX">$FQ_{n}$ </tex-math>. Let u and v be any two fault-free vertices in <tex-math notation="LaTeX">${FQ_{n}}-\{{f_{1 }},~{f_{2 }}\}{}$ </tex-math>. In previous studies, we investigated the embedding of cycles of various lengths in <tex-math notation="LaTeX">${FQ_{n}}-\left \{{{f_{1 }},~{f_{2 }}}\right \}{}$ </tex-math>. Furthermore, we explored any fault-free edge in <tex-math notation="LaTeX">${FQ_{n}}-\left \{{{f_{1 }},~{f_{2 }}}\right \}{}$ </tex-math>could be part of cycles of different lengths. Based on these findings on cycle embedding properties, we were motivated to consider whether, under the same fault-tolerant conditions, paths of various lengths could also be embedded in <tex-math notation="LaTeX">${FQ_{n}}-\left \{{{f_{1 }},~{f_{2 }}}\right \}{}$ </tex-math>. Therefore, the main results examined in this paper include: 1) for every odd <tex-math notation="LaTeX">$n{\geq }3$ </tex-math>, <tex-math notation="LaTeX">${FQ_{n}}-\{{f_{1 }},~{f_{2 }}\}{}$ </tex-math> contains a fault-free path <tex-math notation="LaTeX">$P[u,v]$ </tex-math>of every length l in the range <tex-math notation="LaTeX">${d_{FQ_{n}}}\left ({{u,v}}\right){\leq }l{\leq }{2^{n}}-3$ </tex-math>, where <tex-math notation="LaTeX">$l-{d_{FQ_{n}}}\left ({{u,v}}\right)$ </tex-math>is even; and 2) for every even <tex-math notation="LaTeX">$n{\geq }4$ </tex-math>, <tex-math notation="LaTeX">${FQ_{n}}-\{{f_{1 }},~{f_{2 }}\}{}$ </tex-math> contains a fault-free path <tex-math notation="LaTeX">$P[u,v]$ </tex-math>of every length l in the range <tex-math notation="LaTeX">$n-1{\leq }l\leq {2^{n}}-3$ </tex-math>. The variety of path lengths embedded in this paper represents the optimal scenario under the fault-tolerant condition.
When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbos, resulting in both adjacent vertices being unable to operate normally in the network. Hence, it is crucial to ensure fault-tolerance capability when dealing with a pair of adjacent faulty vertices in the network, as it is essential for maintaining system reliability. The folded hypercube, denoted as FQ n , is a recognized variant of the hypercube architecture. It is formed by connecting every pair of vertices with complementary addresses. Notably, for any odd integer n , the FQ n structure exhibits bipartite characteristics. Consider two adjacent faulty vertices, f 1 and f 2 , within FQ n . Let u and v be any two fault-free vertices in FQ n −{ f 1 , f 2 }. In previous studies, we investigated the embedding of cycles of various lengths in FQ n −{ f 1 , f 2 } 。 Furthermore, we explored any fault-free edge in FQ n −{ f 1 , f 2 } could be part of cycles of different lengths. Based on these findings on cycle embedding properties, we were motivated to consider whether, under the same fault-tolerant conditions, paths of various lengths could also be embedded in FQ n −{ f 1 , f 2 }. Therefore, the main results examined in this paper include: (1) for every odd n ≥ 3, FQ n −{ f 1 , f 2 } contains a fault-free path P [ u, v ] of every length l in the range d FQ n ( u,v )≤ l ≤2 n −3, where l − d FQ n ( u,v ) is even; and (2) for every even n ≥ 4, FQ n −{ f 1 , f 2 } contains a fault-free path P [ u,v ] of every length l in the range n − 1 ≤ l ≤ 2 n − 3. The variety of path lengths embedded in this paper represents the optimal scenario under the fault-tolerant condition.
When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbors, resulting in both adjacent vertices being unable to operate normally in the network. Hence, it is crucial to ensure fault-tolerance capability when dealing with a pair of adjacent faulty vertices in the network, as it is essential for maintaining system reliability. The folded hypercube, denoted as [Formula Omitted], is a recognized variant of the hypercube architecture. It is formed by connecting every pair of vertices with complementary addresses. Notably, for any odd integer n, the [Formula Omitted] structure exhibits bipartite characteristics. Consider two adjacent faulty vertices, [Formula Omitted]and [Formula Omitted], within [Formula Omitted]. Let u and v be any two fault-free vertices in [Formula Omitted]. In previous studies, we investigated the embedding of cycles of various lengths in [Formula Omitted]. Furthermore, we explored any fault-free edge in [Formula Omitted]could be part of cycles of different lengths. Based on these findings on cycle embedding properties, we were motivated to consider whether, under the same fault-tolerant conditions, paths of various lengths could also be embedded in [Formula Omitted]. Therefore, the main results examined in this paper include: 1) for every odd [Formula Omitted], [Formula Omitted] contains a fault-free path [Formula Omitted]of every length l in the range [Formula Omitted], where [Formula Omitted]is even; and 2) for every even [Formula Omitted], [Formula Omitted] contains a fault-free path [Formula Omitted]of every length l in the range [Formula Omitted]. The variety of path lengths embedded in this paper represents the optimal scenario under the fault-tolerant condition.
Author Cheng, Yu-Huei
Kuo, Che-Nan
Author_xml – sequence: 1
  givenname: Che-Nan
  orcidid: 0000-0001-7705-4208
  surname: Kuo
  fullname: Kuo, Che-Nan
  organization: Department of Artificial Intelligence, CTBC Financial Management College, Tainan, Taiwan
– sequence: 2
  givenname: Yu-Huei
  orcidid: 0000-0002-1468-6686
  surname: Cheng
  fullname: Cheng, Yu-Huei
  email: yuhuei.cheng@gmail.com
  organization: Department of Information and Communication Engineering, Chaoyang University of Technology, Taiwan
BookMark eNpNUFtLKzEQDqKgVn-B5yHgc2uySWY3-FSKVUFQ8PIaZjezuqVnU5Mth_77k7oizssMw3yX-U7ZYR96YuxCipmUwl7NF4ub5-dZIQozUwZKCfKAnRQS7FQZBYe_5mN2ntJK5KryypQn7PoJh4_Eu54vw9qT53e7DcVmW1Pi_7rhg8_7HX_CLvLQ8iVu18OOv1EcuobSGTtqcZ3o_LtP2Ovy5mVxN314vL1fzB-mjQI5TAEr1AgoqTIIXqnCSNuQ0VDZGguFWnggpWStS_JUQ9Fq5cE2dat1YSs1Yfcjrw-4cpvY_cW4cwE797UI8d3h3tGanKlFC0ZUJYHQqsEs6sFra1EabEBkrsuRaxPD55bS4FZhG_ts36lCgBJlxuUrNV41MaQUqf1RlcLtQ3dj6G4fuvsOPaP-jKiOiH4hbGXzx-o_Ucl9KQ
CODEN IAECCG
Cites_doi 10.1016/j.tcs.2015.04.012
10.1016/j.ipl.2008.12.005
10.1016/j.dam.2021.01.026
10.1016/j.ipl.2008.05.024
10.1109/71.80187
10.1016/S0020-0190(02)00214-4
10.1016/j.dam.2016.12.008
10.1016/j.tcs.2012.11.028
10.1016/j.tcs.2019.05.038
10.1016/j.tcs.2015.08.018
10.1504/IJMC.2014.063655
10.1109/TC.1984.1676437
10.3390/math11153391
10.1002/net.20204
10.1016/j.dam.2016.01.002
10.1016/j.tcs.2020.03.015
10.1016/j.ipl.2008.04.003
10.1016/j.ins.2015.09.029
10.1016/j.ins.2010.04.003
10.1016/j.ipl.2015.07.015
10.1006/jpdc.2000.1681
10.1016/j.ipl.2009.10.003
10.1016/j.dam.2013.06.030
10.1016/j.dam.2009.06.012
10.1016/j.ins.2014.06.003
10.1016/c2013-0-08299-0
10.1016/j.camwa.2006.10.033
10.1109/ACCESS.2020.2990652
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3567161
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_5b0f65087e6043caa1ed6d499a15ac60
10_1109_ACCESS_2025_3567161
10989519
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: 113-2218-E-005-010; 113-2221-E-324-007; 113-2821-C-324-001-ES
  funderid: 10.13039/501100020950
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-6a8a4a6a1e85a6d332519ce54689ba23a40d6e331b47edeb62f43d69cbf442983
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:25:42 EDT 2025
Mon Jun 30 07:43:40 EDT 2025
Sun Jul 06 05:07:30 EDT 2025
Wed Aug 27 01:53:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-6a8a4a6a1e85a6d332519ce54689ba23a40d6e331b47edeb62f43d69cbf442983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1468-6686
0000-0001-7705-4208
OpenAccessLink https://doaj.org/article/5b0f65087e6043caa1ed6d499a15ac60
PQID 3206307043
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3567161
proquest_journals_3206307043
doaj_primary_oai_doaj_org_article_5b0f65087e6043caa1ed6d499a15ac60
ieee_primary_10989519
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
Xu (ref26) 2006; 35
ref10
ref32
ref2
ref1
ref17
ref16
Ma (ref24) 2006; 36
Hung (ref31); 65
ref19
ref18
Xu (ref29) 2013
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref12
  doi: 10.1016/j.tcs.2015.04.012
– ident: ref3
  doi: 10.1016/j.ipl.2008.12.005
– ident: ref19
  doi: 10.1016/j.dam.2021.01.026
– ident: ref7
  doi: 10.1016/j.ipl.2008.05.024
– ident: ref2
  doi: 10.1109/71.80187
– ident: ref32
  doi: 10.1016/S0020-0190(02)00214-4
– volume: 36
  start-page: 244
  issue: 3
  year: 2006
  ident: ref24
  article-title: Edge-fault-tolerant hamiltonicity of folded hypercubes
  publication-title: J. Univ. Sci. Technol. China
– ident: ref15
  doi: 10.1016/j.dam.2016.12.008
– ident: ref21
  doi: 10.1016/j.tcs.2012.11.028
– ident: ref16
  doi: 10.1016/j.tcs.2019.05.038
– ident: ref13
  doi: 10.1016/j.tcs.2015.08.018
– ident: ref23
  doi: 10.1504/IJMC.2014.063655
– ident: ref1
  doi: 10.1109/TC.1984.1676437
– ident: ref20
  doi: 10.3390/math11153391
– ident: ref11
  doi: 10.1002/net.20204
– volume-title: Topological Structure and Analysis of Interconnection Networks
  year: 2013
  ident: ref29
– ident: ref14
  doi: 10.1016/j.dam.2016.01.002
– ident: ref17
  doi: 10.1016/j.tcs.2020.03.015
– ident: ref8
  doi: 10.1016/j.ipl.2008.04.003
– ident: ref27
  doi: 10.1016/j.ins.2015.09.029
– ident: ref22
  doi: 10.1016/j.ins.2010.04.003
– ident: ref6
  doi: 10.1016/j.ipl.2015.07.015
– ident: ref25
  doi: 10.1006/jpdc.2000.1681
– ident: ref9
  doi: 10.1016/j.ipl.2009.10.003
– volume: 65
  start-page: 1
  issue: 69
  volume-title: Proc. 25th Workshop Combinat. Math. Comput. Theory
  ident: ref31
  article-title: Adjacent vertices fault-tolerance for bipancyclicity of hypercube
– ident: ref4
  doi: 10.1016/j.dam.2013.06.030
– ident: ref10
  doi: 10.1016/j.dam.2009.06.012
– ident: ref5
  doi: 10.1016/j.ins.2014.06.003
– ident: ref28
  doi: 10.1016/c2013-0-08299-0
– ident: ref30
  doi: 10.1016/j.camwa.2006.10.033
– ident: ref18
  doi: 10.1109/ACCESS.2020.2990652
– volume: 35
  start-page: 7
  year: 2006
  ident: ref26
  article-title: Edge-fault-tolerant properties of hypercubes and folded hypercubes and folded hypercubes
  publication-title: Australas. J. Combinatorics
SSID ssj0000816957
Score 2.3338833
Snippet When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbos, resulting in both...
When a vertex in the network is subjected to an external attack, such as a hacker attack, it is highly likely to infect one of its neighbors, resulting in both...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Apexes
Computer hacking
Embedding
Fault tolerance
Fault tolerant systems
Folded Hypercubes
Hamming distances
Hypercubes
Interconnection Networks
Path Embedding
Program processors
Rendering (computer graphics)
Resilience
System reliability
Terminology
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3poC6XqtoB84Ei2SfxIrJ62K1YrJBAHqLhZfkwkVJStdpMD_fUdO1lEW1XqLYrsxJ6xPd-MPZ8Bzgrd-JyAclZp7zLhbZNZK12WK6_JXvmiVjEb-epaLe_E5b28H5PVUy4MIqbDZziNj2kvP6x8H0NlNMN1TYhA78IueW5DstZzQCXeIKFlNTILUdHPs_mcOkE-YCmnXCryDIrfrE8i6R9vVflrKU72ZfEGrrctG46VfJ_2nZv6n3-QNv5309_C6xFpstkwNA5gB9tDePWCf_AdfLkh_LdhDy1brB4DBrYkr3Tte4cbFgO0bNY-sRv7sGarhi1s_9g9sW_pIDZujuBucXE7X2bjbQqZ56roMmVrK6yyBdbSqsB5zFn1KIWqtbMltyIPCjkvnKgwoFNlI3hQpMJGkNGq-XvYa1ctfgBm49aNLOpA4EYIjVrRcovOas4lVmU9gfOtlM2PgTTDJGcj12ZQiolKMaNSJvA1auK5aGS8Ti9IgmacQEa6vIloskKVC-4t9SOoQP6aLaT1Kp_AUZT6i_8NAp_A8VaxZpyeG8PLSDVW0Yc-_qPaJ9iPTRyCLcew1617PCH40bnTNOx-AZ5I1Ng
  priority: 102
  providerName: IEEE
Title Paths in Folded Hypercubes with Any Pair of Faulty Vertices
URI https://ieeexplore.ieee.org/document/10989519
https://www.proquest.com/docview/3206307043
https://doaj.org/article/5b0f65087e6043caa1ed6d499a15ac60
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAUIpYKJUPHAmNY3tii9OyYrVCatUDhd6s8UfESlW22s0e-u8ZOynaigMXrlEUZ94kM28SzxvGPgjbhZqIctXa4CsVsKsQta9qCJbyVRAGcjfyxSWsrtW3G31zMOor7wkb5YFH4M61r7vMItoEtZIBUaQIkXg6Co0BSrVOOe-gmCox2Aiwup1khkRtz-eLBVlEBWGjP0kNVCaIR6moKPZPI1b-issl2SxfsOcTS-Tz8e5esiepP2bPDrQDX7HPV8Tddnzd8-XmNqbIV1RRbsPepx3_uR5-8Xl_z69wveWbji9xfzvc8x9lE3XanbDr5dfvi1U1TUKoggQxVIAGFQLZbjRClDL3m4akFRjrsZGo6ghJSuFVm2Ly0HRKRiD4O0UJx8jX7Kjf9OkN45h_u2hhIhETpWyyQKEyebRS6tQ2ZsY-PoDi7kbBC1cKhdq6EUOXMXQThjP2JQP359SsVl0OkA_d5EP3Lx_O2EmG_WA9a4j52Rk7ffCDm16tnZNNlglr6UJv_8fa79jTbM_4VeWUHQ3bfXpPPGPwZ-WROistgb8BS7LLjw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPPItYKOADR7Ik8SOxOC0rVgu0qx5a1Jvlx0SqqLJoNzm0v56xk60KCIlbFNmJPWN7vhl7PgO8K3TjcwLKWaW9y4S3TWatdFmuvCZ75YtaxWzk45Vanomv5_J8TFZPuTCImA6f4TQ-pr38sPZ9DJXRDNc1IQJ9F-6R4ZfFkK51E1KJd0hoWY3cQlT4w2w-p26QF1jKKZeKfIPiN_uTaPrHe1X-WoyThVk8gtWubcPBkh_TvnNTf_0HbeN_N_4xPByxJpsNg-MJ3MH2KezfYiB8Bh9PCAFu2UXLFuvLgIEtyS_d-N7hlsUQLZu1V-zEXmzYumEL2192V-x7OoqN2wM4W3w-nS-z8T6FzHNVdJmytRVW2QJraVXgPGatepRC1drZkluRB4WcF05UGNCpshE8KFJiI8hs1fw57LXrFl8As3HzRhZ1IHgjhEataMFFZzXnEquynsD7nZTNz4E2wyR3I9dmUIqJSjGjUibwKWripmjkvE4vSIJmnEJGuryJeLJClQvuLfUjqEAemy2k9SqfwEGU-q3_DQKfwOFOsWacoFvDy0g2VtGHXv6j2lu4vzw9PjJHX1bfXsGD2Nwh9HIIe92mx9cERjr3Jg3BX-V-2CE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paths+in+Folded+Hypercubes+With+Any+Pair+of+Faulty+Vertices&rft.jtitle=IEEE+access&rft.au=Che-Nan+Kuo&rft.au=Yu-Huei+Cheng&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=85380&rft.epage=85389&rft_id=info:doi/10.1109%2FACCESS.2025.3567161&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5b0f65087e6043caa1ed6d499a15ac60
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon